-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathshape.ml
521 lines (455 loc) · 17 KB
/
shape.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Ulysse Gérard, Thomas Refis, Tarides *)
(* *)
(* Copyright 2021 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
module Uid = struct
type t =
| Compilation_unit of string
| Item of { comp_unit: string; id: int }
| Internal
| Predef of string
include Identifiable.Make(struct
type nonrec t = t
let equal (x : t) y = x = y
let compare (x : t) y = compare x y
let hash (x : t) = Hashtbl.hash x
let print fmt = function
| Internal -> Format.pp_print_string fmt "<internal>"
| Predef name -> Format.fprintf fmt "<predef:%s>" name
| Compilation_unit s -> Format.pp_print_string fmt s
| Item { comp_unit; id } -> Format.fprintf fmt "%s.%d" comp_unit id
let output oc t =
let fmt = Format.formatter_of_out_channel oc in
print fmt t
end)
let id = ref (-1)
let reinit () = id := (-1)
let mk ~current_unit =
incr id;
Item { comp_unit = current_unit; id = !id }
let of_compilation_unit_id id =
if not (Ident.persistent id) then
Misc.fatal_errorf "Types.Uid.of_compilation_unit_id %S" (Ident.name id);
Compilation_unit (Ident.name id)
let of_predef_id id =
if not (Ident.is_predef id) then
Misc.fatal_errorf "Types.Uid.of_predef_id %S" (Ident.name id);
Predef (Ident.name id)
let internal_not_actually_unique = Internal
let for_actual_declaration = function
| Item _ -> true
| _ -> false
end
module Sig_component_kind = struct
type t =
| Value
| Type
| Module
| Module_type
| Extension_constructor
| Class
| Class_type
let to_string = function
| Value -> "value"
| Type -> "type"
| Module -> "module"
| Module_type -> "module type"
| Extension_constructor -> "extension constructor"
| Class -> "class"
| Class_type -> "class type"
let can_appear_in_types = function
| Value
| Extension_constructor ->
false
| Type
| Module
| Module_type
| Class
| Class_type ->
true
end
module Item = struct
module T = struct
type t = string * Sig_component_kind.t
let compare = compare
let make str ns = str, ns
let value id = Ident.name id, Sig_component_kind.Value
let type_ id = Ident.name id, Sig_component_kind.Type
let module_ id = Ident.name id, Sig_component_kind.Module
let module_type id = Ident.name id, Sig_component_kind.Module_type
let extension_constructor id =
Ident.name id, Sig_component_kind.Extension_constructor
let class_ id =
Ident.name id, Sig_component_kind.Class
let class_type id =
Ident.name id, Sig_component_kind.Class_type
let print fmt (name, ns) =
Format.fprintf fmt "%S[%s]"
name
(Sig_component_kind.to_string ns)
end
include T
module Map = Map.Make(T)
end
type var = Ident.t
type t = { uid: Uid.t option; desc: desc }
and desc =
| Var of var
| Abs of var * t
| App of t * t
| Struct of t Item.Map.t
| Leaf
| Proj of t * Item.t
| Comp_unit of string
let print fmt =
let print_uid_opt =
Format.pp_print_option (fun fmt -> Format.fprintf fmt "<%a>" Uid.print)
in
let rec aux fmt { uid; desc } =
match desc with
| Var id ->
Format.fprintf fmt "%a%a" Ident.print id print_uid_opt uid
| Abs (id, t) ->
Format.fprintf fmt "Abs@[%a@,(@[%a,@ @[%a@]@])@]"
print_uid_opt uid Ident.print id aux t
| App (t1, t2) ->
Format.fprintf fmt "@[%a(@,%a)%a@]" aux t1 aux t2
print_uid_opt uid
| Leaf ->
Format.fprintf fmt "<%a>" (Format.pp_print_option Uid.print) uid
| Proj (t, item) ->
begin match uid with
| None ->
Format.fprintf fmt "@[%a@ .@ %a@]"
aux t
Item.print item
| Some uid ->
Format.fprintf fmt "@[(%a@ .@ %a)<%a>@]"
aux t
Item.print item
Uid.print uid
end
| Comp_unit name -> Format.fprintf fmt "CU %s" name
| Struct map ->
let print_map fmt =
Item.Map.iter (fun item t ->
Format.fprintf fmt "@[<hv 4>%a ->@ %a;@]@,"
Item.print item
aux t
)
in
Format.fprintf fmt "{@[<v>%a@,%a@]}" print_uid_opt uid print_map map
in
Format.fprintf fmt"@[%a@]@;" aux
let fresh_var ?(name="shape-var") uid =
let var = Ident.create_local name in
var, { uid = Some uid; desc = Var var }
let for_unnamed_functor_param = Ident.create_local "()"
let var uid id =
{ uid = Some uid; desc = Var id }
let abs ?uid var body =
{ uid; desc = Abs (var, body) }
let str ?uid map =
{ uid; desc = Struct map }
let leaf uid =
{ uid = Some uid; desc = Leaf }
let proj ?uid t item =
match t.desc with
| Leaf ->
(* When stuck projecting in a leaf we propagate the leaf
as a best effort *)
t
| Struct map ->
begin try Item.Map.find item map
with Not_found -> t (* ill-typed program *)
end
| _ ->
{ uid; desc = Proj (t, item) }
let app ?uid f ~arg =
{ uid; desc = App (f, arg) }
let decompose_abs t =
match t.desc with
| Abs (x, t) -> Some (x, t)
| _ -> None
module Make_reduce(Params : sig
type env
val fuel : int
val read_unit_shape : unit_name:string -> t option
val find_shape : env -> Ident.t -> t
end) = struct
(* We implement a strong call-by-need reduction, following an
evaluator from Nathanaelle Courant. *)
type nf = { uid: Uid.t option; desc: nf_desc }
and nf_desc =
| NVar of var
| NApp of nf * nf
| NAbs of local_env * var * t * delayed_nf
| NStruct of delayed_nf Item.Map.t
| NProj of nf * Item.t
| NLeaf
| NComp_unit of string
| NoFuelLeft of desc
(* A type of normal forms for strong call-by-need evaluation.
The normal form of an abstraction
Abs(x, t)
is a closure
NAbs(env, x, t, dnf)
when [env] is the local environment, and [dnf] is a delayed
normal form of [t].
A "delayed normal form" is morally equivalent to (nf Lazy.t), but
we use a different representation that is compatible with
memoization (lazy values are not hashable/comparable by default
comparison functions): we represent a delayed normal form as
just a not-yet-computed pair [local_env * t] of a term in a
local environment -- we could also see this as a term under
an explicit substitution. This delayed thunked is "forced"
by calling the normalization function as usual, but duplicate
computations are precisely avoided by memoization.
*)
and delayed_nf = Thunk of local_env * t
and local_env = delayed_nf option Ident.Map.t
(* When reducing in the body of an abstraction [Abs(x, body)], we
bind [x] to [None] in the environment. [Some v] is used for
actual substitutions, for example in [App(Abs(x, body), t)], when
[v] is a thunk that will evaluate to the normal form of [t]. *)
let improve_uid uid (nf : nf) =
match nf.uid with
| Some _ -> nf
| None -> { nf with uid }
let in_memo_table memo_table memo_key f arg =
match Hashtbl.find memo_table memo_key with
| res -> res
| exception Not_found ->
let res = f arg in
Hashtbl.replace memo_table memo_key res;
res
type env = {
fuel: int ref;
global_env: Params.env;
local_env: local_env;
reduce_memo_table: (local_env * t, nf) Hashtbl.t;
read_back_memo_table: (nf, t) Hashtbl.t;
}
let bind env var shape =
{ env with local_env = Ident.Map.add var shape env.local_env }
let rec reduce_ env t =
let memo_key = (env.local_env, t) in
in_memo_table env.reduce_memo_table memo_key (reduce__ env) t
(* Memoization is absolutely essential for performance on this
problem, because the normal forms we build can in some real-world
cases contain an exponential amount of redundancy. Memoization
can avoid the repeated evaluation of identical subterms,
providing a large speedup, but even more importantly it
implicitly shares the memory of the repeated results, providing
much smaller normal forms (that blow up again if printed back
as trees). A functor-heavy file from Irmin has its shape normal
form decrease from 100Mio to 2.5Mio when memoization is enabled.
Note: the local environment is part of the memoization key, while
it is defined using a type Ident.Map.t of non-canonical balanced
trees: two maps could have exactly the same items, but be
balanced differently and therefore hash differently, reducing
the effectivenss of memoization.
This could in theory happen, say, with the two programs
(fun x -> fun y -> ...)
and
(fun y -> fun x -> ...)
having "the same" local environments, with additions done in
a different order, giving non-structurally-equal trees. Should we
define our own hash functions to provide robust hashing on
environments?
We believe that the answer is "no": this problem does not occur
in practice. We can assume that identifiers are unique on valid
typedtree fragments (identifier "stamps" distinguish
binding positions); in particular the two program fragments above
in fact bind *distinct* identifiers x (with different stamps) and
different identifiers y, so the environments are distinct. If two
environments are structurally the same, they must correspond to
the evaluation evnrionments of two sub-terms that are under
exactly the same scope of binders. So the two environments were
obtained by the same term traversal, adding binders in the same
order, giving the same balanced trees: the environments have the
same hash.
*)
and reduce__ ({fuel; global_env; local_env; _} as env) (t : t) =
let reduce env t = reduce_ env t in
let delay_reduce env t = Thunk (env.local_env, t) in
let force (Thunk (local_env, t)) =
reduce { env with local_env } t in
let return desc : nf = { uid = t.uid; desc } in
if !fuel < 0 then return (NoFuelLeft t.desc)
else
match t.desc with
| Comp_unit unit_name ->
begin match Params.read_unit_shape ~unit_name with
| Some t -> reduce env t
| None -> return (NComp_unit unit_name)
end
| App(f, arg) ->
let f = reduce env f in
begin match f.desc with
| NAbs(clos_env, var, body, _body_nf) ->
let arg = delay_reduce env arg in
let env = bind { env with local_env = clos_env } var (Some arg) in
reduce env body
|> improve_uid t.uid
| _ ->
let arg = reduce env arg in
return (NApp(f, arg))
end
| Proj(str, item) ->
let str = reduce env str in
let nored () = return (NProj(str, item)) in
begin match str.desc with
| NStruct (items) ->
begin match Item.Map.find item items with
| exception Not_found -> nored ()
| nf ->
force nf
|> improve_uid t.uid
end
| _ ->
nored ()
end
| Abs(var, body) ->
let body_nf = delay_reduce (bind env var None) body in
return (NAbs(local_env, var, body, body_nf))
| Var id ->
begin match Ident.Map.find id local_env with
(* Note: instead of binding abstraction-bound variables to
[None], we could unify it with the [Some v] case by
binding the bound variable [x] to [NVar x].
One reason to distinguish the situations is that we can
provide a different [Uid.t] location; for bound
variables, we use the [Uid.t] of the bound occurrence
(not the binding site), whereas for bound values we use
their binding-time [Uid.t]. *)
| None -> return (NVar id)
| Some def -> force def
| exception Not_found ->
match Params.find_shape global_env id with
| exception Not_found -> return (NVar id)
| res when res = t -> return (NVar id)
| res ->
decr fuel;
reduce env res
end
| Leaf -> return NLeaf
| Struct m ->
let mnf = Item.Map.map (delay_reduce env) m in
return (NStruct mnf)
let rec read_back env (nf : nf) : t =
in_memo_table env.read_back_memo_table nf (read_back_ env) nf
(* The [nf] normal form we receive may contain a lot of internal
sharing due to the use of memoization in the evaluator. We have
to memoize here again, otherwise the sharing is lost by mapping
over the term as a tree. *)
and read_back_ env (nf : nf) : t =
{ uid = nf.uid; desc = read_back_desc env nf.desc }
and read_back_desc env desc =
let read_back nf = read_back env nf in
let read_back_force (Thunk (local_env, t)) =
read_back (reduce_ { env with local_env } t) in
match desc with
| NVar v ->
Var v
| NApp (nft, nfu) ->
App(read_back nft, read_back nfu)
| NAbs (_env, x, _t, nf) ->
Abs(x, read_back_force nf)
| NStruct nstr ->
Struct (Item.Map.map read_back_force nstr)
| NProj (nf, item) ->
Proj (read_back nf, item)
| NLeaf -> Leaf
| NComp_unit s -> Comp_unit s
| NoFuelLeft t -> t
let reduce global_env t =
let fuel = ref Params.fuel in
let reduce_memo_table = Hashtbl.create 42 in
let read_back_memo_table = Hashtbl.create 42 in
let local_env = Ident.Map.empty in
let env = {
fuel;
global_env;
reduce_memo_table;
read_back_memo_table;
local_env;
} in
reduce_ env t |> read_back env
end
module Local_reduce =
(* Note: this definition with [type env = unit] is only suitable for
reduction of toplevel shapes -- shapes of compilation units,
where free variables are only Comp_unit names. If we wanted to
reduce shapes inside module signatures, we would need to take
a typing environment as parameter. *)
Make_reduce(struct
type env = unit
let fuel = 10
let read_unit_shape ~unit_name:_ = None
let find_shape _env _id = raise Not_found
end)
let local_reduce shape =
Local_reduce.reduce () shape
let dummy_mod = { uid = None; desc = Struct Item.Map.empty }
let of_path ~find_shape ~namespace =
let rec aux : Sig_component_kind.t -> Path.t -> t = fun ns -> function
| Pident id -> find_shape ns id
| Pdot (path, name) -> proj (aux Module path) (name, ns)
| Papply (p1, p2) -> app (aux Module p1) ~arg:(aux Module p2)
in
aux namespace
let for_persistent_unit s =
{ uid = Some (Uid.of_compilation_unit_id (Ident.create_persistent s));
desc = Comp_unit s }
let leaf_for_unpack = { uid = None; desc = Leaf }
let set_uid_if_none t uid =
match t.uid with
| None -> { t with uid = Some uid }
| _ -> t
module Map = struct
type shape = t
type nonrec t = t Item.Map.t
let empty = Item.Map.empty
let add t item shape = Item.Map.add item shape t
let add_value t id uid = Item.Map.add (Item.value id) (leaf uid) t
let add_value_proj t id shape =
let item = Item.value id in
Item.Map.add item (proj shape item) t
let add_type t id uid = Item.Map.add (Item.type_ id) (leaf uid) t
let add_type_proj t id shape =
let item = Item.type_ id in
Item.Map.add item (proj shape item) t
let add_module t id shape = Item.Map.add (Item.module_ id) shape t
let add_module_proj t id shape =
let item = Item.module_ id in
Item.Map.add item (proj shape item) t
let add_module_type t id uid =
Item.Map.add (Item.module_type id) (leaf uid) t
let add_module_type_proj t id shape =
let item = Item.module_type id in
Item.Map.add item (proj shape item) t
let add_extcons t id uid =
Item.Map.add (Item.extension_constructor id) (leaf uid) t
let add_extcons_proj t id shape =
let item = Item.extension_constructor id in
Item.Map.add item (proj shape item) t
let add_class t id uid = Item.Map.add (Item.class_ id) (leaf uid) t
let add_class_proj t id shape =
let item = Item.class_ id in
Item.Map.add item (proj shape item) t
let add_class_type t id uid = Item.Map.add (Item.class_type id) (leaf uid) t
let add_class_type_proj t id shape =
let item = Item.class_type id in
Item.Map.add item (proj shape item) t
end