forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconstraints.py
365 lines (296 loc) · 10.4 KB
/
constraints.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
r"""
The following constraints are implemented:
- ``constraints.boolean``
- ``constraints.cat``
- ``constraints.dependent``
- ``constraints.greater_than(lower_bound)``
- ``constraints.integer_interval(lower_bound, upper_bound)``
- ``constraints.interval(lower_bound, upper_bound)``
- ``constraints.lower_cholesky``
- ``constraints.lower_triangular``
- ``constraints.nonnegative_integer``
- ``constraints.positive``
- ``constraints.positive_definite``
- ``constraints.positive_integer``
- ``constraints.real``
- ``constraints.real_vector``
- ``constraints.simplex``
- ``constraints.stack``
- ``constraints.unit_interval``
"""
import torch
__all__ = [
'Constraint',
'boolean',
'cat',
'dependent',
'dependent_property',
'greater_than',
'greater_than_eq',
'integer_interval',
'interval',
'half_open_interval',
'is_dependent',
'less_than',
'lower_cholesky',
'lower_triangular',
'nonnegative_integer',
'positive',
'positive_definite',
'positive_integer',
'real',
'real_vector',
'simplex',
'stack',
'unit_interval',
]
class Constraint(object):
"""
Abstract base class for constraints.
A constraint object represents a region over which a variable is valid,
e.g. within which a variable can be optimized.
"""
def check(self, value):
"""
Returns a byte tensor of `sample_shape + batch_shape` indicating
whether each event in value satisfies this constraint.
"""
raise NotImplementedError
def __repr__(self):
return self.__class__.__name__[1:] + '()'
class _Dependent(Constraint):
"""
Placeholder for variables whose support depends on other variables.
These variables obey no simple coordinate-wise constraints.
"""
def check(self, x):
raise ValueError('Cannot determine validity of dependent constraint')
def is_dependent(constraint):
return isinstance(constraint, _Dependent)
class _DependentProperty(property, _Dependent):
"""
Decorator that extends @property to act like a `Dependent` constraint when
called on a class and act like a property when called on an object.
Example::
class Uniform(Distribution):
def __init__(self, low, high):
self.low = low
self.high = high
@constraints.dependent_property
def support(self):
return constraints.interval(self.low, self.high)
"""
pass
class _Boolean(Constraint):
"""
Constrain to the two values `{0, 1}`.
"""
def check(self, value):
return (value == 0) | (value == 1)
class _IntegerInterval(Constraint):
"""
Constrain to an integer interval `[lower_bound, upper_bound]`.
"""
def __init__(self, lower_bound, upper_bound):
self.lower_bound = lower_bound
self.upper_bound = upper_bound
def check(self, value):
return (value % 1 == 0) & (self.lower_bound <= value) & (value <= self.upper_bound)
def __repr__(self):
fmt_string = self.__class__.__name__[1:]
fmt_string += '(lower_bound={}, upper_bound={})'.format(self.lower_bound, self.upper_bound)
return fmt_string
class _IntegerLessThan(Constraint):
"""
Constrain to an integer interval `(-inf, upper_bound]`.
"""
def __init__(self, upper_bound):
self.upper_bound = upper_bound
def check(self, value):
return (value % 1 == 0) & (value <= self.upper_bound)
def __repr__(self):
fmt_string = self.__class__.__name__[1:]
fmt_string += '(upper_bound={})'.format(self.upper_bound)
return fmt_string
class _IntegerGreaterThan(Constraint):
"""
Constrain to an integer interval `[lower_bound, inf)`.
"""
def __init__(self, lower_bound):
self.lower_bound = lower_bound
def check(self, value):
return (value % 1 == 0) & (value >= self.lower_bound)
def __repr__(self):
fmt_string = self.__class__.__name__[1:]
fmt_string += '(lower_bound={})'.format(self.lower_bound)
return fmt_string
class _Real(Constraint):
"""
Trivially constrain to the extended real line `[-inf, inf]`.
"""
def check(self, value):
return value == value # False for NANs.
class _GreaterThan(Constraint):
"""
Constrain to a real half line `(lower_bound, inf]`.
"""
def __init__(self, lower_bound):
self.lower_bound = lower_bound
def check(self, value):
return self.lower_bound < value
def __repr__(self):
fmt_string = self.__class__.__name__[1:]
fmt_string += '(lower_bound={})'.format(self.lower_bound)
return fmt_string
class _GreaterThanEq(Constraint):
"""
Constrain to a real half line `[lower_bound, inf)`.
"""
def __init__(self, lower_bound):
self.lower_bound = lower_bound
def check(self, value):
return self.lower_bound <= value
def __repr__(self):
fmt_string = self.__class__.__name__[1:]
fmt_string += '(lower_bound={})'.format(self.lower_bound)
return fmt_string
class _LessThan(Constraint):
"""
Constrain to a real half line `[-inf, upper_bound)`.
"""
def __init__(self, upper_bound):
self.upper_bound = upper_bound
def check(self, value):
return value < self.upper_bound
def __repr__(self):
fmt_string = self.__class__.__name__[1:]
fmt_string += '(upper_bound={})'.format(self.upper_bound)
return fmt_string
class _Interval(Constraint):
"""
Constrain to a real interval `[lower_bound, upper_bound]`.
"""
def __init__(self, lower_bound, upper_bound):
self.lower_bound = lower_bound
self.upper_bound = upper_bound
def check(self, value):
return (self.lower_bound <= value) & (value <= self.upper_bound)
def __repr__(self):
fmt_string = self.__class__.__name__[1:]
fmt_string += '(lower_bound={}, upper_bound={})'.format(self.lower_bound, self.upper_bound)
return fmt_string
class _HalfOpenInterval(Constraint):
"""
Constrain to a real interval `[lower_bound, upper_bound)`.
"""
def __init__(self, lower_bound, upper_bound):
self.lower_bound = lower_bound
self.upper_bound = upper_bound
def check(self, value):
return (self.lower_bound <= value) & (value < self.upper_bound)
def __repr__(self):
fmt_string = self.__class__.__name__[1:]
fmt_string += '(lower_bound={}, upper_bound={})'.format(self.lower_bound, self.upper_bound)
return fmt_string
class _Simplex(Constraint):
"""
Constrain to the unit simplex in the innermost (rightmost) dimension.
Specifically: `x >= 0` and `x.sum(-1) == 1`.
"""
def check(self, value):
return torch.all(value >= 0, dim=-1) & ((value.sum(-1) - 1).abs() < 1e-6)
class _LowerTriangular(Constraint):
"""
Constrain to lower-triangular square matrices.
"""
def check(self, value):
value_tril = value.tril()
return (value_tril == value).view(value.shape[:-2] + (-1,)).min(-1)[0]
class _LowerCholesky(Constraint):
"""
Constrain to lower-triangular square matrices with positive diagonals.
"""
def check(self, value):
value_tril = value.tril()
lower_triangular = (value_tril == value).view(value.shape[:-2] + (-1,)).min(-1)[0]
positive_diagonal = (value.diagonal(dim1=-2, dim2=-1) > 0).min(-1)[0]
return lower_triangular & positive_diagonal
class _PositiveDefinite(Constraint):
"""
Constrain to positive-definite matrices.
"""
def check(self, value):
matrix_shape = value.shape[-2:]
batch_shape = value.unsqueeze(0).shape[:-2]
# TODO: replace with batched linear algebra routine when one becomes available
# note that `symeig()` returns eigenvalues in ascending order
flattened_value = value.reshape((-1,) + matrix_shape)
return torch.stack([v.symeig(eigenvectors=False)[0][:1] > 0.0
for v in flattened_value]).view(batch_shape)
class _RealVector(Constraint):
"""
Constrain to real-valued vectors. This is the same as `constraints.real`,
but additionally reduces across the `event_shape` dimension.
"""
def check(self, value):
return torch.all(value == value, dim=-1) # False for NANs.
class _Cat(Constraint):
"""
Constraint functor that applies a sequence of constraints
`cseq` at the submatrices at dimension `dim`,
each of size `lengths[dim]`, in a way compatible with :func:`torch.cat`.
"""
def __init__(self, cseq, dim=0, lengths=None):
assert all(isinstance(c, Constraint) for c in cseq)
self.cseq = list(cseq)
if lengths is None:
lengths = [1] * len(self.cseq)
self.lengths = list(lengths)
assert len(self.lengths) == len(self.cseq)
self.dim = dim
def check(self, value):
assert -value.dim() <= self.dim < value.dim()
checks = []
start = 0
for constr, length in zip(self.cseq, self.lengths):
v = value.narrow(self.dim, start, length)
checks.append(constr.check(v))
start = start + length # avoid += for jit compat
return torch.cat(checks, self.dim)
class _Stack(Constraint):
"""
Constraint functor that applies a sequence of constraints
`cseq` at the submatrices at dimension `dim`,
in a way compatible with :func:`torch.stack`.
"""
def __init__(self, cseq, dim=0):
assert all(isinstance(c, Constraint) for c in cseq)
self.cseq = list(cseq)
self.dim = dim
def check(self, value):
assert -value.dim() <= self.dim < value.dim()
vs = [value.select(self.dim, i) for i in range(value.size(self.dim))]
return torch.stack([constr.check(v)
for v, constr in zip(vs, self.cseq)], self.dim)
# Public interface.
dependent = _Dependent()
dependent_property = _DependentProperty
boolean = _Boolean()
nonnegative_integer = _IntegerGreaterThan(0)
positive_integer = _IntegerGreaterThan(1)
integer_interval = _IntegerInterval
real = _Real()
real_vector = _RealVector()
positive = _GreaterThan(0.)
greater_than = _GreaterThan
greater_than_eq = _GreaterThanEq
less_than = _LessThan
unit_interval = _Interval(0., 1.)
interval = _Interval
half_open_interval = _HalfOpenInterval
simplex = _Simplex()
lower_triangular = _LowerTriangular()
lower_cholesky = _LowerCholesky()
positive_definite = _PositiveDefinite()
cat = _Cat
stack = _Stack