-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrand_index.py
153 lines (138 loc) · 5.11 KB
/
rand_index.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import numpy as np
from mpmath import bell
from sklearn.metrics.cluster import rand_score
from utils import stirling2, RandomModel, AdjustmentType
def p(labels: np.ndarray, random_model, agree: bool):
# TODO: THIS SHOULD BE REFACTORED. HERE WE CALCULATE THE cluster_sizes OVER AND OVER AGAIN WHICH IS QUITE COSTLY.
# MAYBE INTRODUCE A CLUSTER CLASS.
if not agree:
return 1 - p(labels, random_model, agree=True)
n = len(labels)
_, cluster_sizes = np.unique(labels, return_counts=True)
k = len(cluster_sizes)
match random_model:
case RandomModel.ALL:
return bell(n - 1) / bell(n)
case RandomModel.NUM:
return stirling2(n - 1, k) / stirling2(n, k)
case RandomModel.PERM:
return (cluster_sizes * (cluster_sizes - 1)).sum() / (n * (n - 1))
case _:
raise ValueError(f"Invalid random model {random_model}.")
def p_2(
labels: np.ndarray,
random_model: RandomModel,
agree_alpha: bool,
agree_beta: bool,
alpha_eq_beta: bool,
):
if alpha_eq_beta:
if agree_alpha is agree_beta:
return p(labels, random_model, agree=agree_alpha)
else:
return 0
else:
n = len(labels)
_, cluster_sizes = np.unique(labels, return_counts=True)
k = len(cluster_sizes)
if agree_alpha and agree_beta:
match random_model:
case RandomModel.ALL:
return bell(n - 2) / bell(n)
case RandomModel.NUM:
return stirling2(n - 2, k) / stirling2(n, k)
case RandomModel.PERM:
q1 = (cluster_sizes * (cluster_sizes - 1)).sum() // 2
total = (n * (n - 1)) // 2
return (q1 / total) * (q1 - 1) / (total - 1)
case _:
raise ValueError(f"Invalid random model {random_model}.")
elif agree_alpha or agree_beta:
return p(labels, random_model, agree=True) - p_2(
labels, random_model, True, True, False
)
else:
return (
1
- p_2(
labels,
random_model,
agree_alpha=True,
agree_beta=True,
alpha_eq_beta=False,
)
- 2
* p_2(
labels,
random_model,
agree_alpha=True,
agree_beta=False,
alpha_eq_beta=False,
)
)
def e_ri2(
labels_true: np.ndarray,
labels_pred: np.ndarray,
random_model_true: RandomModel,
random_model_pred: RandomModel,
):
n = len(labels_true)
nc2inv = 2 / (n * (n - 1))
alpha_eq_beta = sum(
p_2(labels_true, random_model_true, agree_alpha, agree_beta, True)
* p_2(labels_pred, random_model_pred, agree_alpha, agree_beta, True)
for agree_alpha in [True, False]
for agree_beta in [True, False]
)
alpha_neq_beta = sum(
p_2(labels_true, random_model_true, agree_alpha, agree_beta, False)
* p_2(labels_pred, random_model_pred, agree_alpha, agree_beta, False)
for agree_alpha in [True, False]
for agree_beta in [True, False]
)
return nc2inv * alpha_eq_beta + (1 - nc2inv) * alpha_neq_beta
def e_ri(
labels_true: np.ndarray,
labels_pred: np.ndarray,
random_model_true: RandomModel,
random_model_pred: RandomModel,
):
return sum(
p(labels_true, random_model_true, agree)
* p(labels_pred, random_model_pred, agree)
for agree in [True, False]
)
def standardized_rand_score(
labels_true, labels_pred, random_model_true, random_model_pred
):
ri = rand_score(labels_true, labels_pred)
eri = e_ri(labels_true, labels_pred, random_model_true, random_model_pred)
eri2 = e_ri2(labels_true, labels_pred,
random_model_true, random_model_pred)
if (abs(eri2 - eri**2) < 1e-14) and (abs(ri - eri) < 1e-14):
return 1.0
return (ri - eri) / np.sqrt(eri2 - eri**2)
def adjusted_rand_score(labels_true, labels_pred, random_model_true, random_model_pred):
ri = rand_score(labels_true, labels_pred)
eri = e_ri(labels_true, labels_pred, random_model_true, random_model_pred)
return (ri - eri) / (1.0 - eri)
def generalized_adjusted_rand_score(
labels_true: np.ndarray,
labels_pred: np.ndarray,
adjustment: AdjustmentType,
random_model_true: RandomModel,
random_model_pred: RandomModel,
) -> float:
match adjustment:
case AdjustmentType.NONE | AdjustmentType.NORMALIZED:
return rand_score(labels_true, labels_pred)
case AdjustmentType.ADJUSTED:
return adjusted_rand_score(
labels_true, labels_pred, random_model_true, random_model_pred
)
case AdjustmentType.STANDARDIZED:
return standardized_rand_score(
labels_true, labels_pred, random_model_true, random_model_pred
)
case _:
raise ValueError(f"Invalid adjustment type {adjustment}.")