forked from microsoft/DirectML
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathyolov4.cpp
1194 lines (962 loc) · 43.8 KB
/
yolov4.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//--------------------------------------------------------------------------------------
// yolov4.cpp
// Copyright (C) Microsoft Corporation. All rights reserved.
//--------------------------------------------------------------------------------------
#include "pch.h"
#include "yolov4.h"
#include "ATGColors.h"
#include "ControllerFont.h"
#include "FindMedia.h"
#include "ReadData.h"
#include "TensorExtents.h"
#include "TensorUtil.h"
#include "TensorView.h"
const wchar_t* c_videoPath = L"grca-grand-canyon-association-park-store_1280x720.mp4";
const wchar_t* c_imagePath = L"grca-BA-bike-shop_1280x720.jpg";
extern void ExitSample();
using namespace DirectX;
using Microsoft::WRL::ComPtr;
namespace
{
struct Vertex
{
XMFLOAT4 position;
XMFLOAT2 texcoord;
};
struct ImageLayoutCB
{
UINT Height;
UINT Width;
bool UseNhwc;
};
std::vector<uint8_t> LoadBGRAImage(const wchar_t* filename, uint32_t& width, uint32_t& height)
{
ComPtr<IWICImagingFactory> wicFactory;
DX::ThrowIfFailed(CoCreateInstance(CLSID_WICImagingFactory2, nullptr, CLSCTX_INPROC_SERVER, IID_PPV_ARGS(&wicFactory)));
ComPtr<IWICBitmapDecoder> decoder;
DX::ThrowIfFailed(wicFactory->CreateDecoderFromFilename(filename, nullptr, GENERIC_READ, WICDecodeMetadataCacheOnDemand, decoder.GetAddressOf()));
ComPtr<IWICBitmapFrameDecode> frame;
DX::ThrowIfFailed(decoder->GetFrame(0, frame.GetAddressOf()));
DX::ThrowIfFailed(frame->GetSize(&width, &height));
WICPixelFormatGUID pixelFormat;
DX::ThrowIfFailed(frame->GetPixelFormat(&pixelFormat));
uint32_t rowPitch = width * sizeof(uint32_t);
uint32_t imageSize = rowPitch * height;
std::vector<uint8_t> image;
image.resize(size_t(imageSize));
if (memcmp(&pixelFormat, &GUID_WICPixelFormat32bppBGRA, sizeof(GUID)) == 0)
{
DX::ThrowIfFailed(frame->CopyPixels(nullptr, rowPitch, imageSize, reinterpret_cast<BYTE*>(image.data())));
}
else
{
ComPtr<IWICFormatConverter> formatConverter;
DX::ThrowIfFailed(wicFactory->CreateFormatConverter(formatConverter.GetAddressOf()));
BOOL canConvert = FALSE;
DX::ThrowIfFailed(formatConverter->CanConvert(pixelFormat, GUID_WICPixelFormat32bppBGRA, &canConvert));
if (!canConvert)
{
throw std::exception("CanConvert");
}
DX::ThrowIfFailed(formatConverter->Initialize(frame.Get(), GUID_WICPixelFormat32bppBGRA,
WICBitmapDitherTypeErrorDiffusion, nullptr, 0, WICBitmapPaletteTypeMedianCut));
DX::ThrowIfFailed(formatConverter->CopyPixels(nullptr, rowPitch, imageSize, reinterpret_cast<BYTE*>(image.data())));
}
return image;
}
// Divide and round up
static UINT DivUp(UINT a, UINT b)
{
return (a + b - 1) / b;
}
// Maps and copies the contents out of a readback heap.
template <typename T>
std::vector<T> CopyReadbackHeap(ID3D12Resource* readbackHeap)
{
static_assert(std::is_pod_v<T>);
uint64_t sizeInBytes = readbackHeap->GetDesc().Width;
size_t sizeInElements = static_cast<size_t>(sizeInBytes / sizeof(T));
void* src;
DX::ThrowIfFailed(readbackHeap->Map(0, nullptr, &src));
std::vector<T> dst(sizeInElements);
memcpy(dst.data(), src, sizeInElements * sizeof(T));
readbackHeap->Unmap(0, nullptr);
return dst;
}
// Returns true if any of the supplied floats are inf or NaN, false otherwise.
static bool IsInfOrNan(dml::Span<const float> vals)
{
for (float val : vals)
{
if (std::isinf(val) || std::isnan(val))
{
return true;
}
}
return false;
}
// Given two axis-aligned bounding boxes, computes the area of intersection divided by the area of the union of
// the two boxes.
static float ComputeIntersectionOverUnion(const Prediction& a, const Prediction& b)
{
float aArea = (a.xmax - a.xmin) * (a.ymax - a.ymin);
float bArea = (b.xmax - b.xmin) * (b.ymax - b.ymin);
// Determine the bounds of the intersection rectangle
float interXMin = std::max(a.xmin, b.xmin);
float interYMin = std::max(a.ymin, b.ymin);
float interXMax = std::min(a.xmax, b.xmax);
float interYMax = std::min(a.ymax, b.ymax);
float intersectionArea = std::max(0.0f, interXMax - interXMin) * std::max(0.0f, interYMax - interYMin);
float unionArea = aArea + bArea - intersectionArea;
return (intersectionArea / unionArea);
}
// Given a set of predictions, applies the non-maximal suppression (NMS) algorithm to select the "best" of
// multiple overlapping predictions.
static std::vector<Prediction> ApplyNonMaximalSuppression(dml::Span<const Prediction> allPredictions, float threshold)
{
std::unordered_map<uint32_t, std::vector<Prediction>> predsByClass;
for (const auto& pred : allPredictions)
{
predsByClass[pred.predictedClass].push_back(pred);
}
std::vector<Prediction> selected;
for (auto& kvp : predsByClass)
{
std::vector<Prediction>& proposals = kvp.second;
while (!proposals.empty())
{
// Find the proposal with the highest score
auto max_iter = std::max_element(proposals.begin(), proposals.end(),
[](const Prediction& lhs, const Prediction& rhs) {
return lhs.score < rhs.score;
});
// Move it into the "selected" array
selected.push_back(*max_iter);
proposals.erase(max_iter);
// Compare this selected prediction with all the remaining propsals. Compute their IOU and remove any
// that are greater than the threshold.
for (auto it = proposals.begin(); it != proposals.end(); it)
{
float iou = ComputeIntersectionOverUnion(selected.back(), *it);
if (iou > threshold)
{
// Remove this element
it = proposals.erase(it);
}
else
{
++it;
}
}
}
}
return selected;
}
// Helper function for fomatting strings. Format(os, a, b, c) is equivalent to os << a << b << c.
template <typename T>
std::ostream& Format(std::ostream& os, T&& arg)
{
return (os << std::forward<T>(arg));
}
template <typename T, typename... Ts>
std::ostream& Format(std::ostream& os, T&& arg, Ts&&... args)
{
os << std::forward<T>(arg);
return Format(os, std::forward<Ts>(args)...);
}
}
Sample::Sample()
: m_ctrlConnected(false)
{
// Use gamma-correct rendering.
// Renders only 2D, so no need for a depth buffer.
m_deviceResources = std::make_unique<DX::DeviceResources>(DXGI_FORMAT_B8G8R8A8_UNORM, DXGI_FORMAT_UNKNOWN,
3, D3D_FEATURE_LEVEL_11_0, DX::DeviceResources::c_AllowTearing);
m_deviceResources->RegisterDeviceNotify(this);
}
Sample::~Sample()
{
if (m_deviceResources)
{
m_deviceResources->WaitForGpu();
}
}
// Initialize the Direct3D resources required to run.
void Sample::Initialize(HWND window, int width, int height)
{
m_gamePad = std::make_unique<GamePad>();
m_keyboard = std::make_unique<Keyboard>();
m_deviceResources->SetWindow(window, width, height);
m_deviceResources->CreateDeviceResources();
CreateDeviceDependentResources();
m_deviceResources->CreateWindowSizeDependentResources();
CreateWindowSizeDependentResources();
}
#pragma region Frame Update
// Executes basic render loop.
void Sample::Tick()
{
m_timer.Tick([&]()
{
Update(m_timer);
});
Render();
}
// Updates the world.
void Sample::Update(DX::StepTimer const& timer)
{
PIXBeginEvent(PIX_COLOR_DEFAULT, L"Update");
float elapsedTime = float(timer.GetElapsedSeconds());
m_fps.Tick(elapsedTime);
auto pad = m_gamePad->GetState(0);
if (pad.IsConnected())
{
m_ctrlConnected = true;
m_gamePadButtons.Update(pad);
if (pad.IsViewPressed())
{
ExitSample();
}
if (m_gamePadButtons.x == DirectX::GamePad::ButtonStateTracker::PRESSED && m_player.get() != nullptr)
{
if (m_player->IsPlaying())
{
m_player->Pause();
}
else
{
m_player->Play();
}
}
}
else
{
m_ctrlConnected = false;
m_gamePadButtons.Reset();
}
auto kb = m_keyboard->GetState();
m_keyboardButtons.Update(kb);
if (kb.Escape)
{
ExitSample();
}
if (m_keyboardButtons.IsKeyPressed(Keyboard::Enter) && m_player.get() != nullptr)
{
if (m_player->IsPlaying())
{
m_player->Pause();
}
else
{
m_player->Play();
}
}
PIXEndEvent();
}
#pragma endregion
void Sample::GetModelPredictions(
const ModelOutput& modelOutput,
const YoloV4Constants::BBoxData& constants,
std::vector<Prediction>* out)
{
// Convenience
float xyScale = constants.xyScale;
float stride = constants.stride;
const auto& anchors = constants.anchors;
// There are 3 anchors per scale, and each anchor is an (x,y) coordinate, so the anchors array should have 6
// values total.
assert(anchors.size() == 6);
// DirectML writes the final output data in NHWC, where the C channel contains the bounding box & probabilities
// for each prediction.
const uint32_t predTensorN = modelOutput.desc.sizes[0];
const uint32_t predTensorH = modelOutput.desc.sizes[1];
const uint32_t predTensorW = modelOutput.desc.sizes[2];
#if _DEBUG
const uint32_t predTensorC = modelOutput.desc.sizes[3];
#endif
// YoloV4 predicts 3 boxes per scale, so we expect 3 separate predictions here
assert(predTensorN == 3);
// Width should contain the bounding box x/y/w/h, a confidence score, the probability for max class, and the class index
assert(predTensorC == 7);
struct PotentialPrediction
{
float bx;
float by;
float bw;
float bh;
float confidence;
float classMaxProbability;
uint32_t classIndex;
};
// The output tensor should be large enough to hold the expected number of predictions.
assert(predTensorN * predTensorH * predTensorW * sizeof(PotentialPrediction) <= modelOutput.desc.totalTensorSizeInBytes);
std::vector<PotentialPrediction> tensorData = CopyReadbackHeap<PotentialPrediction>(modelOutput.readback.Get());
// Scale the boxes to be relative to the original image size
auto viewport = m_deviceResources->GetScreenViewport();
float xScale = (float)viewport.Width / YoloV4Constants::c_inputWidth;
float yScale = (float)viewport.Height / YoloV4Constants::c_inputHeight;
uint32_t currentPredIndex = 0;
for (uint32_t n = 0; n < predTensorN; ++n)
{
for (uint32_t h = 0; h < predTensorH; ++h)
{
for (uint32_t w = 0; w < predTensorW; ++w)
{
const PotentialPrediction& currentPred = tensorData[currentPredIndex++];
// Discard boxes with low scores
float score = currentPred.confidence * currentPred.classMaxProbability;
if (score < YoloV4Constants::c_scoreThreshold)
{
continue;
}
// We need to do some postprocessing on the raw values before we return them
// Apply xyScale. Need to apply offsets of half a grid cell here, to ensure the scaling is
// centered around zero.
float bx = xyScale * (currentPred.bx - 0.5f) + 0.5f;
float by = xyScale * (currentPred.by - 0.5f) + 0.5f;
// Transform the x/y from being relative to the grid cell, to being relative to the whole image
bx = (bx + (float)w) * stride;
by = (by + (float)h) * stride;
// Scale the w/h by the supplied anchors
float bw = currentPred.bw * anchors[n * 2];
float bh = currentPred.bh * anchors[n * 2 + 1];
// Convert x,y,w,h to xmin,ymin,xmax,ymax
float xmin = bx - bw / 2;
float ymin = by - bh / 2;
float xmax = bx + bw / 2;
float ymax = by + bh / 2;
xmin *= xScale;
ymin *= yScale;
xmax *= xScale;
ymax *= yScale;
// Clip values out of range
xmin = std::clamp(xmin, 0.0f, (float)viewport.Width);
ymin = std::clamp(ymin, 0.0f, (float)viewport.Height);
xmax = std::clamp(xmax, 0.0f, (float)viewport.Width);
ymax = std::clamp(ymax, 0.0f, (float)viewport.Height);
// Discard invalid boxes
if (xmax <= xmin || ymax <= ymin || IsInfOrNan({ xmin, ymin, xmax, ymax }))
{
continue;
}
Prediction pred = {};
pred.xmin = xmin;
pred.ymin = ymin;
pred.xmax = xmax;
pred.ymax = ymax;
pred.score = score;
pred.predictedClass = currentPred.classIndex;
out->push_back(pred);
}
}
}
}
#pragma region Frame Render
// Draws the scene.
void Sample::Render()
{
// Don't try to render anything before the first Update.
if (m_timer.GetFrameCount() == 0)
{
return;
}
// Prepare the command list to render a new frame.
m_deviceResources->Prepare();
Clear();
auto commandList = m_deviceResources->GetCommandList();
// Render the result to the screen
auto viewport = m_deviceResources->GetScreenViewport();
auto scissorRect = m_deviceResources->GetScissorRect();
{
PIXBeginEvent(commandList, PIX_COLOR_DEFAULT, L"Render to screen");
commandList->OMSetRenderTargets(1, &m_deviceResources->GetRenderTargetView(), FALSE, nullptr);
commandList->SetGraphicsRootSignature(m_texRootSignatureLinear.Get());
commandList->SetPipelineState(m_texPipelineStateLinear.Get());
auto heap = m_SRVDescriptorHeap->Heap();
commandList->SetDescriptorHeaps(1, &heap);
commandList->SetGraphicsRootDescriptorTable(0,
m_SRVDescriptorHeap->GetGpuHandle(e_descTexture));
// Set necessary state.
commandList->IASetPrimitiveTopology(D3D_PRIMITIVE_TOPOLOGY_TRIANGLELIST);
commandList->IASetIndexBuffer(&m_indexBufferView);
// Draw full screen texture
commandList->RSSetViewports(1, &viewport);
commandList->RSSetScissorRects(1, &scissorRect);
commandList->IASetVertexBuffers(0, 1, &m_vertexBufferView);
commandList->DrawIndexedInstanced(6, 1, 0, 0, 0);
PIXEndEvent(commandList);
}
// Render the UI
{
PIXBeginEvent(commandList, PIX_COLOR_DEFAULT, L"Render UI");
commandList->RSSetViewports(1, &viewport);
commandList->RSSetScissorRects(1, &scissorRect);
auto size = m_deviceResources->GetOutputSize();
auto safe = SimpleMath::Viewport::ComputeTitleSafeArea(size.right, size.bottom);
// Draw the text HUD.
ID3D12DescriptorHeap* fontHeaps[] = { m_fontDescriptorHeap->Heap() };
commandList->SetDescriptorHeaps(_countof(fontHeaps), fontHeaps);
m_spriteBatch->Begin(commandList);
float xCenter = static_cast<float>(safe.left + (safe.right - safe.left) / 2);
const wchar_t* mainLegend = m_ctrlConnected ?
L"[View] Exit [X] Play/Pause"
: L"ESC - Exit ENTER - Play/Pause";
SimpleMath::Vector2 mainLegendSize = m_legendFont->MeasureString(mainLegend);
auto mainLegendPos = SimpleMath::Vector2(xCenter - mainLegendSize.x / 2, static_cast<float>(safe.bottom) - m_legendFont->GetLineSpacing());
// Render a drop shadow by drawing the text twice with a slight offset.
DX::DrawControllerString(m_spriteBatch.get(), m_legendFont.get(), m_ctrlFont.get(),
mainLegend, mainLegendPos + SimpleMath::Vector2(2.f, 2.f), SimpleMath::Vector4(0.0f, 0.0f, 0.0f, 0.25f));
DX::DrawControllerString(m_spriteBatch.get(), m_legendFont.get(), m_ctrlFont.get(),
mainLegend, mainLegendPos, ATG::Colors::White);
const wchar_t* modeLabel = L"Object detection model:";
SimpleMath::Vector2 modeLabelSize = m_labelFontBold->MeasureString(modeLabel);
auto modeLabelPos = SimpleMath::Vector2(safe.right - modeLabelSize.x, static_cast<float>(safe.top));
m_labelFontBold->DrawString(m_spriteBatch.get(), modeLabel, modeLabelPos + SimpleMath::Vector2(2.f, 2.f), SimpleMath::Vector4(0.f, 0.f, 0.f, 0.25f));
m_labelFontBold->DrawString(m_spriteBatch.get(), modeLabel, modeLabelPos, ATG::Colors::White);
const wchar_t* modeType = L"YOLO V4";
SimpleMath::Vector2 modeTypeSize = m_labelFont->MeasureString(modeType);
auto modeTypePos = SimpleMath::Vector2(safe.right - modeTypeSize.x, static_cast<float>(safe.top) + m_labelFontBold->GetLineSpacing());
m_labelFont->DrawString(m_spriteBatch.get(), modeType, modeTypePos + SimpleMath::Vector2(2.f, 2.f), SimpleMath::Vector4(0.f, 0.f, 0.f, 0.25f));
m_labelFont->DrawString(m_spriteBatch.get(), modeType, modeTypePos, ATG::Colors::White);
wchar_t fps[16];
swprintf_s(fps, 16, L"%0.2f FPS", m_fps.GetFPS());
SimpleMath::Vector2 fpsSize = m_labelFont->MeasureString(fps);
auto fpsPos = SimpleMath::Vector2(safe.right - fpsSize.x, static_cast<float>(safe.top) + m_labelFont->GetLineSpacing() * 3.f);
m_labelFont->DrawString(m_spriteBatch.get(), fps, fpsPos + SimpleMath::Vector2(2.f, 2.f), SimpleMath::Vector4(0.f, 0.f, 0.f, 0.25f));
m_labelFont->DrawString(m_spriteBatch.get(), fps, fpsPos, ATG::Colors::White);
m_spriteBatch->End();
PIXEndEvent(commandList);
}
// Readback the raw data from the model, compute the model's predictions, and render the bounding boxes
{
PIXBeginEvent(commandList, PIX_COLOR_DEFAULT, L"Render predictions");
// Retrieve the predictions from the raw model outputs
std::vector<Prediction> preds;
GetModelPredictions(m_modelSOutput, YoloV4Constants::BBoxData::Small(), &preds);
GetModelPredictions(m_modelMOutput, YoloV4Constants::BBoxData::Medium(), &preds);
GetModelPredictions(m_modelLOutput, YoloV4Constants::BBoxData::Large(), &preds);
// Apply NMS to select the best boxes
preds = ApplyNonMaximalSuppression(preds, YoloV4Constants::c_nmsThreshold);
// Print some debug information about the predictions
if (preds.size() != 0)
{
std::stringstream ss;
Format(ss, "# of predictions: ", preds.size(), "\n");
for (const auto& pred : preds)
{
const char* className = YoloV4Constants::c_classes[pred.predictedClass];
int xmin = static_cast<int>(std::round(pred.xmin));
int ymin = static_cast<int>(std::round(pred.ymin));
int xmax = static_cast<int>(std::round(pred.xmax));
int ymax = static_cast<int>(std::round(pred.ymax));
Format(ss, " ", className, ": score ", pred.score, ", box (", xmin, ",", ymin, "),(", xmax, ",", ymax, ")\n");
}
OutputDebugStringA(ss.str().c_str());
commandList->RSSetViewports(1, &viewport);
commandList->RSSetScissorRects(1, &scissorRect);
// Draw bounding box outlines
m_lineEffect->Apply(commandList);
m_lineBatch->Begin(commandList);
for (const auto& pred : preds)
{
VertexPositionColor upperLeft(SimpleMath::Vector3(pred.xmin, pred.ymin, 0.f), ATG::Colors::White);
VertexPositionColor lowerLeft(SimpleMath::Vector3(pred.xmin, pred.ymax, 0.f), ATG::Colors::White);
VertexPositionColor upperRight(SimpleMath::Vector3(pred.xmax, pred.ymin, 0.f), ATG::Colors::White);
VertexPositionColor lowerRight(SimpleMath::Vector3(pred.xmax, pred.ymax, 0.f), ATG::Colors::White);
m_lineBatch->DrawLine(upperLeft, upperRight);
m_lineBatch->DrawLine(upperRight, lowerRight);
m_lineBatch->DrawLine(lowerRight, lowerLeft);
m_lineBatch->DrawLine(lowerLeft, upperLeft);
}
m_lineBatch->End();
// Draw predicted class labels
m_spriteBatch->Begin(commandList);
for (const auto& pred : preds)
{
const char* classText = YoloV4Constants::c_classes[pred.predictedClass];
std::wstring classTextW(classText, classText + strlen(classText));
// Render a drop shadow by drawing the text twice with a slight offset.
DX::DrawControllerString(m_spriteBatch.get(), m_labelFont.get(), m_ctrlFont.get(),
classTextW.c_str(), SimpleMath::Vector2(pred.xmin, pred.ymin) + SimpleMath::Vector2(2.f, 2.f), SimpleMath::Vector4(0.0f, 0.0f, 0.0f, 0.25f));
DX::DrawControllerString(m_spriteBatch.get(), m_labelFont.get(), m_ctrlFont.get(),
classTextW.c_str(), SimpleMath::Vector2(pred.xmin, pred.ymin), ATG::Colors::White);
}
m_spriteBatch->End();
}
PIXEndEvent(commandList);
}
//
// Kick off the compute work that will be used to render the next frame. We do this now so that the data will be
// ready by the time the next frame comes around.
//
#if USE_VIDEO
// Get the latest video frame
RECT r = { 0, 0, static_cast<LONG>(m_origTextureWidth), static_cast<LONG>(m_origTextureHeight) };
MFVideoNormalizedRect rect = { 0.0f, 0.0f, 1.0f, 1.0f };
m_player->TransferFrame(m_sharedVideoTexture, rect, r);
#endif
// Convert image to tensor format (original texture -> model input)
{
PIXBeginEvent(commandList, PIX_COLOR_DEFAULT, L"Convert input image");
ID3D12DescriptorHeap* pHeaps[] = { m_SRVDescriptorHeap->Heap() };
commandList->SetDescriptorHeaps(_countof(pHeaps), pHeaps);
commandList->SetComputeRootSignature(m_computeRootSignature.Get());
ImageLayoutCB imageLayoutCB = {};
imageLayoutCB.Height = m_origTextureHeight;
imageLayoutCB.Width = m_origTextureWidth;
imageLayoutCB.UseNhwc = false;
commandList->SetComputeRoot32BitConstants(e_crpIdxCB, 3, &imageLayoutCB, 0);
commandList->SetComputeRootDescriptorTable(e_crpIdxSRV, m_SRVDescriptorHeap->GetGpuHandle(e_descTexture));
commandList->SetComputeRootDescriptorTable(e_crpIdxUAV, m_SRVDescriptorHeap->GetGpuHandle(e_descModelInput));
commandList->SetPipelineState(m_computePSO.Get());
commandList->Dispatch(DivUp(m_origTextureWidth, 32), DivUp(m_origTextureHeight, 16), 1);
commandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::UAV(nullptr));
PIXEndEvent(commandList);
}
// Run the DirectML operations (model input -> model output)
{
PIXBeginEvent(commandList, PIX_COLOR_DEFAULT, L"DML ops");
ID3D12DescriptorHeap* pHeaps[] = { m_dmlDescriptorHeap->Heap() };
commandList->SetDescriptorHeaps(_countof(pHeaps), pHeaps);
m_dmlCommandRecorder->RecordDispatch(commandList, m_dmlGraph.Get(), m_dmlBindingTable.Get());
// Note that we don't need to barrier these back to UNORDERED_ACCESS once we're done, because they'll
// automatically be demoted to COMMON once the commandlist is executed
D3D12_RESOURCE_BARRIER barriers[] =
{
CD3DX12_RESOURCE_BARRIER::UAV(nullptr),
CD3DX12_RESOURCE_BARRIER::Transition(m_modelSOutput.output.Get(), D3D12_RESOURCE_STATE_UNORDERED_ACCESS, D3D12_RESOURCE_STATE_COPY_SOURCE),
CD3DX12_RESOURCE_BARRIER::Transition(m_modelMOutput.output.Get(), D3D12_RESOURCE_STATE_UNORDERED_ACCESS, D3D12_RESOURCE_STATE_COPY_SOURCE),
CD3DX12_RESOURCE_BARRIER::Transition(m_modelLOutput.output.Get(), D3D12_RESOURCE_STATE_UNORDERED_ACCESS, D3D12_RESOURCE_STATE_COPY_SOURCE),
};
commandList->ResourceBarrier(ARRAYSIZE(barriers), barriers);
// Copy result into readback heaps
commandList->CopyResource(m_modelSOutput.readback.Get(), m_modelSOutput.output.Get());
commandList->CopyResource(m_modelMOutput.readback.Get(), m_modelMOutput.output.Get());
commandList->CopyResource(m_modelLOutput.readback.Get(), m_modelLOutput.output.Get());
PIXEndEvent(commandList);
}
// Show the new frame.
PIXBeginEvent(m_deviceResources->GetCommandQueue(), PIX_COLOR_DEFAULT, L"Present");
m_deviceResources->Present();
PIXEndEvent(m_deviceResources->GetCommandQueue());
m_graphicsMemory->Commit(m_deviceResources->GetCommandQueue());
}
// Helper method to clear the back buffers.
void Sample::Clear()
{
auto commandList = m_deviceResources->GetCommandList();
PIXBeginEvent(commandList, PIX_COLOR_DEFAULT, L"Clear");
// Clear the views.
auto rtvDescriptor = m_deviceResources->GetRenderTargetView();
commandList->OMSetRenderTargets(1, &rtvDescriptor, FALSE, nullptr);
// Use linear clear color for gamma-correct rendering.
commandList->ClearRenderTargetView(rtvDescriptor, ATG::ColorsLinear::Background, 0, nullptr);
// Set the viewport and scissor rect.
auto viewport = m_deviceResources->GetScreenViewport();
auto scissorRect = m_deviceResources->GetScissorRect();
commandList->RSSetViewports(1, &viewport);
commandList->RSSetScissorRects(1, &scissorRect);
PIXEndEvent(commandList);
}
#pragma endregion
#pragma region Message Handlers
// Message handlers
void Sample::OnActivated()
{
}
void Sample::OnDeactivated()
{
}
void Sample::OnSuspending()
{
}
void Sample::OnResuming()
{
m_timer.ResetElapsedTime();
m_gamePadButtons.Reset();
m_keyboardButtons.Reset();
}
void Sample::OnWindowMoved()
{
auto r = m_deviceResources->GetOutputSize();
m_deviceResources->WindowSizeChanged(r.right, r.bottom);
}
void Sample::OnWindowSizeChanged(int width, int height)
{
if (!m_deviceResources->WindowSizeChanged(width, height))
return;
CreateWindowSizeDependentResources();
}
// Properties
void Sample::GetDefaultSize(int& width, int& height) const
{
width = 1920;
height = 1080;
}
#pragma endregion
#pragma region Direct3D Resources
// These are the resources that depend on the device.
void Sample::CreateDeviceDependentResources()
{
auto device = m_deviceResources->GetD3DDevice();
m_graphicsMemory = std::make_unique<GraphicsMemory>(device);
// Create descriptor heaps.
{
m_SRVDescriptorHeap = std::make_unique<DescriptorHeap>(
device,
D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV,
D3D12_DESCRIPTOR_HEAP_FLAG_SHADER_VISIBLE,
e_srvDescCount);
m_fontDescriptorHeap = std::make_unique<DescriptorHeap>(
device,
D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV,
D3D12_DESCRIPTOR_HEAP_FLAG_SHADER_VISIBLE,
e_fontDescCount);
}
CreateTextureResources();
CreateDirectMLResources();
InitializeDirectMLResources();
CreateUIResources();
}
void Sample::CreateTextureResources()
{
auto device = m_deviceResources->GetD3DDevice();
// Create root signatures with one sampler and one texture--one for nearest neighbor sampling,
// and one for bilinear.
{
CD3DX12_DESCRIPTOR_RANGE descRange = {};
descRange.Init(D3D12_DESCRIPTOR_RANGE_TYPE_SRV, 1, 0);
CD3DX12_ROOT_PARAMETER rp = {};
rp.InitAsDescriptorTable(1, &descRange, D3D12_SHADER_VISIBILITY_PIXEL);
// Nearest neighbor sampling
D3D12_STATIC_SAMPLER_DESC samplerDesc = {};
samplerDesc.Filter = D3D12_FILTER_MIN_MAG_MIP_POINT;
samplerDesc.AddressU = D3D12_TEXTURE_ADDRESS_MODE_WRAP;
samplerDesc.AddressV = D3D12_TEXTURE_ADDRESS_MODE_WRAP;
samplerDesc.AddressW = D3D12_TEXTURE_ADDRESS_MODE_WRAP;
samplerDesc.MaxAnisotropy = 16;
samplerDesc.ComparisonFunc = D3D12_COMPARISON_FUNC_LESS_EQUAL;
samplerDesc.BorderColor = D3D12_STATIC_BORDER_COLOR_OPAQUE_WHITE;
samplerDesc.MinLOD = 0;
samplerDesc.MaxLOD = D3D12_FLOAT32_MAX;
samplerDesc.ShaderVisibility = D3D12_SHADER_VISIBILITY_PIXEL;
CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc = {};
rootSignatureDesc.Init(1, &rp, 1, &samplerDesc,
D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT
| D3D12_ROOT_SIGNATURE_FLAG_DENY_DOMAIN_SHADER_ROOT_ACCESS
| D3D12_ROOT_SIGNATURE_FLAG_DENY_GEOMETRY_SHADER_ROOT_ACCESS
| D3D12_ROOT_SIGNATURE_FLAG_DENY_HULL_SHADER_ROOT_ACCESS);
ComPtr<ID3DBlob> signature;
ComPtr<ID3DBlob> error;
HRESULT hr = D3D12SerializeRootSignature(&rootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error);
if (FAILED(hr))
{
if (error)
{
OutputDebugStringA(reinterpret_cast<const char*>(error->GetBufferPointer()));
}
throw DX::com_exception(hr);
}
DX::ThrowIfFailed(
device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(),
IID_PPV_ARGS(m_texRootSignatureNN.ReleaseAndGetAddressOf())));
// Bilinear sampling
samplerDesc.Filter = D3D12_FILTER_MIN_MAG_MIP_LINEAR;
rootSignatureDesc.Init(1, &rp, 1, &samplerDesc,
D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT
| D3D12_ROOT_SIGNATURE_FLAG_DENY_DOMAIN_SHADER_ROOT_ACCESS
| D3D12_ROOT_SIGNATURE_FLAG_DENY_GEOMETRY_SHADER_ROOT_ACCESS
| D3D12_ROOT_SIGNATURE_FLAG_DENY_HULL_SHADER_ROOT_ACCESS);
hr = D3D12SerializeRootSignature(&rootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error);
if (FAILED(hr))
{
if (error)
{
OutputDebugStringA(reinterpret_cast<const char*>(error->GetBufferPointer()));
}
throw DX::com_exception(hr);
}
DX::ThrowIfFailed(
device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(),
IID_PPV_ARGS(m_texRootSignatureLinear.ReleaseAndGetAddressOf())));
}
// Create the pipeline state for a basic textured quad render, which includes loading shaders.
{
auto vertexShaderBlob = DX::ReadData(L"VertexShader.cso");
auto pixelShaderBlob = DX::ReadData(L"PixelShader.cso");
static const D3D12_INPUT_ELEMENT_DESC s_inputElementDesc[2] =
{
{ "SV_Position", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
{ "TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, 16, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
};
// Describe and create the graphics pipeline state objects (PSO).
D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {};
psoDesc.InputLayout = { s_inputElementDesc, _countof(s_inputElementDesc) };
psoDesc.pRootSignature = m_texRootSignatureNN.Get();
psoDesc.VS = { vertexShaderBlob.data(), vertexShaderBlob.size() };
psoDesc.PS = { pixelShaderBlob.data(), pixelShaderBlob.size() };
psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
psoDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
psoDesc.DepthStencilState.DepthEnable = FALSE;
psoDesc.DepthStencilState.StencilEnable = FALSE;
psoDesc.DSVFormat = m_deviceResources->GetDepthBufferFormat();
psoDesc.SampleMask = UINT_MAX;
psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
psoDesc.NumRenderTargets = 1;
psoDesc.RTVFormats[0] = m_deviceResources->GetBackBufferFormat();
psoDesc.SampleDesc.Count = 1;
DX::ThrowIfFailed(
device->CreateGraphicsPipelineState(&psoDesc,
IID_PPV_ARGS(m_texPipelineStateNN.ReleaseAndGetAddressOf())));
psoDesc.pRootSignature = m_texRootSignatureLinear.Get();
DX::ThrowIfFailed(
device->CreateGraphicsPipelineState(&psoDesc,
IID_PPV_ARGS(m_texPipelineStateLinear.ReleaseAndGetAddressOf())));
}
// Create vertex buffer for full screen texture render.
{
static const Vertex s_vertexData[4] =
{
{ { -1.f, -1.f, 1.f, 1.0f },{ 0.f, 1.f } },
{ { 1.f, -1.f, 1.f, 1.0f },{ 1.f, 1.f } },
{ { 1.f, 1.f, 1.f, 1.0f },{ 1.f, 0.f } },
{ { -1.f, 1.f, 1.f, 1.0f },{ 0.f, 0.f } },
};
// Note: using upload heaps to transfer static data like vert buffers is not
// recommended. Every time the GPU needs it, the upload heap will be marshalled
// over. Please read up on Default Heap usage. An upload heap is used here for
// code simplicity and because there are very few verts to actually transfer.
DX::ThrowIfFailed(
device->CreateCommittedResource(&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
D3D12_HEAP_FLAG_NONE,
&CD3DX12_RESOURCE_DESC::Buffer(sizeof(s_vertexData)),
D3D12_RESOURCE_STATE_GENERIC_READ,
nullptr,
IID_PPV_ARGS(m_vertexBuffer.ReleaseAndGetAddressOf())));
// Copy the quad data to the vertex buffer.
UINT8* pVertexDataBegin;
CD3DX12_RANGE readRange(0, 0); // We do not intend to read from this resource on the CPU.
DX::ThrowIfFailed(
m_vertexBuffer->Map(0, &readRange, reinterpret_cast<void**>(&pVertexDataBegin)));
memcpy(pVertexDataBegin, s_vertexData, sizeof(s_vertexData));
m_vertexBuffer->Unmap(0, nullptr);
// Initialize the vertex buffer view.
m_vertexBufferView.BufferLocation = m_vertexBuffer->GetGPUVirtualAddress();
m_vertexBufferView.StrideInBytes = sizeof(Vertex);
m_vertexBufferView.SizeInBytes = sizeof(s_vertexData);
}
// Create index buffer.
{
static const uint16_t s_indexData[6] =
{
3,1,0,
2,1,3,
};
// See note above
DX::ThrowIfFailed(
device->CreateCommittedResource(&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
D3D12_HEAP_FLAG_NONE,
&CD3DX12_RESOURCE_DESC::Buffer(sizeof(s_indexData)),
D3D12_RESOURCE_STATE_GENERIC_READ,
nullptr,
IID_PPV_ARGS(m_indexBuffer.ReleaseAndGetAddressOf())));
// Copy the data to the index buffer.
UINT8* pVertexDataBegin;
CD3DX12_RANGE readRange(0, 0); // We do not intend to read from this resource on the CPU.
DX::ThrowIfFailed(
m_indexBuffer->Map(0, &readRange, reinterpret_cast<void**>(&pVertexDataBegin)));
memcpy(pVertexDataBegin, s_indexData, sizeof(s_indexData));
m_indexBuffer->Unmap(0, nullptr);
// Initialize the index buffer view.
m_indexBufferView.BufferLocation = m_indexBuffer->GetGPUVirtualAddress();
m_indexBufferView.Format = DXGI_FORMAT_R16_UINT;
m_indexBufferView.SizeInBytes = sizeof(s_indexData);
}
#if USE_VIDEO
// Create video player.
{
wchar_t buff[MAX_PATH];
DX::FindMediaFile(buff, MAX_PATH, c_videoPath);
m_player = std::make_unique<MediaEnginePlayer>();
m_player->Initialize(m_deviceResources->GetDXGIFactory(), device, DXGI_FORMAT_B8G8R8A8_UNORM);
m_player->SetSource(buff);
while (!m_player->IsInfoReady())
{
SwitchToThread();
}
m_player->GetNativeVideoSize(m_origTextureWidth, m_origTextureHeight);
m_player->SetLoop(true);
// Create texture to receive video frames.
CD3DX12_RESOURCE_DESC desc(
D3D12_RESOURCE_DIMENSION_TEXTURE2D,
0,
m_origTextureWidth,
m_origTextureHeight,
1,
1,
DXGI_FORMAT_B8G8R8A8_UNORM,
1,
0,
D3D12_TEXTURE_LAYOUT_UNKNOWN,
D3D12_RESOURCE_FLAG_ALLOW_RENDER_TARGET | D3D12_RESOURCE_FLAG_ALLOW_SIMULTANEOUS_ACCESS);
CD3DX12_HEAP_PROPERTIES defaultHeapProperties(D3D12_HEAP_TYPE_DEFAULT);
DX::ThrowIfFailed(
device->CreateCommittedResource(
&defaultHeapProperties,
D3D12_HEAP_FLAG_SHARED,