-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathmodeling.py
243 lines (206 loc) · 8.65 KB
/
modeling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# Copyright 2021 Condenser Author All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import warnings
import torch
from torch import nn, Tensor
import torch.distributed as dist
import torch.nn.functional as F
from transformers import BertModel, BertConfig, AutoModel, AutoModelForMaskedLM, AutoConfig, PretrainedConfig, \
RobertaModel
from transformers.models.bert.modeling_bert import BertPooler, BertOnlyMLMHead, BertPreTrainingHeads, BertLayer
from transformers.modeling_outputs import SequenceClassifierOutput, BaseModelOutputWithPooling, MaskedLMOutput
from transformers.models.roberta.modeling_roberta import RobertaLayer
from arguments import DataTrainingArguments, ModelArguments, CoCondenserPreTrainingArguments
from transformers import TrainingArguments
import logging
logger = logging.getLogger(__name__)
class CondenserForPretraining(nn.Module):
def __init__(
self,
bert: BertModel,
model_args: ModelArguments,
data_args: DataTrainingArguments,
train_args: TrainingArguments
):
super(CondenserForPretraining, self).__init__()
self.lm = bert
self.c_head = nn.ModuleList(
[BertLayer(bert.config) for _ in range(model_args.n_head_layers)]
)
self.c_head.apply(self.lm._init_weights)
self.cross_entropy = nn.CrossEntropyLoss()
self.model_args = model_args
self.train_args = train_args
self.data_args = data_args
def forward(self, model_input, labels):
attention_mask = self.lm.get_extended_attention_mask(
model_input['attention_mask'],
model_input['attention_mask'].shape,
model_input['attention_mask'].device
)
lm_out: MaskedLMOutput = self.lm(
**model_input,
labels=labels,
output_hidden_states=True,
return_dict=True
)
cls_hiddens = lm_out.hidden_states[-1][:, :1]
skip_hiddens = lm_out.hidden_states[self.model_args.skip_from]
hiddens = torch.cat([cls_hiddens, skip_hiddens[:, 1:]], dim=1)
for layer in self.c_head:
layer_out = layer(
hiddens,
attention_mask,
)
hiddens = layer_out[0]
loss = self.mlm_loss(hiddens, labels)
if self.model_args.late_mlm:
loss += lm_out.loss
return loss
def mlm_loss(self, hiddens, labels):
pred_scores = self.lm.cls(hiddens)
masked_lm_loss = self.cross_entropy(
pred_scores.view(-1, self.lm.config.vocab_size),
labels.view(-1)
)
return masked_lm_loss
@classmethod
def from_pretrained(
cls, model_args: ModelArguments, data_args: DataTrainingArguments, train_args: TrainingArguments,
*args, **kwargs
):
hf_model = AutoModelForMaskedLM.from_pretrained(*args, **kwargs)
model = cls(hf_model, model_args, data_args, train_args)
path = args[0]
if os.path.exists(os.path.join(path, 'model.pt')):
logger.info('loading extra weights from local files')
model_dict = torch.load(os.path.join(path, 'model.pt'), map_location="cpu")
load_result = model.load_state_dict(model_dict, strict=False)
return model
@classmethod
def from_config(
cls,
config: PretrainedConfig,
model_args: ModelArguments,
data_args: DataTrainingArguments,
train_args: TrainingArguments,
):
hf_model = AutoModelForMaskedLM.from_config(config)
model = cls(hf_model, model_args, data_args, train_args)
return model
def save_pretrained(self, output_dir: str):
self.lm.save_pretrained(output_dir)
model_dict = self.state_dict()
hf_weight_keys = [k for k in model_dict.keys() if k.startswith('lm')]
warnings.warn(f'omiting {len(hf_weight_keys)} transformer weights')
for k in hf_weight_keys:
model_dict.pop(k)
torch.save(model_dict, os.path.join(output_dir, 'model.pt'))
torch.save([self.data_args, self.model_args, self.train_args], os.path.join(output_dir, 'args.pt'))
class RobertaCondenserForPretraining(CondenserForPretraining):
def __init__(
self,
roberta: RobertaModel,
model_args: ModelArguments,
data_args: DataTrainingArguments,
train_args: TrainingArguments
):
super(CondenserForPretraining, self).__init__()
self.lm = roberta
self.c_head = nn.ModuleList(
[RobertaLayer(roberta.config) for _ in range(model_args.n_head_layers)]
)
self.c_head.apply(self.lm._init_weights)
# self.mlm_head = BertOnlyMLMHead(bert.config)
self.cross_entropy = nn.CrossEntropyLoss()
self.model_args = model_args
self.train_args = train_args
self.data_args = data_args
def mlm_loss(self, hiddens, labels):
pred_scores = self.lm.lm_head(hiddens)
masked_lm_loss = self.cross_entropy(
pred_scores.view(-1, self.lm.config.vocab_size),
labels.view(-1)
)
return masked_lm_loss
class CoCondenserForPretraining(CondenserForPretraining):
def __init__(
self,
bert: BertModel,
model_args: ModelArguments,
data_args: DataTrainingArguments,
train_args: CoCondenserPreTrainingArguments
):
super(CoCondenserForPretraining, self).__init__(bert, model_args, data_args, train_args)
effective_bsz = train_args.per_device_train_batch_size * self._world_size() * 2
target = torch.arange(effective_bsz, dtype=torch.long).view(-1, 2).flip([1]).flatten().contiguous()
self.register_buffer(
'co_target', target
)
def _gather_tensor(self, t: Tensor):
all_tensors = [torch.empty_like(t) for _ in range(dist.get_world_size())]
dist.all_gather(all_tensors, t)
all_tensors[self.train_args.local_rank] = t
return all_tensors
def gather_tensors(self, *tt: Tensor):
tt = [torch.cat(self._gather_tensor(t)) for t in tt]
return tt
def forward(self, model_input, labels, grad_cache: Tensor = None, chunk_offset: int = None):
attention_mask = self.lm.get_extended_attention_mask(
model_input['attention_mask'],
model_input['attention_mask'].shape,
model_input['attention_mask'].device
)
lm_out: MaskedLMOutput = self.lm(
**model_input,
labels=labels,
output_hidden_states=True,
return_dict=True
)
cls_hiddens = lm_out.hidden_states[-1][:, :1]
if self.train_args.local_rank > -1 and grad_cache is None:
co_cls_hiddens = self.gather_tensors(cls_hiddens.squeeze().contiguous())[0]
else:
co_cls_hiddens = cls_hiddens.squeeze()
skip_hiddens = lm_out.hidden_states[self.model_args.skip_from]
hiddens = torch.cat([cls_hiddens, skip_hiddens[:, 1:]], dim=1)
for layer in self.c_head:
layer_out = layer(
hiddens,
attention_mask,
)
hiddens = layer_out[0]
loss = self.mlm_loss(hiddens, labels)
if self.model_args.late_mlm:
loss += lm_out.loss
if grad_cache is None:
co_loss = self.compute_contrastive_loss(co_cls_hiddens)
return loss + co_loss
else:
loss = loss * (float(hiddens.size(0)) / self.train_args.per_device_train_batch_size)
cached_grads = grad_cache[chunk_offset: chunk_offset + co_cls_hiddens.size(0)]
surrogate = torch.dot(cached_grads.flatten(), co_cls_hiddens.flatten())
return loss, surrogate
@staticmethod
def _world_size():
if dist.is_initialized():
return dist.get_world_size()
else:
return 1
def compute_contrastive_loss(self, co_cls_hiddens):
similarities = torch.matmul(co_cls_hiddens, co_cls_hiddens.transpose(0, 1))
similarities.fill_diagonal_(float('-inf'))
co_loss = F.cross_entropy(similarities, self.co_target) * self._world_size()
return co_loss