forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_vmap_internals.py
210 lines (188 loc) · 10.4 KB
/
_vmap_internals.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import torch
import functools
from torch import Tensor
from typing import Any, Callable, Optional, Tuple, Union
import warnings
in_dims_t = Union[int, Tuple[Optional[int], ...]]
out_dims_t = Union[int, Tuple[int, ...]]
# Checks that all args-to-be-batched have the same batch dim size
def _validate_and_get_batch_size(
in_dims_as_tuple: Tuple[Optional[int], ...],
args: Tuple) -> int:
batch_sizes = [arg.size(in_dim) for in_dim, arg in zip(in_dims_as_tuple, args)
if in_dim is not None]
if batch_sizes and any([size != batch_sizes[0] for size in batch_sizes]):
raise ValueError(
f'vmap: Expected all tensors to have the same size in the mapped '
f'dimension, got sizes {batch_sizes} for the mapped dimension')
return batch_sizes[0]
# Check compatibility of `in_dims` and `args`. More specifically, checks the following:
# Wherever an in_dim is not None, then the corresponding index in args must be
# a Tensor. Furthermore, tensor must have the `in_dim` (0 <= in_dim < tensor.dim())
def _check_args_can_be_mapped_with_in_dims(
in_dims_as_tuple: Tuple[Optional[int], ...],
args: Tuple,
func: Callable,
in_dims: in_dims_t) -> None:
for idx, (in_dim, arg) in enumerate(zip(in_dims_as_tuple, args)):
if in_dim is None:
continue
if not isinstance(in_dim, int):
raise ValueError(
f'vmap({_get_name(func)}, in_dims={in_dims}, ...)(<inputs>): in_dims '
f'must be a flat tuple containing ints and/or Nones. If you were '
f'trying to vmap over a Tensor inside a Python collection in '
f'`inputs`, we do not yet support that.')
if not isinstance(arg, Tensor):
raise ValueError(
f'vmap({_get_name(func)}, in_dims={in_dims}, ...)(<inputs>): Got '
f'in_dim={in_dim} for input {idx}, but input {idx} is not a '
f'Tensor (got {type(arg)}) so it cannot be vmap\'ed over. '
f'If you were trying to vmap over a Tensor inside a Python '
f'collection in `inputs`, we do not yet support that; otherwise, '
f'use None as the respective in_dim for input {idx}.')
# NB: We don't do dimension wrapping here. Consider allowing it in the
# future if there is demand.
if in_dim >= 0 and in_dim < arg.dim():
continue
raise ValueError(
f'vmap({_get_name(func)}, in_dims={in_dims}, ...)(<inputs>): Got in_dim={in_dim} '
f'for input {idx}, but input {idx} is a Tensor of dimensionality '
f'{arg.dim()} so expected in_dim to satisfy 0 <= in_dim < {arg.dim()}.')
def _num_outputs(batched_outputs: Union[Tensor, Tuple[Tensor, ...]]) -> int:
if isinstance(batched_outputs, tuple):
return len(batched_outputs)
return 1
# If value is a tuple, check it has length `num_elements`.
# If value is not a tuple, make a tuple with `value` repeated `num_elements` times
def _as_tuple(value: Any, num_elements: int, error_message_lambda: Callable[[], str]) -> Tuple:
if not isinstance(value, tuple):
return (value,) * num_elements
if len(value) != num_elements:
raise ValueError(error_message_lambda())
return value
# Creates BatchedTensors for every Tensor in arg that should be batched.
# Returns the (potentially) batched arguments and the batch_size.
def _create_batched_inputs(
in_dims: in_dims_t, args: Tuple, vmap_level: int, func: Callable) -> Tuple[Tuple, int]:
if not isinstance(in_dims, int) and not isinstance(in_dims, tuple):
raise ValueError(
f'vmap({_get_name(func)}, in_dims={in_dims}, ...): expected `in_dims` to '
f'be int or tuple, got: {type(in_dims)}.')
# NB: Checks that len(in_dims) == len(args) (if in_dims is a tuple).
in_dims_as_tuple = _as_tuple(
in_dims, len(args),
lambda: f'vmap({_get_name(func)}, in_dims={in_dims}, ...)(<inputs>): expected '
f'one `in_dim` per input (got {len(args)} inputs) of {_get_name(func)}')
if len(args) == 0:
raise ValueError(
f'vmap({_get_name(func)})(<inputs>): got no inputs. Maybe you forgot to add '
f'inputs, or you are trying to vmap over a function with no inputs. '
f'The latter is unsupported.')
_check_args_can_be_mapped_with_in_dims(in_dims_as_tuple, args, func, in_dims)
batch_size = _validate_and_get_batch_size(in_dims_as_tuple, args)
# See NOTE [Ignored _remove_batch_dim, _add_batch_dim]
batched_inputs = tuple(arg if in_dim is None else
torch._add_batch_dim(arg, in_dim, vmap_level) # type: ignore
for in_dim, arg in zip(in_dims_as_tuple, args))
return batched_inputs, batch_size
# Undos the batching (and any batch dimensions) associated with the `vmap_level`.
def _unwrap_batched(
batched_outputs: Union[Tensor, Tuple[Tensor, ...]],
out_dims: out_dims_t,
vmap_level: int, batch_size: int, func: Callable) -> Tuple:
num_outputs = _num_outputs(batched_outputs)
out_dims_as_tuple = _as_tuple(
out_dims, num_outputs,
lambda: f'vmap({_get_name(func)}, ..., out_dims={out_dims}): `out_dims` must '
f'have one dim per output (got {num_outputs} outputs) of {_get_name(func)}.')
# NOTE [Ignored _remove_batch_dim, _add_batch_dim]
# There is something wrong with our type bindings for functions that begin
# with '_', see #40397.
if isinstance(batched_outputs, Tensor):
out_dim = out_dims_as_tuple[0]
return torch._remove_batch_dim(batched_outputs, vmap_level, batch_size, out_dim) # type: ignore
return tuple(torch._remove_batch_dim(out, vmap_level, batch_size, out_dim) # type: ignore
for out, out_dim in zip(batched_outputs, out_dims_as_tuple))
# Checks that `fn` returned one or more Tensors and nothing else.
# NB: A python function that return multiple arguments returns a single tuple,
# so we are effectively checking that `outputs` is a single Tensor or a tuple of
# Tensors.
def _validate_outputs(outputs: Any, func: Callable) -> None:
if isinstance(outputs, Tensor):
return
if not isinstance(outputs, tuple):
raise ValueError(f'vmap({_get_name(func)}, ...): `{_get_name(func)}` must only return '
f'Tensors, got type {type(outputs)} as the return.')
for idx, output in enumerate(outputs):
if isinstance(output, Tensor):
continue
raise ValueError(f'vmap({_get_name(func)}, ...): `{_get_name(func)}` must only return '
f'Tensors, got type {type(output)} for return {idx}.')
def _check_out_dims_is_int_or_int_tuple(out_dims: out_dims_t, func: Callable) -> None:
if isinstance(out_dims, int):
return
if not isinstance(out_dims, tuple) or \
not all([isinstance(out_dim, int) for out_dim in out_dims]):
raise ValueError(
f'vmap({_get_name(func)}, ..., out_dims={out_dims}): `out_dims` must be '
f'an int or a tuple of int representing where in the outputs the '
f'vmapped dimension should appear.')
def _get_name(func: Callable):
if hasattr(func, '__name__'):
return func.__name__
# Not all callables have __name__, in fact, only static functions/methods do.
# A callable created via functools.partial or an nn.Module, to name some
# examples, don't have a __name__.
fn_name = repr(func)
# vmap(func)(inputs) wraps all Tensor inputs to be batched in BatchedTensors,
# sends those into func, and then unwraps the output BatchedTensors. Operations
# on BatchedTensors perform the batched operations that the user is asking for.
def vmap(func: Callable, in_dims: in_dims_t = 0, out_dims: out_dims_t = 0) -> Callable:
"""
vmap is the vectorizing map. Returns a new function that maps `func` over some
dimension of the inputs. Semantically, vmap pushes the map into PyTorch
operations called by `func`, effectively vectorizing those operations.
vmap is useful for handling batch dimensions: one can write a function `func`
that runs on examples and the lift it to a function that can take batches of
examples with `vmap(func)`. Furthermore, it is possible to use vmap to obtain
batched gradients when composed with autograd.
Args:
func (function): A Python function that takes one or more arguments.
Must return one or more Tensors.
in_dims (int or Tuple[Optional[int]]): Specifies which dimension of the
inputs should be mapped over. If `in_dims` is a Tuple, then it should have
one element per input. If the `in_dim` for a particular input is
None, then that indicates there is no map dimension. Default: 0.
out_dims (int or Tuple[int]): Specifies where the mapped dimension
should appear in the outputs. If `out_dims` is a Tuple, then it should
have one element per output. Default: 0.
Returns:
Returns a new "batched" function. It takes the same inputs as `func`,
except each input has an extra dimension at the index specified by `in_dims`.
It takes returns the same outputs as `func`, except each output has
an extra dimension at the index specified by `out_dims`.
.. warning:
vmap works best with functional-style code. Please do not perform any
side-effects in `func`, with the exception of in-place PyTorch operations.
Examples of side-effects include mutating Python data structures and
assigning values to variables not captured in `func`.
.. warning::
torch.vmap is an experimental prototype that is subject to
change and/or deletion. Please use at your own risk.
"""
warnings.warn(
'torch.vmap is an experimental prototype that is subject to '
'change and/or deletion. Please use at your own risk.')
@functools.wraps(func)
def wrapped(*args):
_check_out_dims_is_int_or_int_tuple(out_dims, func)
vmap_level = torch._C._vmapmode_increment_nesting()
try:
batched_inputs, batch_size = _create_batched_inputs(in_dims, args, vmap_level, func)
batched_outputs = func(*batched_inputs)
_validate_outputs(batched_outputs, func)
return _unwrap_batched(batched_outputs, out_dims, vmap_level, batch_size, func)
finally:
torch._C._vmapmode_decrement_nesting()
return wrapped