-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest.py
54 lines (44 loc) · 1.3 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import os
import models
import torch
import data
import numpy as np
import random
import utils
import torchvision.transforms as transforms
import cv2
import PIL.Image as Image
def testFCN32():
from torch.autograd import Variable
model = models.FCN32()
data = Variable(torch.randn(1,3,512,512))
out = model(data)
print('input', data.size(), 'out', out.size())
def testVOC():
dataset = data.VOCClassSeg(root=path,
split='train.txt',
transform=True)
idx = random.randrange(0, 20)
image, label = dataset[idx]
image, label = dataset.untransform(image, label)
label_pil = utils.tool.colorize_mask(label)
label_pil.show()
cv2.imshow('image', image)
cv2.waitKey(0)
def testSBD():
dataset = data.SBDClassSeg(root=path,
split='train.txt',
transform=True)
idx = random.randrange(0, len(dataset))
image, label = dataset[idx]
image, label = dataset.untransform(image, label)
print('label', np.unique(label))
label_pil = utils.tool.colorize_mask(label)
label_pil.show()
cv2.imshow('image', image)
cv2.waitKey(0)
if __name__ == '__main__':
path = os.path.expanduser('~/codedata/seg/')
# testFCN32()
# testVOC()
testSBD()