-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgasNcity.py
289 lines (235 loc) · 10.7 KB
/
gasNcity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import pandas as pd
import numpy as np
import pickle
import itertools
from collections import OrderedDict
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor
import pickle
import os
from tqdm import tqdm
import pickle
import os
from scipy.optimize import root
class GasNCity():
def __init__(self, load_models=False, folder_path = ''):
self.qp_cols = ['QGRS_1', 'QGRS_2', 'QPlant_1', 'QPlant_2', 'QPlant_3', 'QPlant_4',
'PGRS_1', 'PGRS_2', 'P_1', 'P_2', 'P_3', 'P_4', 'P_5', 'P_6', 'P_7',
'P_8', 'P_9', 'Q_1', 'Q_2', 'Q_3', 'Q_4', 'Q_5', 'Q_6', 'Q_7']
self.qp_models = {}
self.valves = ['valve_1', 'valve_2', 'valve_3', 'valve_4', 'valve_5', 'valve_6',
'valve_7', 'valve_8', 'valve_9', 'valve_10', 'valve_11', 'valve_12']
self.good_valves = ['valve_1', 'valve_2', 'valve_3',
'valve_5', 'valve_10', 'valve_11', 'valve_12']
self.valve_models = {}
if load_models:
for device in self.qp_cols:
path = os.path.join(folder_path, f'{device}_model.sav')
self.qp_models[device] = pickle.load(open(path, 'rb'))
for valve in self.good_valves:
path = os.path.join(folder_path, f'{valve}_model.sav')
self.valve_models[valve] = pickle.load(open(path, 'rb'))
path_mean = os.path.join(folder_path, 'means.sav')
self.qp_mean = pickle.load(open(path_mean, 'rb'))
path_std = os.path.join(folder_path, 'stds.sav')
self.qp_std = pickle.load(open(path_std, 'rb'))
def predict_qp(self, valves):
valves = pd.DataFrame(valves)
out_data = {}
for device, model in self.qp_models.items():
if device.startswith('QGRS') or device.startswith('PGRS'):
out_data[device] = model.predict(valves)
df_grs = pd.DataFrame(out_data)
valves_grs = valves.join(df_grs)
for device, model in self.qp_models.items():
if not device.startswith('QGRS') and not device.startswith('PGRS'):
out_data[device] = model.predict(valves_grs)
out_df = pd.DataFrame(out_data)
return out_df
def predict_good_valves(self, qps):
pqs = pd.DataFrame(qps)
out_valves = {}
for valve, model in self.valve_models.items():
out_valves[valve] = model.predict(qps.values)
out_df = pd.DataFrame(out_valves)
return out_df
def init_models(self):
lr_qp_devices = self.qp_cols #['P_3', 'P_5', 'P_6', 'Q_4', 'Q_5']
rf_qp_devices = [dev for dev in self.qp_cols if dev not in lr_qp_devices]
lr_v_models = ['valve_3']
rf_v_models = ['valve_1', 'valve_2', 'valve_5', 'valve_10', 'valve_11', 'valve_12']
for device in lr_qp_devices:
self.qp_models[device] = LinearRegression()
for device in rf_qp_devices:
self.qp_models[device] = RandomForestRegressor(n_estimators=50, max_depth=10)
for v in lr_v_models:
self.valve_models[v] = LinearRegression()
for v in rf_v_models:
self.valve_models[v] = RandomForestRegressor(n_estimators=50, max_depth=10)
def fit_models(self, data: pd.DataFrame, y: pd.DataFrame, verbose=False):
'''
data: valve values
y: device values
'''
self.qp_mean = y.mean()
self.qp_std = y.std()
for valve, model in self.valve_models.items():
self.valve_models[valve] = model.fit(y, data[valve])
if verbose:
print(f'Model for {valve} fited')
grs_data = data.join(y[['QGRS_1', 'QGRS_2', 'PGRS_1', 'PGRS_2']])
for device, model in self.qp_models.items():
if device.startswith('QGRS') or device.startswith('PGRS'):
self.qp_models[device] = model.fit(data, y[device])
else:
self.qp_models[device] = model.fit(grs_data, y[device])
if verbose:
print(f'Model for {device} fited')
def save_models(self, folder: str = ''):
for device, model in self.qp_models.items():
path = os.path.join(folder, f'{device}_model.sav')
pickle.dump(model, open(path, 'wb'))
for device, model in self.valve_models.items():
path = os.path.join(folder, f'{device}_model.sav')
pickle.dump(model, open(path, 'wb'))
path_mean = os.path.join(folder, 'means.sav')
self.qp_mean = pickle.dump(self.qp_mean, open(path_mean, 'wb'))
path_std = os.path.join(folder, 'stds.sav')
self.qp_mean = pickle.dump(self.qp_std, open(path_std, 'wb'))
def find_valves(self, qps, constraint=[], verbose=False):
'''Optimize valve values to fit to the qp requirements'''
valves_to_predict = [v for v in self.valves if v not in self.good_valves and v not in constraint]
grid = OrderedDict()
for v in sorted(valves_to_predict, key=lambda t: int(t.split('_')[-1])):
grid[v] = np.linspace(0.1, 1, num=6, endpoint=True)
params = OrderedDict()
for v in sorted(self.valves, key=lambda t: int(t.split('_')[-1])):
params[v] = []
out = OrderedDict()
for v in sorted(self.valves, key=lambda t: int(t.split('_')[-1])):
out[v] = []
good_valves = np.clip(self.predict_good_valves(qps), 0, 1)
for v in good_valves.columns:
out[v] = good_valves[v].values
for v in constraint:
out[v] = np.zeros(len(qps))
for entry, qp in enumerate(qps.values):
best_rmse = np.inf
best_combo = {}
for guess in tqdm(itertools.product(*grid.values())):
for v in good_valves.columns:
params[v] = [good_valves[v][entry]]
for v in constraint:
params[v] = [0.]
for i, v in enumerate(grid.keys()):
params[v] = [guess[i]]
qp_pred = (self.predict_qp(pd.DataFrame(params)) - self.qp_mean) / self.qp_std
qp_scaled = (qp - self.qp_mean) / self.qp_std
rmse = np.sum(((qp_pred - qp_scaled)**2 / (qp_scaled+1e-6)**2).values)
if rmse < best_rmse:
best_rmse = rmse
best_combo = params
preds = self.predict_qp(pd.DataFrame(best_combo))
qp_pred = self.check_validity(preds)
if not qp_pred[0][0]:
for v in [x for x in good_valves if x not in constraint]:
delta = 0.1 if best_combo[v][0] > 0.5 else 0.2
best_combo[v] = np.clip(best_combo[v][0]+delta, 0 , 1)
for v in valves_to_predict:
out[v].append(best_combo[v][0])
if verbose:
print(f'Solution found for {entry}-th entry')
return pd.DataFrame(out)
def plant_q_rule(self, series, threshold=1e-1):
return (series >= threshold).astype(int)
def private_q_rule(self, series, threshold=0.6):
name = series.name
if name in ['Q_1', 'Q_7']:
threshold *= 2
if name in ['Q_6']:
threshold *= 4
return (series >= threshold).astype(int)
def get_q_by_p(self, pressure):
if pressure.name in ['P_1', 'P_8']:
return -0.3 + pressure * 7 / 1e6
elif pressure.name in ['P_2', 'P_3', 'P_4', 'P_6']:
return -0.2 + pressure * 4 / 1e6
def validate_plant(self, preds):
res = self.plant_q_rule(preds)
return res
def validate_private(self, preds):
res = self.private_q_rule(preds)
return res
def check_distribution(self, preds):
pass
def check_pressure_order(self, idx, preds):
determined_pairs = [
('P_9', 'P_8'),
('P_7', 'P_8'),
('P_7', 'P_6'),
('P_7', 'P_5'),
('P_4', 'P_3'),
('P_6', 'P_3'),
('P_6', 'P_2'),
]
most_probable_pairs = [
('P_9', 'P_1'),
('P_7', 'P_4'),
]
for pair in determined_pairs:
if preds[pair[0]] < preds[pair[1]]:
print(f"WARNING in row {idx}: There's no such case in the dataset: "
f"{pair[1]} is greater than {pair[0]}. Please check your predictions")
for pair in most_probable_pairs:
if preds[pair[0]] < preds[pair[1]]:
print(f"WARNING in row {idx}: There are very few such case in the dataset: "
f"{pair[1]} is greater than {pair[0]}. Please check your predictions")
return
def check_p_q_relationship(self, preds):
mapping = {
'P_1': 'Q_1',
'P_4': 'Q_4',
'P_6': 'Q_5',
'P_8': 'Q_7',
'P_2': 'Q_2',
'P_3': 'Q_3',
}
for i in range(1, 10):
col = f'P_{i}'
# If not checked, continue
if col not in mapping:
continue
# Preprocess column
series = preds[col]
if i == 2:
series /= 2
series += preds['P_1'] / 2
# Check the difference between predicted and original
diff_allowed = 0.05
if i in [2, 3]:
diff_allowed = 0.07
elif i in [1, 8]:
diff_allowed = 0.1
q_pred = self.get_q_by_p(series)
diff = (preds[mapping[col]] - q_pred).abs()
bad_index = diff[diff > diff_allowed].index
if bad_index.shape[0] > 0:
print(f'WARNING in rows {bad_index.values}: {col} does not follow {mapping[col]} relationship')
def check_validity(self, preds):
# Check "Q exceeds min level"
for i in range(1, 8):
preds[f'validPrivate_{i}'] = self.validate_private(preds[f'Q_{i}'])
for i in range(1, 5):
preds[f'validPlant_{i}'] = self.validate_plant(preds[f'QPlant_{i}'])
# Check "P_9 > 200 000 for Plant 4"
preds['validP9'] = (preds['P_9'] > 200000).astype(int)
# Check order of Pressures
for idx, row in preds.iterrows():
self.check_pressure_order(idx, row)
# Check that some specific Q and P follow their linear relationship
self.check_p_q_relationship(preds)
cols = [i for i in preds.columns if i.startswith('valid')]
validity_score = preds[cols].mean(axis=1)
validity_binary = preds[cols].product(axis=1)
return validity_binary, validity_score