forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmixture_same_family.py
191 lines (161 loc) · 8.31 KB
/
mixture_same_family.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import torch
from torch.distributions.distribution import Distribution
from torch.distributions import Categorical
from torch.distributions import constraints
class MixtureSameFamily(Distribution):
r"""
The `MixtureSameFamily` distribution implements a (batch of) mixture
distribution where all component are from different parameterizations of
the same distribution type. It is parameterized by a `Categorical`
"selecting distribution" (over `k` component) and a component
distribution, i.e., a `Distribution` with a rightmost batch shape
(equal to `[k]`) which indexes each (batch of) component.
Examples::
# Construct Gaussian Mixture Model in 1D consisting of 5 equally
# weighted normal distributions
>>> mix = D.Categorical(torch.ones(5,))
>>> comp = D.Normal(torch.randn(5,), torch.rand(5,))
>>> gmm = MixtureSameFamily(mix, comp)
# Construct Gaussian Mixture Modle in 2D consisting of 5 equally
# weighted bivariate normal distributions
>>> mix = D.Categorical(torch.ones(5,))
>>> comp = D.Independent(D.Normal(
torch.randn(5,2), torch.rand(5,2)), 1)
>>> gmm = MixtureSameFamily(mix, comp)
# Construct a batch of 3 Gaussian Mixture Models in 2D each
# consisting of 5 random weighted bivariate normal distributions
>>> mix = D.Categorical(torch.rand(3,5))
>>> comp = D.Independent(D.Normal(
torch.randn(3,5,2), torch.rand(3,5,2)), 1)
>>> gmm = MixtureSameFamily(mix, comp)
Args:
mixture_distribution: `torch.distributions.Categorical`-like
instance. Manages the probability of selecting component.
The number of categories must match the rightmost batch
dimension of the `component_distribution`. Must have either
scalar `batch_shape` or `batch_shape` matching
`component_distribution.batch_shape[:-1]`
component_distribution: `torch.distributions.Distribution`-like
instance. Right-most batch dimension indexes component.
"""
arg_constraints = {}
has_rsample = False
def __init__(self,
mixture_distribution,
component_distribution,
validate_args=None):
self._mixture_distribution = mixture_distribution
self._component_distribution = component_distribution
if not isinstance(self._mixture_distribution, Categorical):
raise ValueError(" The Mixture distribution needs to be an "
" instance of torch.distribtutions.Categorical")
if not isinstance(self._component_distribution, Distribution):
raise ValueError("The Component distribution need to be an "
"instance of torch.distributions.Distribution")
# Check that batch size matches
mdbs = self._mixture_distribution.batch_shape
cdbs = self._component_distribution.batch_shape[:-1]
for size1, size2 in zip(reversed(mdbs), reversed(cdbs)):
if size1 != 1 and size2 != 1 and size1 != size2:
raise ValueError("`mixture_distribution.batch_shape` ({0}) is not "
"compatible with `component_distribution."
"batch_shape`({1})".format(mdbs, cdbs))
# Check that the number of mixture component matches
km = self._mixture_distribution.logits.shape[-1]
kc = self._component_distribution.batch_shape[-1]
if km is not None and kc is not None and km != kc:
raise ValueError("`mixture_distribution component` ({0}) does not"
" equal `component_distribution.batch_shape[-1]`"
" ({1})".format(km, kc))
self._num_component = km
event_shape = self._component_distribution.event_shape
self._event_ndims = len(event_shape)
super(MixtureSameFamily, self).__init__(batch_shape=cdbs,
event_shape=event_shape,
validate_args=validate_args)
def expand(self, batch_shape, _instance=None):
batch_shape = torch.Size(batch_shape)
batch_shape_comp = batch_shape + (self._num_component,)
new = self._get_checked_instance(MixtureSameFamily, _instance)
new._component_distribution = \
self._component_distribution.expand(batch_shape_comp)
new._mixture_distribution = \
self._mixture_distribution.expand(batch_shape)
new._num_component = self._num_component
new._event_ndims = self._event_ndims
event_shape = new._component_distribution.event_shape
super(MixtureSameFamily, new).__init__(batch_shape=batch_shape,
event_shape=event_shape,
validate_args=False)
new._validate_args = self._validate_args
return new
@constraints.dependent_property
def support(self):
# FIXME this may have the wrong shape when support contains batched
# parameters
return self._component_distribution.support
@property
def mixture_distribution(self):
return self._mixture_distribution
@property
def component_distribution(self):
return self._component_distribution
@property
def mean(self):
probs = self._pad_mixture_dimensions(self.mixture_distribution.probs)
return torch.sum(probs * self.component_distribution.mean,
dim=-1 - self._event_ndims) # [B, E]
@property
def variance(self):
# Law of total variance: Var(Y) = E[Var(Y|X)] + Var(E[Y|X])
probs = self._pad_mixture_dimensions(self.mixture_distribution.probs)
mean_cond_var = torch.sum(probs * self.component_distribution.variance,
dim=-1 - self._event_ndims)
var_cond_mean = torch.sum(probs * (self.component_distribution.mean -
self._pad(self.mean)).pow(2.0),
dim=-1 - self._event_ndims)
return mean_cond_var + var_cond_mean
def cdf(self, x):
x = self._pad(x)
cdf_x = self.component_distribution.cdf(x)
mix_prob = self.mixture_distribution.probs
return torch.sum(cdf_x * mix_prob, dim=-1)
def log_prob(self, x):
x = self._pad(x)
log_prob_x = self.component_distribution.log_prob(x) # [S, B, k]
log_mix_prob = torch.log_softmax(self.mixture_distribution.logits,
dim=-1) # [B, k]
return torch.logsumexp(log_prob_x + log_mix_prob, dim=-1) # [S, B]
def sample(self, sample_shape=torch.Size()):
with torch.no_grad():
sample_len = len(sample_shape)
batch_len = len(self.batch_shape)
gather_dim = sample_len + batch_len
es = self.event_shape
# mixture samples [n, B]
mix_sample = self.mixture_distribution.sample(sample_shape)
mix_shape = mix_sample.shape
# component samples [n, B, k, E]
comp_samples = self.component_distribution.sample(sample_shape)
# Gather along the k dimension
mix_sample_r = mix_sample.reshape(
mix_shape + torch.Size([1] * (len(es) + 1)))
mix_sample_r = mix_sample_r.repeat(
torch.Size([1] * len(mix_shape)) + torch.Size([1]) + es)
samples = torch.gather(comp_samples, gather_dim, mix_sample_r)
return samples.squeeze(gather_dim)
def _pad(self, x):
return x.unsqueeze(-1 - self._event_ndims)
def _pad_mixture_dimensions(self, x):
dist_batch_ndims = self.batch_shape.numel()
cat_batch_ndims = self.mixture_distribution.batch_shape.numel()
pad_ndims = 0 if cat_batch_ndims == 1 else \
dist_batch_ndims - cat_batch_ndims
xs = x.shape
x = x.reshape(xs[:-1] + torch.Size(pad_ndims * [1]) +
xs[-1:] + torch.Size(self._event_ndims * [1]))
return x
def __repr__(self):
args_string = '\n {},\n {}'.format(self.mixture_distribution,
self.component_distribution)
return 'MixtureSameFamily' + '(' + args_string + ')'