This repository has been archived by the owner on Dec 27, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbch3.h
544 lines (487 loc) · 15.1 KB
/
bch3.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
/*
* File: bch3.h
* Title: Encoder/decoder for binary BCH codes in C (Version 3.1)
* Author: Robert Morelos-Zaragoza
* Date: August 1994-June 13, 1997
* Moded: December 14, 2021, for EDACS-FM BCH Polynomial Error Generation and Detection
* Source: www.eccpage.com
*
* =============== Encoder/Decoder for binary BCH codes in C =================
*
* Version 1: Original program. The user provides the generator polynomial
* of the code (cumbersome!).
* Version 2: Computes the generator polynomial of the code.
* Version 3: No need to input the coefficients of a primitive polynomial of
* degree m, used to construct the Galois Field GF(2**m). The
* program now works for any binary BCH code of length such that:
* 2**(m-1) - 1 < length <= 2**m - 1
*
* Note: You may have to change the size of the arrays to make it work.
*
* The encoding and decoding methods used in this program are based on the
* book "Error Control Coding: Fundamentals and Applications", by Lin and
* Costello, Prentice Hall, 1983.
*
* Thanks to Patrick Boyle ([email protected]) for his observation that 'bch2.c'
* did not work for lengths other than 2**m-1 which led to this new version.
* Portions of this program are from 'rs.c', a Reed-Solomon encoder/decoder
* in C, written by Simon Rockliff ([email protected]) on 21/9/89. The
* previous version of the BCH encoder/decoder in C, 'bch2.c', was written by
* Robert Morelos-Zaragoza ([email protected]) on 5/19/92.
*
* NOTE:
* The author is not responsible for any malfunctioning of
* this program, nor for any damage caused by it. Please include the
* original program along with these comments in any redistribution.
*
* For more information, suggestions, or other ideas on implementing error
* correcting codes, please contact me at:
*
* Robert Morelos-Zaragoza
* 5120 Woodway, Suite 7036
* Houston, Texas 77056
*
* email: [email protected]
*
* COPYRIGHT NOTICE: This computer program is free for non-commercial purposes.
* You may implement this program for any non-commercial application. You may
* also implement this program for commercial purposes, provided that you
* obtain my written permission. Any modification of this program is covered
* by this copyright.
*
* == Copyright (c) 1994-7, Robert Morelos-Zaragoza. All rights reserved. ==
*
* m = order of the Galois field GF(2**m)
* n = 2**m - 1 = size of the multiplicative group of GF(2**m)
* length = length of the BCH code
* t = error correcting capability (max. no. of errors the code corrects)
* d = 2*t + 1 = designed min. distance = no. of consecutive roots of g(x) + 1
* k = n - deg(g(x)) = dimension (no. of information bits/codeword) of the code
* p[] = coefficients of a primitive polynomial used to generate GF(2**m)
* g[] = coefficients of the generator polynomial, g(x)
* alpha_to [] = log table of GF(2**m)
* index_of[] = antilog table of GF(2**m)
* ddata[] = information bits = coefficients of data polynomial, i(x)
* bb[] = coefficients of redundancy polynomial x^(length-k) i(x) modulo g(x)
* numerr = number of errors
* errpos[] = error positions
* recd[] = coefficients of the received polynomial
* decerror = number of decoding errors (in _message_ positions)
*
*/
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
int m, n, length, k, t, d;
int p[21];
int alpha_to[1048576], index_of[1048576], g[548576];
int recd[1048576], ddata[1048576], bb[548576];
int seed;
int numerr, errpos[1024], decerror = 0;
void
read_p()
/*
* Read m, the degree of a primitive polynomial p(x) used to compute the
* Galois field GF(2**m). Get precomputed coefficients p[] of p(x). Read
* the code length.
*/
{
int i, ninf;
do {
m = 6;
} while ( !(m>1) || !(m<21) );
for (i=1; i<m; i++)
p[i] = 0;
p[0] = p[m] = 1;
if (m == 2) p[1] = 1;
else if (m == 3) p[1] = 1;
else if (m == 4) p[1] = 1;
else if (m == 5) p[2] = 1;
else if (m == 6) p[1] = 1;
else if (m == 7) p[1] = 1;
else if (m == 8) p[4] = p[5] = p[6] = 1;
else if (m == 9) p[4] = 1;
else if (m == 10) p[3] = 1;
else if (m == 11) p[2] = 1;
else if (m == 12) p[3] = p[4] = p[7] = 1;
else if (m == 13) p[1] = p[3] = p[4] = 1;
else if (m == 14) p[1] = p[11] = p[12] = 1;
else if (m == 15) p[1] = 1;
else if (m == 16) p[2] = p[3] = p[5] = 1;
else if (m == 17) p[3] = 1;
else if (m == 18) p[7] = 1;
else if (m == 19) p[1] = p[5] = p[6] = 1;
else if (m == 20) p[3] = 1;
n = 1;
for (i = 0; i <= m; i++) {
n *= 2;
}
n = n / 2 - 1;
ninf = (n + 1) / 2 - 1;
do {
length = 40;
} while ( !((length <= n)&&(length>ninf)) );
}
void
generate_gf()
/*
* Generate field GF(2**m) from the irreducible polynomial p(X) with
* coefficients in p[0]..p[m].
*
* Lookup tables:
* index->polynomial form: alpha_to[] contains j=alpha^i;
* polynomial form -> index form: index_of[j=alpha^i] = i
*
* alpha=2 is the primitive element of GF(2**m)
*/
{
register int i, mask;
mask = 1;
alpha_to[m] = 0;
for (i = 0; i < m; i++) {
alpha_to[i] = mask;
index_of[alpha_to[i]] = i;
if (p[i] != 0)
alpha_to[m] ^= mask;
mask <<= 1;
}
index_of[alpha_to[m]] = m;
mask >>= 1;
for (i = m + 1; i < n; i++) {
if (alpha_to[i - 1] >= mask)
alpha_to[i] = alpha_to[m] ^ ((alpha_to[i - 1] ^ mask) << 1);
else
alpha_to[i] = alpha_to[i - 1] << 1;
index_of[alpha_to[i]] = i;
}
index_of[0] = -1;
}
void
gen_poly()
/*
* Compute the generator polynomial of a binary BCH code. Fist generate the
* cycle sets modulo 2**m - 1, cycle[][] = (i, 2*i, 4*i, ..., 2^l*i). Then
* determine those cycle sets that contain integers in the set of (d-1)
* consecutive integers {1..(d-1)}. The generator polynomial is calculated
* as the product of linear factors of the form (x+alpha^i), for every i in
* the above cycle sets.
*/
{
register int ii, jj, ll, kaux;
register int test, aux, nocycles, root, noterms, rdncy;
int cycle[1024][21], size[1024], min[1024], zeros[1024];
/* Generate cycle sets modulo n, n = 2**m - 1 */
cycle[0][0] = 0;
size[0] = 1;
cycle[1][0] = 1;
size[1] = 1;
jj = 1; /* cycle set index */
if (m > 9) {
}
do {
/* Generate the jj-th cycle set */
ii = 0;
do {
ii++;
cycle[jj][ii] = (cycle[jj][ii - 1] * 2) % n;
size[jj]++;
aux = (cycle[jj][ii] * 2) % n;
} while (aux != cycle[jj][0]);
/* Next cycle set representative */
ll = 0;
do {
ll++;
test = 0;
for (ii = 1; ((ii <= jj) && (!test)); ii++)
/* Examine previous cycle sets */
for (kaux = 0; ((kaux < size[ii]) && (!test)); kaux++)
if (ll == cycle[ii][kaux])
test = 1;
} while ((test) && (ll < (n - 1)));
if (!(test)) {
jj++; /* next cycle set index */
cycle[jj][0] = ll;
size[jj] = 1;
}
} while (ll < (n - 1));
nocycles = jj; /* number of cycle sets modulo n */
t = 2;
d = 2 * t + 1;
/* Search for roots 1, 2, ..., d-1 in cycle sets */
kaux = 0;
rdncy = 0;
for (ii = 1; ii <= nocycles; ii++) {
min[kaux] = 0;
test = 0;
for (jj = 0; ((jj < size[ii]) && (!test)); jj++)
for (root = 1; ((root < d) && (!test)); root++)
if (root == cycle[ii][jj]) {
test = 1;
min[kaux] = ii;
}
if (min[kaux]) {
rdncy += size[min[kaux]];
kaux++;
}
}
noterms = kaux;
kaux = 1;
for (ii = 0; ii < noterms; ii++)
for (jj = 0; jj < size[min[ii]]; jj++) {
zeros[kaux] = cycle[min[ii]][jj];
kaux++;
}
k = length - rdncy;
if (k<0)
{
exit(0);
}
/* Compute the generator polynomial */
g[0] = alpha_to[zeros[1]];
g[1] = 1; /* g(x) = (X + zeros[1]) initially */
for (ii = 2; ii <= rdncy; ii++) {
g[ii] = 1;
for (jj = ii - 1; jj > 0; jj--)
if (g[jj] != 0)
g[jj] = g[jj - 1] ^ alpha_to[(index_of[g[jj]] + zeros[ii]) % n];
else
g[jj] = g[jj - 1];
g[0] = alpha_to[(index_of[g[0]] + zeros[ii]) % n];
}
}
void
encode_bch()
/*
* Compute redundacy bb[], the coefficients of b(x). The redundancy
* polynomial b(x) is the remainder after dividing x^(length-k)*ddata(x)
* by the generator polynomial g(x).
*/
{
register int i, j;
register int feedback;
for (i = 0; i < length - k; i++)
bb[i] = 0;
for (i = k - 1; i >= 0; i--) {
feedback = ddata[i] ^ bb[length - k - 1];
if (feedback != 0) {
for (j = length - k - 1; j > 0; j--)
if (g[j] != 0)
bb[j] = bb[j - 1] ^ feedback;
else
bb[j] = bb[j - 1];
bb[0] = g[0] && feedback;
} else {
for (j = length - k - 1; j > 0; j--)
bb[j] = bb[j - 1];
bb[0] = 0;
}
}
}
void
decode_bch()
/*
* Simon Rockliff's implementation of Berlekamp's algorithm.
*
* Assume we have received bits in recd[i], i=0..(n-1).
*
* Compute the 2*t syndromes by substituting alpha^i into rec(X) and
* evaluating, storing the syndromes in s[i], i=1..2t (leave s[0] zero) .
* Then we use the Berlekamp algorithm to find the error location polynomial
* elp[i].
*
* If the degree of the elp is >t, then we cannot correct all the errors, and
* we have detected an uncorrectable error pattern. We output the information
* bits uncorrected.
*
* If the degree of elp is <=t, we substitute alpha^i , i=1..n into the elp
* to get the roots, hence the inverse roots, the error location numbers.
* This step is usually called "Chien's search".
*
* If the number of errors located is not equal the degree of the elp, then
* the decoder assumes that there are more than t errors and cannot correct
* them, only detect them. We output the information bits uncorrected.
*/
{
register int i, j, u, q, t2, count = 0, syn_error = 0;
int elp[1026][1024], d[1026], l[1026], u_lu[1026], s[1025];
int root[200], loc[200], err[1024], reg[201];
t2 = 2 * t;
/* first form the syndromes */
for (i = 1; i <= t2; i++) {
s[i] = 0;
for (j = 0; j < length; j++)
if (recd[j] != 0)
s[i] ^= alpha_to[(i * j) % n];
if (s[i] != 0)
syn_error = 1; /* set error flag if non-zero syndrome */
/*
* Note: If the code is used only for ERROR DETECTION, then
* exit program here indicating the presence of errors.
*/
/* convert syndrome from polynomial form to index form */
s[i] = index_of[s[i]];
}
if (syn_error) { /* if there are errors, try to correct them */
/*
* Compute the error location polynomial via the Berlekamp
* iterative algorithm. Following the terminology of Lin and
* Costello's book : d[u] is the 'mu'th discrepancy, where
* u='mu'+1 and 'mu' (the Greek letter!) is the step number
* ranging from -1 to 2*t (see L&C), l[u] is the degree of
* the elp at that step, and u_l[u] is the difference between
* the step number and the degree of the elp.
*/
/* initialise table entries */
d[0] = 0; /* index form */
d[1] = s[1]; /* index form */
elp[0][0] = 0; /* index form */
elp[1][0] = 1; /* polynomial form */
for (i = 1; i < t2; i++) {
elp[0][i] = -1; /* index form */
elp[1][i] = 0; /* polynomial form */
}
l[0] = 0;
l[1] = 0;
u_lu[0] = -1;
u_lu[1] = 0;
u = 0;
do {
u++;
if (d[u] == -1) {
l[u + 1] = l[u];
for (i = 0; i <= l[u]; i++) {
elp[u + 1][i] = elp[u][i];
elp[u][i] = index_of[elp[u][i]];
}
} else
/*
* search for words with greatest u_lu[q] for
* which d[q]!=0
*/
{
q = u - 1;
while ((d[q] == -1) && (q > 0))
q--;
/* have found first non-zero d[q] */
if (q > 0) {
j = q;
do {
j--;
if ((d[j] != -1) && (u_lu[q] < u_lu[j]))
q = j;
} while (j > 0);
}
/*
* have now found q such that d[u]!=0 and
* u_lu[q] is maximum
*/
/* store degree of new elp polynomial */
if (l[u] > l[q] + u - q)
l[u + 1] = l[u];
else
l[u + 1] = l[q] + u - q;
/* form new elp(x) */
for (i = 0; i < t2; i++)
elp[u + 1][i] = 0;
for (i = 0; i <= l[q]; i++)
if (elp[q][i] != -1)
elp[u + 1][i + u - q] =
alpha_to[(d[u] + n - d[q] + elp[q][i]) % n];
for (i = 0; i <= l[u]; i++) {
elp[u + 1][i] ^= elp[u][i];
elp[u][i] = index_of[elp[u][i]];
}
}
u_lu[u + 1] = u - l[u + 1];
/* form (u+1)th discrepancy */
if (u < t2) {
/* no discrepancy computed on last iteration */
if (s[u + 1] != -1)
d[u + 1] = alpha_to[s[u + 1]];
else
d[u + 1] = 0;
for (i = 1; i <= l[u + 1]; i++)
if ((s[u + 1 - i] != -1) && (elp[u + 1][i] != 0))
d[u + 1] ^= alpha_to[(s[u + 1 - i]
+ index_of[elp[u + 1][i]]) % n];
/* put d[u+1] into index form */
d[u + 1] = index_of[d[u + 1]];
}
} while ((u < t2) && (l[u + 1] <= t));
u++;
if (l[u] <= t) {/* Can correct errors */
/* put elp into index form */
for (i = 0; i <= l[u]; i++)
elp[u][i] = index_of[elp[u][i]];
for (i = 0; i <= l[u]; i++)
/* Chien search: find roots of the error location polynomial */
for (i = 1; i <= l[u]; i++)
reg[i] = elp[u][i];
count = 0;
for (i = 1; i <= n; i++) {
q = 1;
for (j = 1; j <= l[u]; j++)
if (reg[j] != -1) {
reg[j] = (reg[j] + j) % n;
q ^= alpha_to[reg[j]];
}
if (!q) { /* store root and error
* location number indices */
root[count] = i;
loc[count] = n - i;
count++;
}
}
if (count == l[u])
/* no. roots = degree of elp hence <= t errors */
for (i = 0; i < l[u]; i++)
recd[loc[i]] ^= 1;
}
}
}
long int messagepp = 0x0;
long int BCH(long int message)
{
int i;
//move some of these to run at start of edacs-fm
//read_p(); /* Read m */
//generate_gf(); /* Construct the Galois Field GF(2**m) */
//gen_poly(); /* Compute the generator polynomial of BCH code */
//test shows this works, but output from program is that the poly is backwards, not sure if it corrects okay though
for (i = 0; i < k; i++){
ddata[i] = ( (message >> i) & 0x1 ); //loaded up backwards? or just outputs backwards?
}
encode_bch(); /* encode data */
/*
* recd[] are the coefficients of c(x) = x**(length-k)*data(x) + b(x)
*/
for (i = 0; i < length - k; i++)
recd[i] = bb[i];
for (i = 0; i < k; i++)
recd[i + length - k] = ddata[i];
for (i = 0; i < length; i++) {
messagepp = (messagepp << 1) | recd[39-i]; //get it in the correct direction
}
//numerr = 0;
//recd[] are the coefficients of r(x) = c(x) + e(x)
/* //disablign all decode and error correction parts, only generating poly and comparing to original
for (i = 0; i < numerr; i++)
//scanf("%d", &errpos[i]);
if (numerr)
for (i = 0; i < numerr; i++)
recd[errpos[i]] ^= 1;
decode_bch(); //DECODE received codeword recv[]
long int data_hex = 0x0;
for (i = 0; i < k; i++) {
data_hex = (data_hex << 1) | ddata[27-i]; //get it in the correct direction
}
long int recovered_hex = 0x0;
for (i = 0; i < k; i++) {
recovered_hex = (recovered_hex << 1) | ddata[27-i]; //get it in the correct direction
}
//DECODING ERRORS? we compare only the data portion
for (i = length - k; i < length; i++)
if (ddata[i - length + k] != recd[i])
decerror++;
*/
}