-
Notifications
You must be signed in to change notification settings - Fork 64
/
Copy pathcustom_test.py
115 lines (89 loc) · 3.57 KB
/
custom_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import os
import time
import numpy as np
from tqdm import tqdm
import argparse
import fnmatch
from statistics import mean
import tensorflow as tf
from tensorflow import keras
from model import CNN_BLSTM
import utils
import random
random.seed(1984)
def find_files(root_dir, query="*.wav", include_root_dir=True):
"""Find files recursively.
Args:
root_dir (str): Root root_dir to find.
query (str): Query to find.
include_root_dir (bool): If False, root_dir name is not included.
Returns:
list: List of found filenames.
"""
files = []
for root, dirnames, filenames in os.walk(root_dir, followlinks=True):
for filename in fnmatch.filter(filenames, query):
files.append(os.path.join(root, filename))
if not include_root_dir:
files = [file_.replace(root_dir + "/", "") for file_ in files]
return files
def main():
parser = argparse.ArgumentParser(
description="Evaluate custom waveform files using pretrained MOSnet.")
parser.add_argument("--rootdir", default=None, type=str,
help="rootdir of the waveforms to be evaluated")
parser.add_argument("--pretrained_model", default="./pre_trained/cnn_blstm.h5", type=str,
help="pretrained model file")
args = parser.parse_args()
#### tensorflow & gpu settings ####
# 0 = all messages are logged (default behavior)
# 1 = INFO messages are not printed
# 2 = INFO and WARNING messages are not printed
# 3 = INFO, WARNING, and ERROR messages are not printed
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # or any {'0', '1', '2'}
tf.debugging.set_log_device_placement(False)
# set memory growth
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
try:
# Currently, memory growth needs to be the same across GPUs
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
logical_gpus = tf.config.experimental.list_logical_devices('GPU')
print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")
except RuntimeError as e:
# Memory growth must be set before GPUs have been initialized
print(e)
###################################
# find waveform files
wavfiles = sorted(find_files(args.rootdir, "*.wav"))
# init model
print("Loading model weights")
MOSNet = CNN_BLSTM()
model = MOSNet.build()
model.load_weights(args.pretrained_model)
# evaluation
print("Start evaluating {} waveforms...".format(len(wavfiles)))
results = []
for wavfile in tqdm(wavfiles):
# spectrogram
mag_sgram = utils.get_spectrograms(wavfile)
timestep = mag_sgram.shape[0]
mag_sgram = np.reshape(mag_sgram,(1, timestep, utils.SGRAM_DIM))
# make prediction
Average_score, Frame_score = model.predict(mag_sgram, verbose=0, batch_size=1)
# write to list
result = wavfile + " {:.3f}".format(Average_score[0][0])
results.append(result)
# print average
average = np.mean(np.array([float(line.split(" ")[-1]) for line in results]))
print("Average: {}".format(average))
# write final raw result
resultrawpath = os.path.join(args.rootdir, "MOSnet_result_raw.txt")
with open(resultrawpath, "w") as outfile:
outfile.write("\n".join(sorted(results)))
outfile.write("\nAverage: {}\n".format(average))
if __name__ == '__main__':
main()