-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathTransE.py
58 lines (54 loc) · 3.26 KB
/
TransE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#coding:utf-8
import numpy as np
import tensorflow as tf
from Model import Model
class TransE(Model):
r'''
TransE is the first model to introduce translation-based embedding,
which interprets relations as the translations operating on entities.
'''
def _calc(self, h, t, r):
h = tf.nn.l2_normalize(h, -1)
t = tf.nn.l2_normalize(t, -1)
r = tf.nn.l2_normalize(r, -1)
return abs(h + r - t)
def embedding_def(self):
#Obtaining the initial configuration of the model
config = self.get_config()
#Defining required parameters of the model, including embeddings of entities and relations
self.ent_embeddings = tf.get_variable(name = "ent_embeddings", shape = [config.entTotal, config.hidden_size], initializer = tf.contrib.layers.xavier_initializer(uniform = False))
self.rel_embeddings = tf.get_variable(name = "rel_embeddings", shape = [config.relTotal, config.hidden_size], initializer = tf.contrib.layers.xavier_initializer(uniform = False))
self.parameter_lists = {"ent_embeddings":self.ent_embeddings, \
"rel_embeddings":self.rel_embeddings}
def loss_def(self):
#Obtaining the initial configuration of the model
config = self.get_config()
#To get positive triples and negative triples for training
#The shapes of pos_h, pos_t, pos_r are (batch_size, 1)
#The shapes of neg_h, neg_t, neg_r are (batch_size, negative_ent + negative_rel)
pos_h, pos_t, pos_r = self.get_positive_instance(in_batch = True)
neg_h, neg_t, neg_r = self.get_negative_instance(in_batch = True)
#Embedding entities and relations of triples, e.g. p_h, p_t and p_r are embeddings for positive triples
p_h = tf.nn.embedding_lookup(self.ent_embeddings, pos_h)
p_t = tf.nn.embedding_lookup(self.ent_embeddings, pos_t)
p_r = tf.nn.embedding_lookup(self.rel_embeddings, pos_r)
n_h = tf.nn.embedding_lookup(self.ent_embeddings, neg_h)
n_t = tf.nn.embedding_lookup(self.ent_embeddings, neg_t)
n_r = tf.nn.embedding_lookup(self.rel_embeddings, neg_r)
#Calculating score functions for all positive triples and negative triples
#The shape of _p_score is (batch_size, 1, hidden_size)
#The shape of _n_score is (batch_size, negative_ent + negative_rel, hidden_size)
_p_score = self._calc(p_h, p_t, p_r)
_n_score = self._calc(n_h, n_t, n_r)
#The shape of p_score is (batch_size, 1, 1)
#The shape of n_score is (batch_size, negative_ent + negative_rel, 1)
p_score = tf.reduce_sum(_p_score, -1, keep_dims = True)
n_score = tf.reduce_sum(_n_score, -1, keep_dims = True)
#Calculating loss to get what the framework will optimize
self.loss = tf.reduce_mean(tf.maximum(p_score - n_score + config.margin, 0))
def predict_def(self):
predict_h, predict_t, predict_r = self.get_predict_instance()
predict_h_e = tf.nn.embedding_lookup(self.ent_embeddings, predict_h)
predict_t_e = tf.nn.embedding_lookup(self.ent_embeddings, predict_t)
predict_r_e = tf.nn.embedding_lookup(self.rel_embeddings, predict_r)
self.predict = tf.reduce_mean(self._calc(predict_h_e, predict_t_e, predict_r_e), 1, keep_dims = False)