-
Notifications
You must be signed in to change notification settings - Fork 221
/
Copy pathevaluate_colmap.py
124 lines (93 loc) · 4.05 KB
/
evaluate_colmap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
# Copyright 2020 Magic Leap, Inc.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Originating Author: Zak Murez (zak.murez.com)
import argparse
import os
import numpy as np
import json
import imageio
from skimage.transform import resize
from atlas.data import load_info_json, parse_splits_list
from atlas.evaluation import eval_mesh, eval_depth
def read_array(path):
# from https://github.com/colmap/colmap
# Author: Johannes L. Schoenberger (jsch-at-demuc-dot-de)
with open(path, "rb") as fid:
width, height, channels = np.genfromtxt(fid, delimiter="&", max_rows=1,
usecols=(0, 1, 2), dtype=int)
fid.seek(0)
num_delimiter = 0
byte = fid.read(1)
while True:
if byte == b"&":
num_delimiter += 1
if num_delimiter >= 3:
break
byte = fid.read(1)
array = np.fromfile(fid, np.float32)
array = array.reshape((width, height, channels), order="F")
return np.transpose(array, (1, 0, 2)).squeeze()
def eval_scene(info_file, pathout):
""" Evaluates COLMAP inference compared to ground truth
Args:
info_file: path to info_json file for the scene
pathout: path where intermediate and final results are stored
"""
info = load_info_json(info_file)
dataset = info['dataset']
scene = info['scene']
frames = info['frames']
fnames = os.listdir(os.path.join(pathout, dataset, scene, 'stereo', 'depth_maps'))
frames = [frame for frame in frames
if os.path.split(frame['file_name_image'])[1] + '.geometric.bin' in fnames]
# 2d depth metrics
for i, frame in enumerate(frames):
if i%25 == 0:
print(scene, i, len(fnames))
fname_trgt = frame['file_name_depth']
fname_pred = os.path.join(pathout, dataset, scene, 'stereo', 'depth_maps',
os.path.split(frame['file_name_image'])[1]+'.geometric.bin')
depth_trgt = imageio.imread(fname_trgt).astype('float32') / 1000
depth_pred = read_array(fname_pred)
depth_pred[depth_pred>5]=0 # ignore depth beyond 5 meters as it is probably wrong
depth_pred = resize(depth_pred, depth_trgt.shape)
temp = eval_depth(depth_pred, depth_trgt)
if i==0:
metrics_depth = temp
else:
metrics_depth = {key:value+temp[key]
for key, value in metrics_depth.items()}
metrics_depth = {key:value/len(frames)
for key, value in metrics_depth.items()}
# 3d point metrics
fname_pred = os.path.join(pathout, dataset, scene, 'fused.ply')
fname_trgt = info['file_name_mesh_gt']
metrics_mesh = eval_mesh(fname_pred, fname_trgt)
metrics = {**metrics_depth, **metrics_mesh}
print(metrics)
rslt_file = os.path.join(pathout, dataset, scene, 'metrics.json')
json.dump(metrics, open(rslt_file, 'w'))
return metrics
def main():
parser = argparse.ArgumentParser(description='Evaluate COLMAP')
parser.add_argument("--scenes", default="data/scannet_test.txt",
help="path to raw dataset")
parser.add_argument("--pathout", required=True, metavar="DIR",
help="path to store processed (derived) dataset")
args = parser.parse_args()
scenes = parse_splits_list(args.scenes)
metrics = {}
for scene in scenes:
metrics[scene] = eval_scene(scene, args.pathout)
rslt_file = os.path.join(args.pathout, 'metrics.json')
json.dump(metrics, open(rslt_file, 'w'))
if __name__ == "__main__":
main()