forked from microsoft/DirectML
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWeightLoader.cpp
154 lines (122 loc) · 5.03 KB
/
WeightLoader.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
#pragma once
#include "pch.h"
#include "WeightLoader.h"
#include "TensorExtents.h"
#include "TensorUtil.h"
#include "TensorView.h"
ConvWeights WeightLoader::RegisterConvWeights(dml::TensorDesc::Dimensions filterShape, bool hasBatchNorm)
{
ConvWeights weights = {};
DML_TENSOR_FLAGS flags = DML_TENSOR_FLAG_NONE;
#if DML_MANAGED_WEIGHTS
flags |= DML_TENSOR_FLAG_OWNED_BY_DML;
#endif
dml::TensorDesc filterDesc(DML_TENSOR_DATA_TYPE_FLOAT32, flags, filterShape);
weights.filter = dml::InputTensor(*m_graph, m_modelInputCount, filterDesc);
++m_modelInputCount;
dml::TensorDesc::Dimensions biasShape = { 1, filterShape[0], 1, 1 };
dml::TensorDesc biasDesc(DML_TENSOR_DATA_TYPE_FLOAT32, flags, biasShape);
weights.bias = dml::InputTensor(*m_graph, m_modelInputCount, biasDesc);
++m_modelInputCount;
m_registrations.push_back(WeightRegistration{ filterShape, hasBatchNorm });
return weights;
}
template <typename T>
T Read(std::ifstream& is)
{
static_assert(std::is_pod_v<T>);
T val;
is.read(reinterpret_cast<char*>(&val), sizeof(val));
return val;
}
template <typename T>
void ReadArray(std::ifstream& is, dml::Span<T> out)
{
static_assert(std::is_pod_v<T>);
is.read(reinterpret_cast<char*>(out.data()), out.size_bytes());
}
WeightData WeightLoader::LoadWeightDataFromFile(const wchar_t* path, DX::DeviceResources* deviceResources)
{
// yolov4 is expected to have 110 layers which require weights
assert(m_registrations.size() == 110);
std::ifstream file(path, std::ifstream::binary);
if (!file || !file.good() || !file.is_open())
{
DX::ThrowIfFailed(E_FAIL);
}
file.exceptions(std::ifstream::badbit | std::ifstream::failbit | std::ifstream::eofbit);
uint32_t major = Read<uint32_t>(file);
uint32_t minor = Read<uint32_t>(file);
uint32_t revision = Read<uint32_t>(file);
uint32_t seen = Read<uint32_t>(file);
/*uint32_t padding =*/ Read<uint32_t>(file);
// Check that the file header has the correct magic values
if (major != 0 || minor != 2 || revision != 5 || seen != 0x1e8c500)
{
DX::ThrowIfFailed(E_INVALIDARG); // Invalid file
}
std::vector<ConvWeightData> loadedWeights;
loadedWeights.reserve(m_registrations.size());
std::vector<float> scratchMemory;
for (const WeightRegistration& registration : m_registrations)
{
ConvWeightData weights;
uint32_t filterCount = registration.filterShape[0]; // N dimension is the filter count
uint32_t filterSize =
registration.filterShape[1] *
registration.filterShape[2] *
registration.filterShape[3]; // Size of each individual filter
// Load BN/bias weights
if (registration.hasBatchNorm)
{
// 4 weights per BN, one set of BN weights for each filter
scratchMemory.resize(4 * filterCount);
ReadArray<float>(file, scratchMemory);
}
else
{
weights.biasData.resize(filterCount);
ReadArray<float>(file, weights.biasData);
}
// Load filter weights
weights.filterData.resize(filterCount * filterSize);
ReadArray<float>(file, weights.filterData);
// Fuse the batch norm weights into the filter weights and biases
if (registration.hasBatchNorm)
{
// Weights are laid out in memory SoA style - beta values, followed by gamma values, then mean values, then
// variance values.
assert(scratchMemory.size() == filterCount * 4);
dml::Span<const float> betas(scratchMemory.data(), filterCount);
dml::Span<const float> gammas(betas.end(), filterCount);
dml::Span<const float> means(gammas.end(), filterCount);
dml::Span<const float> variances(means.end(), filterCount);
assert(variances.end() == scratchMemory.data() + scratchMemory.size());
weights.biasData.resize(filterCount);
for (uint32_t i = 0; i < filterCount; ++i)
{
float beta = betas[i];
float gamma = gammas[i];
float mean = means[i];
float variance = variances[i];
assert(variance >= 0); // Variance can't be negative...
// Fold gamma/variance into filter
dml::Span<float> filter(weights.filterData.data() + i * filterSize, filterSize);
for (float& x : filter)
{
x = gamma * x / sqrt(variance + FLT_EPSILON);
}
// Fold beta/mean into bias
weights.biasData[i] = beta - gamma * mean / sqrt(variance + FLT_EPSILON);
}
}
loadedWeights.push_back(std::move(weights));
}
file.exceptions(std::ifstream::badbit | std::ifstream::failbit); // Don't throw on EOF
if (file.peek() != EOF)
{
DX::ThrowIfFailed(E_INVALIDARG); // We expect to have consumed the entire file
}
file.close();
return WeightData(loadedWeights, deviceResources);
}