-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetect_sono.py
239 lines (193 loc) · 6.79 KB
/
detect_sono.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import cv2
import dlib
import cv2
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from scipy.spatial import distance as dist
from imutils.video import VideoStream
from imutils import face_utils
from threading import Thread
import numpy as np
import playsound
import argparse
import imutils
import time
import dlib
import cv2
dlib.DLIB_USE_CUDA = True
EYE_AR_THRESH = 0.2
EYE_AR_CONSEC_FRAMES = 20
# initialize the frame counter as well as a boolean used to
# indicate if the alarm is going off
COUNTER = 0
ALARM_ON = False
def rect_to_bb(rect):
# take a bounding predicted by dlib and convert it
# to the format (x, y, w, h) as we would normally do
# with OpenCV
x = rect.left()
y = rect.top()
w = rect.right() - x
h = rect.bottom() - y
# return a tuple of (x, y, w, h)
return (x, y, w, h)
def eye_aspect_ratio(eye):
# compute the euclidean distances between the two sets of
# vertical eye landmarks (x, y)-coordinates
A = dist.euclidean(eye[1], eye[5])
B = dist.euclidean(eye[2], eye[4])
# compute the euclidean distance between the horizontal
# eye landmark (x, y)-coordinates
C = dist.euclidean(eye[0], eye[3])
# compute the eye aspect ratio
ear = (A + B) / (2.0 * C)
# return the eye aspect ratio
return ear
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--shape-predictor", required=True,
help="path to facial landmark predictor")
ap.add_argument("-a", "--alarm", type=str, default="",
help="path alarm .WAV file")
ap.add_argument("-w", "--webcam", type=int, default=0,
help="index of webcam on system")
args = vars(ap.parse_args())
def sound_alarm(path):
# play an alarm sound
playsound.playsound(path)
captura = cv2.VideoCapture(0)
count = 0
initial_recognition = True
init_frames = 0
p = "shape_predictor_68_face_landmarks.dat"
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(p)
(lStart, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"]
(rStart, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"]
print("[INFO] starting video stream thread...")
vs = VideoStream(src=args["webcam"]).start()
time.sleep(1.0)
initial_recognition = True
init_frames = 0
# loop over frames from the video stream
while True:
# grab the frame from the threaded video file stream, resize
# it, and convert it to grayscale
# channels)
frame = vs.read()
frame = imutils.resize(frame, width=1000)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# detect faces in the grayscale frame
rects = detector(gray, 0)
# loop over the face detections
for rect in rects:
# determine the facial landmarks for the face region, then
# convert the facial landmark (x, y)-coordinates to a NumPy
# array
shape = predictor(gray, rect)
if(initial_recognition):
(x, y, w, h) = rect_to_bb(rect)
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 255), 2)
for i in range(1,68):
cv2.circle(frame, (shape.part(i).x, shape.part(i).y), 1, (0,255,255), thickness=-1) #For each point, draw a red circle with thickness2 on the original frame
# time.sleep(5)
if(init_frames < 50):
cv2.putText(frame, "Iniciando monitoramento...", (10, 30),
cv2.FONT_HERSHEY_TRIPLEX , 0.7, (0, 255, 255), 2)
elif((init_frames >= 50)&(init_frames <70)):
cv2.putText(frame, "Face detectada, dirija com cuidado!", (10, 30),
cv2.FONT_HERSHEY_TRIPLEX , 0.7, (0, 255, 255), 2)
elif((init_frames >= 70)&(init_frames <80)):
x = None
else:
initial_recognition = False
init_frames += 1
else:
shape = face_utils.shape_to_np(shape)
# extract the left and right eye coordinates, then use the
# coordinates to compute the eye aspect ratio for both eyes
leftEye = shape[lStart:lEnd]
rightEye = shape[rStart:rEnd]
leftEAR = eye_aspect_ratio(leftEye)
rightEAR = eye_aspect_ratio(rightEye)
# average the eye aspect ratio together for both eyes
ear = (leftEAR + rightEAR) / 2.0
# compute the convex hull for the left and right eye, then
# visualize each of the eyes
leftEyeHull = cv2.convexHull(leftEye)
rightEyeHull = cv2.convexHull(rightEye)
cv2.drawContours(frame, [leftEyeHull], -1, (0, 255, 0), 1)
cv2.drawContours(frame, [rightEyeHull], -1, (0, 255, 0), 1)
# check to see if the eye aspect ratio is below the blink
# threshold, and if so, increment the blink frame counter
if ear < EYE_AR_THRESH:
COUNTER += 1
# if the eyes were closed for a sufficient number of
# then sound the alarm
if COUNTER >= EYE_AR_CONSEC_FRAMES:
# if the alarm is not on, turn it on
if not ALARM_ON:
ALARM_ON = True
# check to see if an alarm file was supplied,
# and if so, start a thread to have the alarm
# sound played in the background
if args["alarm"] != "":
t = Thread(target=sound_alarm,
args=(args["alarm"],))
t.deamon = True
t.start()
# ALARM_ON = False
# time.sleep(1)
# draw an alarm on the frame
cv2.putText(frame, "DROWSINESS ALERT!", (10, 30),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
# otherwise, the eye aspect ratio is not below the blink
# threshold, so reset the counter and alarm
else:
COUNTER = 0
ALARM_ON = False
cv2.putText(frame, "EAR: {:.2f}".format(ear), (300, 30),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
# show the frame
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
# if the `q` key was pressed, break from the loop
if key == ord("q"):
break
# do a bit of cleanup
cv2.destroyAllWindows()
vs.stop()
# while(1):
# ret, frame = captura.read()
# if(count%2==0):
# rects = detector(frame, 0)
# #For each detected face
# for k,d in enumerate(rects):
# (x, y, w, h) = rect_to_bb(d)
# cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
# #Get coordinates
# shape = predictor(frame, d)
# #There are 68 landmark points on each face
# for i in range(1,68):
# cv2.circle(frame, (shape.part(i).x, shape.part(i).y), 1, (0,255,0), thickness=-1) #For each point, draw a red circle with thickness2 on the original frame
# cv2.imshow("Video", frame)
# k = cv2.waitKey(30) & 0xff
# if k == 27:
# break
# count = count+1
# captura.release()
# cv2.destroyAllWindows()
# import cv2
# # Caso você tenha apenas 1 webcam, set device = 0, caso contrario, escolha seu device(webcam) de preferencia, 0, 1, 2 ,3 ...
# cap = cv2.VideoCapture(0)
# while True:
# # Obtendo nossa imagem através da webCam e transformando-a preto e branco
# _, image = cap.read()
# gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# # Mostrando a imagem na tela
# cv2.imshow("Output", image)
# #tecla para para sair do loop
# k = cv2.waitKey(5) & 0xFF
# if k == 27:
# break
# cv2.destroyAllWindows()
# cap.release()