-
Notifications
You must be signed in to change notification settings - Fork 1
/
test11.py
312 lines (249 loc) · 12.2 KB
/
test11.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
# -*- coding:utf-8 -*-
"""
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf # 0.12
import numpy as np
import os
from collections import Counter
import librosa # https://github.com/librosa/librosa
# 训练样本路径
wav_path = 'data/wav/train'
label_file = 'data/doc/trans/train.word.txt'
# 获得训练用的wav文件路径列表
def get_wav_files(wav_path=wav_path):
wav_files = []
for (dirpath, dirnames, filenames) in os.walk(wav_path):
for filename in filenames:
if filename.endswith('.wav') or filename.endswith('.WAV'):
filename_path = os.sep.join([dirpath, filename])
if os.stat(filename_path).st_size < 240000: # 剔除掉一些小文件
continue
wav_files.append(filename_path)
return wav_files
wav_files = get_wav_files()
# 读取wav文件对应的label
def get_wav_lable(wav_files=wav_files, label_file=label_file):
labels_dict = {}
with open(label_file, 'r') as f:
for label in f:
label = label.strip('\n')
label_id = label.split(' ', 1)[0]
label_text = label.split(' ', 1)[1]
labels_dict[label_id] = label_text
labels = []
new_wav_files = []
for wav_file in wav_files:
wav_id = os.path.basename(wav_file).split('.')[0]
if wav_id in labels_dict:
labels.append(labels_dict[wav_id])
new_wav_files.append(wav_file)
return new_wav_files, labels
wav_files, labels = get_wav_lable()
print("样本数:", len(wav_files)) # 8911
# print(wav_files[0], labels[0])
# wav/train/A11/A11_0.WAV -> 绿 是 阳春 烟 景 大块 文章 的 底色 四月 的 林 峦 更是 绿 得 鲜活 秀媚 诗意 盎然
# 词汇表(参看练习1和7)
all_words = []
for label in labels:
all_words += [word for word in label]
counter = Counter(all_words)
count_pairs = sorted(counter.items(), key=lambda x: -x[1])
words, _ = zip(*count_pairs)
words_size = len(words)
print('词汇表大小:', words_size)
word_num_map = dict(zip(words, range(len(words))))
to_num = lambda word: word_num_map.get(word, len(words))
labels_vector = [list(map(to_num, label)) for label in labels]
# print(wavs_file[0], labels_vector[0])
# wav/train/A11/A11_0.WAV -> [479, 0, 7, 0, 138, 268, 0, 222, 0, 714, 0, 23, 261, 0, 28, 1191, 0, 1, 0, 442, 199, 0, 72, 38, 0, 1, 0, 463, 0, 1184, 0, 269, 7, 0, 479, 0, 70, 0, 816, 254, 0, 675, 1707, 0, 1255, 136, 0, 2020, 91]
# print(words[479]) #绿
label_max_len = np.max([len(label) for label in labels_vector])
print('最长句子的字数:', label_max_len)
wav_max_len = 0 # 673
for wav in wav_files:
wav, sr = librosa.load(wav, mono=True)
mfcc = np.transpose(librosa.feature.mfcc(wav, sr), [1, 0])
if len(mfcc) > wav_max_len:
wav_max_len = len(mfcc)
print("最长的语音:", wav_max_len)
batch_size = 16
n_batch = len(wav_files) // batch_size
# 获得一个batch
pointer = 0
def get_next_batches(batch_size):
global pointer
batches_wavs = []
batches_labels = []
for i in range(batch_size):
wav, sr = librosa.load(wav_files[pointer], mono=True)
mfcc = np.transpose(librosa.feature.mfcc(wav, sr), [1, 0])
batches_wavs.append(mfcc.tolist())
batches_labels.append(labels_vector[pointer])
pointer += 1
# 补零对齐
for mfcc in batches_wavs:
while len(mfcc) < wav_max_len:
mfcc.append([0] * 20)
for label in batches_labels:
while len(label) < label_max_len:
label.append(0)
return batches_wavs, batches_labels
X = tf.placeholder(dtype=tf.float32, shape=[batch_size, None, 20])
sequence_len = tf.reduce_sum(tf.cast(tf.not_equal(tf.reduce_sum(X, reduction_indices=2), 0.), tf.int32),
reduction_indices=1)
Y = tf.placeholder(dtype=tf.int32, shape=[batch_size, None])
# conv1d_layer
conv1d_index = 0
def conv1d_layer(input_tensor, size, dim, activation, scale, bias):
global conv1d_index
with tf.variable_scope('conv1d_' + str(conv1d_index)):
W = tf.get_variable('W', (size, input_tensor.get_shape().as_list()[-1], dim), dtype=tf.float32,
initializer=tf.random_uniform_initializer(minval=-scale, maxval=scale))
if bias:
b = tf.get_variable('b', [dim], dtype=tf.float32, initializer=tf.constant_initializer(0))
out = tf.nn.conv1d(input_tensor, W, stride=1, padding='SAME') + (b if bias else 0)
if not bias:
beta = tf.get_variable('beta', dim, dtype=tf.float32, initializer=tf.constant_initializer(0))
gamma = tf.get_variable('gamma', dim, dtype=tf.float32, initializer=tf.constant_initializer(1))
mean_running = tf.get_variable('mean', dim, dtype=tf.float32, initializer=tf.constant_initializer(0))
variance_running = tf.get_variable('variance', dim, dtype=tf.float32,
initializer=tf.constant_initializer(1))
mean, variance = tf.nn.moments(out, axes=range(len(out.get_shape()) - 1))
def update_running_stat():
decay = 0.99
update_op = [mean_running.assign(mean_running * decay + mean * (1 - decay)),
variance_running.assign(variance_running * decay + variance * (1 - decay))]
with tf.control_dependencies(update_op):
return tf.identity(mean), tf.identity(variance)
m, v = tf.cond(tf.Variable(False, trainable=False, collections=[tf.GraphKeys.LOCAL_VARIABLES]),
update_running_stat, lambda: (mean_running, variance_running))
out = tf.nn.batch_normalization(out, m, v, beta, gamma, 1e-8)
if activation == 'tanh':
out = tf.nn.tanh(out)
if activation == 'sigmoid':
out = tf.nn.sigmoid(out)
conv1d_index += 1
return out
# aconv1d_layer
aconv1d_index = 0
def aconv1d_layer(input_tensor, size, rate, activation, scale, bias):
global aconv1d_index
with tf.variable_scope('aconv1d_' + str(aconv1d_index)):
shape = input_tensor.get_shape().as_list()
W = tf.get_variable('W', (1, size, shape[-1], shape[-1]), dtype=tf.float32,
initializer=tf.random_uniform_initializer(minval=-scale, maxval=scale))
if bias:
b = tf.get_variable('b', [shape[-1]], dtype=tf.float32, initializer=tf.constant_initializer(0))
out = tf.nn.atrous_conv2d(tf.expand_dims(input_tensor, dim=1), W, rate=rate, padding='SAME')
out = tf.squeeze(out, [1])
if not bias:
beta = tf.get_variable('beta', shape[-1], dtype=tf.float32, initializer=tf.constant_initializer(0))
gamma = tf.get_variable('gamma', shape[-1], dtype=tf.float32, initializer=tf.constant_initializer(1))
mean_running = tf.get_variable('mean', shape[-1], dtype=tf.float32, initializer=tf.constant_initializer(0))
variance_running = tf.get_variable('variance', shape[-1], dtype=tf.float32,
initializer=tf.constant_initializer(1))
mean, variance = tf.nn.moments(out, axes=range(len(out.get_shape()) - 1))
def update_running_stat():
decay = 0.99
update_op = [mean_running.assign(mean_running * decay + mean * (1 - decay)),
variance_running.assign(variance_running * decay + variance * (1 - decay))]
with tf.control_dependencies(update_op):
return tf.identity(mean), tf.identity(variance)
m, v = tf.cond(tf.Variable(False, trainable=False, collections=[tf.GraphKeys.LOCAL_VARIABLES]),
update_running_stat, lambda: (mean_running, variance_running))
out = tf.nn.batch_normalization(out, m, v, beta, gamma, 1e-8)
if activation == 'tanh':
out = tf.nn.tanh(out)
if activation == 'sigmoid':
out = tf.nn.sigmoid(out)
aconv1d_index += 1
return out
# 定义神经网络
def speech_to_text_network(n_dim=128, n_blocks=3):
out = conv1d_layer(input_tensor=X, size=1, dim=n_dim, activation='tanh', scale=0.14, bias=False)
# skip connections
def residual_block(input_sensor, size, rate):
conv_filter = aconv1d_layer(input_sensor, size=size, rate=rate, activation='tanh', scale=0.03, bias=False)
conv_gate = aconv1d_layer(input_sensor, size=size, rate=rate, activation='sigmoid', scale=0.03, bias=False)
out = conv_filter * conv_gate
out = conv1d_layer(out, size=1, dim=n_dim, activation='tanh', scale=0.08, bias=False)
return out + input_sensor, out
skip = 0
for _ in range(n_blocks):
for r in [1, 2, 4, 8, 16]:
out, s = residual_block(out, size=7, rate=r)
skip += s
logit = conv1d_layer(skip, size=1, dim=skip.get_shape().as_list()[-1], activation='tanh', scale=0.08, bias=False)
logit = conv1d_layer(logit, size=1, dim=words_size, activation=None, scale=0.04, bias=True)
return logit
class MaxPropOptimizer(tf.train.Optimizer):
def __init__(self, learning_rate=0.001, beta2=0.999, use_locking=False, name="MaxProp"):
super(MaxPropOptimizer, self).__init__(use_locking, name)
self._lr = learning_rate
self._beta2 = beta2
self._lr_t = None
self._beta2_t = None
def _prepare(self):
self._lr_t = tf.convert_to_tensor(self._lr, name="learning_rate")
self._beta2_t = tf.convert_to_tensor(self._beta2, name="beta2")
def _create_slots(self, var_list):
for v in var_list:
self._zeros_slot(v, "m", self._name)
def _apply_dense(self, grad, var):
lr_t = tf.cast(self._lr_t, var.dtype.base_dtype)
beta2_t = tf.cast(self._beta2_t, var.dtype.base_dtype)
if var.dtype.base_dtype == tf.float16:
eps = 1e-7
else:
eps = 1e-8
m = self.get_slot(var, "m")
m_t = m.assign(tf.maximum(beta2_t * m + eps, tf.abs(grad)))
g_t = grad / m_t
var_update = tf.assign_sub(var, lr_t * g_t)
return tf.group(*[var_update, m_t])
def _apply_sparse(self, grad, var):
return self._apply_dense(grad, var)
def train_speech_to_text_network():
logit = speech_to_text_network()
# CTC loss
indices = tf.where(tf.not_equal(tf.cast(Y, tf.float32), 0.))
target = tf.SparseTensor(indices=indices, values=tf.gather_nd(Y, indices) - 1, shape=tf.cast(tf.shape(Y), tf.int64))
loss = tf.nn.ctc_loss(logit, target, sequence_len, time_major=False)
# optimizer
lr = tf.Variable(0.001, dtype=tf.float32, trainable=False)
optimizer = MaxPropOptimizer(learning_rate=lr, beta2=0.99)
var_list = [t for t in tf.trainable_variables()]
gradient = optimizer.compute_gradients(loss, var_list=var_list)
optimizer_op = optimizer.apply_gradients(gradient)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver(tf.global_variables())
for epoch in range(16):
sess.run(tf.assign(lr, 0.001 * (0.97 ** epoch)))
global pointer
pointer = 0
for batch in range(n_batch):
batches_wavs, batches_labels = get_next_batches(batch_size)
train_loss, _ = sess.run([loss, optimizer_op], feed_dict={X: batches_wavs, Y: batches_labels})
print(epoch, batch, train_loss)
if epoch % 5 == 0:
saver.save(sess, 'speech.module', global_step=epoch)
# 训练
train_speech_to_text_network()
# 语音识别
# 把batch_size改为1
def speech_to_text(wav_file):
wav, sr = librosa.load(wav_file, mono=True)
mfcc = np.transpose(np.expand_dims(librosa.feature.mfcc(wav, sr), axis=0), [0, 2, 1])
logit = speech_to_text_network()
saver = tf.train.Saver()
with tf.Session() as sess:
saver.restore(sess, tf.train.latest_checkpoint('.'))
decoded = tf.transpose(logit, perm=[1, 0, 2])
decoded, _ = tf.nn.ctc_beam_search_decoder(decoded, sequence_len, merge_repeated=False)
predict = tf.sparse_to_dense(decoded[0].indices, decoded[0].shape, decoded[0].values) + 1
output = sess.run(decoded, feed_dict={X: mfcc})
# print(output)