-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserver.py
56 lines (39 loc) · 1.2 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from flask import Flask, jsonify, request, render_template
import tensorflow as tf
from models.neural import SentimentAnalyzer
from retrieval.spotify_handler import get_recs
app = Flask(__name__, instance_relative_config=False)
def load_model():
global model
model = SentimentAnalyzer()
model.load_model()
@app.route('/test', methods=["POST", "GET"])
def process_request():
# POST request
if request.method == "POST":
print(request.content_type)
data = request.get_json()
print(data['message'])
return 200, 'OK'
# GET request
elif request.method == "GET":
return jsonify({
"score": data['message'],
})
@app.route('/')
def load_server():
return render_template("index.html")
@app.route('/predict', methods=["POST", "GET"])
def predict():
global graph
with graph.as_default():
data = request.get_json()
message = data["message"]
prob = str(model.predict_sentiment([message])[0][0])
recs = get_recs(prob, message)
response = {"prob": prob, "recs": recs}
return response
if __name__ == '__main__':
load_model()
graph = tf.get_default_graph()
app.run()