-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathintent.py
246 lines (221 loc) · 8.25 KB
/
intent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import sys
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from torch.nn.utils.rnn import pad_sequence, pack_padded_sequence
train_filename = '../data/a'
#train_filename = '../data/train.data'
#train_filename = '../data/intent.data'
valid_filename = '../data/valid.data'
batch_size = 128
#batch_size = 16
input_dim = 128
hidden_dim = 64
train_model = sys.argv[1]
save_path = '../model/model.test'
epoch_num = 200
cuda_gpu = torch.cuda.is_available()
seed = 0
if cuda_gpu:
torch.cuda.manual_seed_all(seed)
torch.manual_seed(seed)
class IntentModel(nn.Module):
def __init__(self, embedding_dim, hidden_dim, voc_size, output_size):
super(IntentModel, self).__init__()
self.hidden_dim = hidden_dim
self.voc_size = voc_size
self.output_size = output_size
self.word_embeddings = nn.Embedding(voc_size, embedding_dim)
self.lstm = nn.LSTM(embedding_dim, hidden_dim, batch_first=True)
self.linear = nn.Linear(hidden_dim, output_size)
#self.softmax = nn.Softmax(dim=1)
def forward(self, input_sentence):
# print 'input_sentence', input_sentence
emb_input = self.word_embeddings(input_sentence)
if cuda_gpu:
emb_input = emb_input.cuda()
batch_size, seq_length, emb_dim = emb_input.shape
#print 'emb', emb_input.shape
h_0 = torch.zeros(1, batch_size, self.hidden_dim)
c_0 = torch.zeros(1, batch_size, self.hidden_dim)
if cuda_gpu:
h_0 = h_0.cuda()
c_0 = c_0.cuda()
output, (final_hidden_state, final_cell_state) = self.lstm(emb_input)
# print 'shape', output[:,-1,:].shape
cls = self.linear(output[:,-1,:])#.view(batch_size,-1))
#print 'cls', cls
# cls = self.softmax(cls)
return cls
def generate_id(filename):
voc2id = {'PAD':0}
voc_list = ['PAD']
label2id = {}
label_num = 0
voc_num = 1
labels = []
f = open(filename)
for line in f:
data = line.strip('\n').decode('utf8').split('\t')
if len(data) != 2:
sys.stderr.write('wrong format [%s]'%(line))
continue
label, sent = data
if label not in label2id:
label2id[label] = label_num
label_num += 1
labels.append(label)
for v in sent:
if v not in voc2id:
voc2id[v] = voc_num
voc_list.append(v)
voc_num += 1
f.close()
return voc2id, label2id, labels, voc_list
class IntentDataset(Dataset):
def __init__(self, filename, voc2id, label2id):
self.voc2id = voc2id
self.label2id = label2id
self.x = []
self.y = []
f = open(filename)
self.max_seq_length = 0
for line in f:
data = line.strip('\n').decode('utf8').split('\t')
if len(data) != 2:
sys.stderr.write('wrong format [%s]\n'%(line))
continue
label, sent = data
if label not in self.label2id:
sys.stderr.write('oov label:%s\n'%(label))
continue
label_id = self.label2id[label]
voc_id_list = []
for v in sent:
if v not in self.voc2id:
sys.stderr.write('oov voc:%s\n'%(v.encode('utf8')))
continue
voc_id = self.voc2id[v]
voc_id_list.append(voc_id)
self.x.append(torch.tensor(voc_id_list))
if len(voc_id_list) > self.max_seq_length:
self.max_seq_length = len(voc_id_list)
self.y.append(torch.tensor(label_id))
f.close()
self.x = pad_sequence(self.x, True)
print '====='
print 'max_seq_length', self.max_seq_length
print 'label_num', len(self.label2id)
print 'voc_num', len(self.voc2id)
def __len__(self):
return len(self.x)
def __getitem__(self, idx):
return (self.x[idx], self.y[idx])
def eval_precision(data_loader):
total = 0.0
correct = 0.0
model.eval()
for test_data in data_loader:
input, label = test_data
if cuda_gpu:
input = input.cuda()
label = label.cuda()
output = model(input)#.squeeze()
predict = torch.argmax(output,1)
#print input[:2]
print output[:2]
print predict[:2]
for i in range(len(predict)):
s = ''
for k in input[i]:
if k != 0:
s += voc_list[k]
batch_correct = (label==predict).sum().item()
batch_total = label.size(0) + 0.0
total += batch_total
correct += batch_correct
return (correct, total, correct/total)
voc2id, label2id, labels, voc_list = generate_id(train_filename)
train_dataset = IntentDataset(train_filename, voc2id, label2id)
train_loader = DataLoader(train_dataset, batch_size, shuffle=False)
#train_loader = DataLoader(train_dataset, batch_size, shuffle=True)
voc_num = len(voc2id)
label_num = len(label2id)
print 'voc_num', len(voc2id)
print 'label_num', len(label2id)
model = IntentModel(input_dim, hidden_dim, voc_num, label_num)
if train_model in ['train','train-continue']:
best_acc = 0.0
if cuda_gpu:
model = model.cuda()
opt = optim.SGD(model.parameters(), lr=0.1)
# opt = optim.Adam(model.parameters())
if train_model == 'train-continue':
checkpoint = torch.load(save_path+'.best.pt')
model.load_state_dict(checkpoint['model_state_dict'])
opt.load_state_dict(checkpoint['optimizer_state_dict'])
best_acc = checkpoint['best_acc']
print 'best_acc', best_acc
validation_dataset = IntentDataset(valid_filename, voc2id, label2id)
validation_loader = DataLoader(validation_dataset, batch_size, shuffle=False)
#criterion = nn.BCELoss()
criterion = nn.CrossEntropyLoss()
for epoch in range(epoch_num):
total_loss = 0.0
model.train()
for idx, (input, label) in enumerate(train_loader):
opt.zero_grad()
if cuda_gpu:
input = input.cuda()
label = label.cuda()
output = model(input)#.squeeze()
#print idx,input.shape[0]
loss = criterion(output, label)
loss.backward()
opt.step()
#jfor param in model.parameters():
# print param.data
total_loss += loss.item()
model.eval()
with torch.no_grad():
correct, total, precision = eval_precision(train_loader)
print 'epoch %d total_loss = %lf' %(epoch, total_loss)
print 'train data precision:%d/%d = %.2lf%%'% (correct, total, correct/total*100)
correct, total, test_precision = eval_precision(validation_loader)
print 'valid data precision:%d/%d = %.2lf%%'% (correct, total, correct/total*100)
if precision > best_acc:
torch.save({'epoch':epoch, \
'model_state_dict': model.state_dict(),\
'optimizer_state_dict':opt.state_dict(),
'loss': total_loss,
'best_acc': precision},\
save_path+'.best.pt')
best_acc = precision
print 'save model'
else:
cuda_gpu = False
opt = optim.SGD(model.parameters(), lr=0.9)
checkpoint = torch.load(save_path+'.best.pt')
model.load_state_dict(checkpoint['model_state_dict'])
opt.load_state_dict(checkpoint['optimizer_state_dict'])
model.eval()
print 'train predict'
correct, total, precision = eval_precision(train_loader)
print correct, total, precision
while True:
line = sys.stdin.readline()
if line == "":
break
data = line.strip('\n').decode('utf8').split()
query = data[1]
label = data[0]
input = []
for i in query:
if i in train_dataset.voc2id:
input.append(train_dataset.voc2id[i])
input = [input+[0]*(train_dataset.max_seq_length-len(input))]
h = model(torch.tensor(input)).squeeze()
idx = torch.argmax(h,0).item()
print str(label.encode('utf8') == labels[idx].encode('utf8')) + '\t' + line.strip('\n') + '\t' + str(labels[idx]) + '\t' + str(torch.max(h).item())