-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathengine.py
242 lines (198 loc) · 12.2 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import os
import time
import torch
import numpy as np
import utils
from tqdm import tqdm
from metrics import AverageMeter, Result, compute_errors
import torch.nn.functional as F
# train
def train_one_epoch(device, train_loader, model, output_dir, ord_loss, optimizer, epoch, logger, PRINT_FREQ, BETA, GAMMA, ORD_NUM=80.0, RGB_ONLY=True):
avg80_sparse = AverageMeter()
avg80_dense = AverageMeter()
model.train() # switch to train mode
iter_per_epoch = len(train_loader)
trainbar = tqdm(total=iter_per_epoch)
end = time.time()
for i, data in enumerate(train_loader):
_rgb, _sparse_depth, _dense_depth = data['RGB'].to(device), data['SPARSE'].to(device), data['DENSE'].to(device)
_radar_depth = data['RADAR'].to(device)
torch.cuda.synchronize()
data_time = time.time() - end
# compute output
end = time.time()
with torch.autograd.detect_anomaly():
if RGB_ONLY:
_pred_prob, _pred_label = model(_rgb)
else:
_pred_prob, _pred_label = model(_rgb, _radar_depth)
loss = ord_loss(_pred_prob, _dense_depth) # calculate ord loss with dense_depth
optimizer.zero_grad()
loss.backward()
optimizer.step()
torch.cuda.synchronize()
gpu_time = time.time() - end
pred_depth = utils.label2depth_sid(_pred_label, K=ORD_NUM, alpha=1.0, beta=BETA, gamma=GAMMA)
# calculate metrices with ground truth sparse depth
s_abs_rel, s_sq_rel, s_rmse, s_rmse_log, s_a1, s_a2, s_a3 = compute_errors(_sparse_depth, pred_depth.to(device))
d_abs_rel, d_sq_rel, d_rmse, d_rmse_log, d_a1, d_a2, d_a3 = compute_errors(_dense_depth, pred_depth.to(device))
result80_sparse = Result()
result80_sparse.evaluate(pred_depth, _sparse_depth.data, cap=80)
avg80_sparse.update(result80_sparse, gpu_time, data_time, _rgb.size(0))
result80_dense = Result()
result80_dense.evaluate(pred_depth, _dense_depth.data, cap=80)
avg80_dense.update(result80_dense, gpu_time, data_time, _rgb.size(0))
end = time.time()
# update progress bar and show loss
trainbar.set_postfix(ORD_LOSS='{:.2f}||DENSE||RMSE={:.2f},delta={:.2f}/{:.2f}|||SPARSE||RMSE={:.2f},delta={:.2f}/{:.2f}|'.format(loss,d_rmse,d_a1,d_a2,s_rmse,s_a1,s_a2))
trainbar.update(1)
if (i + 1) % PRINT_FREQ == 0:
print('SPARSE: [{0}/{1}]\t'
't_GPU={gpu_time:.3f}({average.gpu_time:.3f})\n\t'
'RMSE={result.rmse:.2f}({average.rmse:.2f}) '
'RMSE_log={result.rmse_log:.3f}({average.rmse_log:.3f}) '
'AbsRel={result.absrel:.2f}({average.absrel:.2f}) '
'SqRel={result.squared_rel:.2f}({average.squared_rel:.2f}) '
'SILog={result.silog:.2f}({average.silog:.2f}) '
'iRMSE={result.irmse:.2f}({average.irmse:.2f}) '
'Delta1={result.delta1:.3f}({average.delta1:.3f}) '
'Delta2={result.delta2:.3f}({average.delta2:.3f}) '
'Delta3={result.delta3:.3f}({average.delta3:.3f})'.format(
i + 1, len(train_loader), gpu_time=gpu_time, result=result80_sparse, average=avg80_sparse.average()))
current_step = int(epoch*iter_per_epoch+i+1)
if RGB_ONLY:
img_merge = utils.batch_merge_into_row(_rgb, _dense_depth.data, pred_depth)
filename = os.path.join(output_dir,'step_{}.png'.format(current_step))
utils.save_image(img_merge, filename)
else:
# img_merge = utils.batch_merge_into_row(_rgb, _dense_depth.data, pred_depth)
img_merge = utils.batch_merge_into_row_radar(_rgb, _radar_depth.data, _dense_depth.data, pred_depth)
filename = os.path.join(output_dir,'step_{}.png'.format(current_step))
utils.save_image(img_merge, filename)
logger.add_scalar('TRAIN/SPARSE_RMSE', avg80_sparse.average().rmse, current_step)
logger.add_scalar('TRAIN/SPARSE_RMSE_log', avg80_sparse.average().rmse_log, current_step)
logger.add_scalar('TRAIN/SPARSE_iRMSE', avg80_sparse.average().irmse, current_step)
logger.add_scalar('TRAIN/SPARSE_SILog', avg80_sparse.average().silog, current_step)
logger.add_scalar('TRAIN/SPARSE_AbsRel', avg80_sparse.average().absrel, current_step)
logger.add_scalar('TRAIN/SPARSE_SqRel', avg80_sparse.average().squared_rel, current_step)
logger.add_scalar('TRAIN/SPARSE_Delta1', avg80_sparse.average().delta1, current_step)
logger.add_scalar('TRAIN/SPARSE_Delta2', avg80_sparse.average().delta2, current_step)
logger.add_scalar('TRAIN/SPARSE_Delta3', avg80_sparse.average().delta3, current_step)
logger.add_scalar('TRAIN/DENSE_RMSE', avg80_dense.average().rmse, current_step)
logger.add_scalar('TRAIN/DENSE_RMSE_log', avg80_dense.average().rmse_log, current_step)
logger.add_scalar('TRAIN/DENSE_iRMSE', avg80_dense.average().irmse, current_step)
logger.add_scalar('TRAIN/DENSE_SILog', avg80_dense.average().silog, current_step)
logger.add_scalar('TRAIN/DENSE_AbsRel', avg80_dense.average().absrel, current_step)
logger.add_scalar('TRAIN/DENSE_SqRel', avg80_dense.average().squared_rel, current_step)
logger.add_scalar('TRAIN/DENSE_Delta1', avg80_dense.average().delta1, current_step)
logger.add_scalar('TRAIN/DENSE_Delta2', avg80_dense.average().delta2, current_step)
logger.add_scalar('TRAIN/DENSE_Delta3', avg80_dense.average().delta3, current_step)
# reset average meter
result80_sparse = Result()
avg80_sparse = AverageMeter()
result80_dense = Result()
avg80_dense = AverageMeter()
def validation(device, data_loader, model, ord_loss, output_dir, epoch, logger, PRINT_FREQ, BETA, GAMMA, ORD_NUM=80.0, RGB_ONLY=True):
avg80_sparse = AverageMeter()
avg80_dense = AverageMeter()
model.eval()
end = time.time()
skip =int(len(data_loader)/10)
img_list = []
evalbar = tqdm(total=len(data_loader))
for i, data in enumerate(data_loader):
_rgb, _sparse_depth, _dense_depth = data['RGB'].to(device), data['SPARSE'].to(device), data['DENSE'].to(device)
_radar_depth = data['RADAR'].to(device)
torch.cuda.synchronize()
data_time = time.time() - end
# compute output
end = time.time()
with torch.no_grad():
if RGB_ONLY:
_pred_prob, _pred_label = model(_rgb)
else:
_pred_prob, _pred_label = model(_rgb, _radar_depth)
loss = ord_loss(_pred_prob, _dense_depth)
torch.cuda.synchronize()
gpu_time = time.time() - end
pred_depth = utils.label2depth_sid(_pred_label, K=ORD_NUM, alpha=1.0, beta=BETA, gamma=GAMMA)
s_abs_rel, s_sq_rel, s_rmse, s_rmse_log, s_a1, s_a2, s_a3 = compute_errors(_sparse_depth, pred_depth.to(device))
d_abs_rel, d_sq_rel, d_rmse, d_rmse_log, d_a1, d_a2, d_a3 = compute_errors(_dense_depth, pred_depth.to(device))
# measure accuracy and record loss
result80_sparse = Result()
result80_sparse.evaluate(pred_depth, _sparse_depth.data, cap=80)
avg80_sparse.update(result80_sparse, gpu_time, data_time, _rgb.size(0))
result80_dense = Result()
result80_dense.evaluate(pred_depth, _dense_depth.data, cap=80)
avg80_dense.update(result80_dense, gpu_time, data_time, _rgb.size(0))
end = time.time()
# save images for visualization
if RGB_ONLY:
if i == 0:
img_merge = utils.merge_into_row(_rgb, _dense_depth, pred_depth)
elif (i < 8 * skip) and (i % skip == 0):
row = utils.merge_into_row(_rgb, _dense_depth, pred_depth)
img_merge = utils.add_row(img_merge, row)
elif i == 8 * skip:
filename = os.path.join(output_dir,'eval_{}.png'.format(int(epoch)))
print('save validation figures at {}'.format(filename))
utils.save_image(img_merge, filename)
else:
if i == 0:
img_merge = utils.merge_into_row_with_radar(_rgb, _radar_depth, _dense_depth, pred_depth)
elif (i < 8 * skip) and (i % skip == 0):
row = utils.merge_into_row_with_radar(_rgb,_radar_depth, _dense_depth, pred_depth)
img_merge = utils.add_row(img_merge, row)
elif i == 8 * skip:
filename = os.path.join(output_dir,'eval_{}.png'.format(int(epoch)))
print('save validation figures at {}'.format(filename))
utils.save_image(img_merge, filename)
if (i + 1) % PRINT_FREQ == 0:
print('Test: [{0}/{1}]\t'
't_GPU={gpu_time:.3f}({average.gpu_time:.3f})\n\t'
'RMSE={result.rmse:.2f}({average.rmse:.2f}) '
'RMSE_log={result.rmse_log:.3f}({average.rmse_log:.3f}) '
'AbsRel={result.absrel:.2f}({average.absrel:.2f}) '
'SqRel={result.squared_rel:.2f}({average.squared_rel:.2f}) '
'SILog={result.silog:.2f}({average.silog:.2f}) '
'iRMSE={result.irmse:.2f}({average.irmse:.2f}) '
'Delta1={result.delta1:.3f}({average.delta1:.3f}) '
'Delta2={result.delta2:.3f}({average.delta2:.3f}) '
'Delta3={result.delta3:.3f}({average.delta3:.3f})'.format(
i + 1, len(data_loader), gpu_time=gpu_time, result=result80_sparse, average=avg80_sparse.average()))
# update progress bar and show loss
evalbar.set_postfix(ORD_LOSS='{:.2f}||DENSE||RMSE={:.2f},delta={:.2f}/{:.2f}|||SPARSE||RMSE={:.2f},delta={:.2f}/{:.2f}|'.format(loss,d_rmse,d_a1,d_a2,s_rmse,s_a1,s_a2))
evalbar.update(1)
i = i+1
print('\n**** EVALUATE WITH SPARSE DEPTH ****\n'
'\n**** CAP=80 ****\n'
'RMSE={average.rmse:.3f}\n'
'RMSE_log={average.rmse_log:.3f}\n'
'AbsRel={average.absrel:.3f}\n'
'SqRel={average.squared_rel:.3f}\n'
'SILog={average.silog:.3f}\n'
'Delta1={average.delta1:.3f}\n'
'Delta2={average.delta2:.3f}\n'
'Delta3={average.delta3:.3f}\n'
'iRMSE={average.irmse:.3f}\n'
'iMAE={average.imae:.3f}\n'
't_GPU={average.gpu_time:.3f}\n'.format(
average=avg80_sparse.average()))
logger.add_scalar('VAL_CAP80/SPARSE_RMSE', avg80_sparse.average().rmse, epoch)
logger.add_scalar('VAL_CAP80/SPARSE_RMSE_log', avg80_sparse.average().rmse_log, epoch)
logger.add_scalar('VAL_CAP80/SPARSE_iRMSE', avg80_sparse.average().irmse, epoch)
logger.add_scalar('VAL_CAP80/SPARSE_SILog', avg80_sparse.average().silog, epoch)
logger.add_scalar('VAL_CAP80/SPARSE_AbsRel', avg80_sparse.average().absrel, epoch)
logger.add_scalar('VAL_CAP80/SPARSE_SqRel', avg80_sparse.average().squared_rel, epoch)
logger.add_scalar('VAL_CAP80/SPARSE_Delta1', avg80_sparse.average().delta1, epoch)
logger.add_scalar('VAL_CAP80/SPARSE_Delta2', avg80_sparse.average().delta2, epoch)
logger.add_scalar('VAL_CAP80/SPARSE_Delta3', avg80_sparse.average().delta3, epoch)
logger.add_scalar('VAL_CAP80/DENSE_RMSE', avg80_dense.average().rmse, epoch)
logger.add_scalar('VAL_CAP80/DENSE_RMSE_log', avg80_dense.average().rmse_log, epoch)
logger.add_scalar('VAL_CAP80/DENSE_iRMSE', avg80_dense.average().irmse, epoch)
logger.add_scalar('VAL_CAP80/DENSE_SILog', avg80_dense.average().silog, epoch)
logger.add_scalar('VAL_CAP80/DENSE_AbsRel', avg80_dense.average().absrel, epoch)
logger.add_scalar('VAL_CAP80/DENSE_SqRel', avg80_dense.average().squared_rel, epoch)
logger.add_scalar('VAL_CAP80/DENSE_Delta1', avg80_dense.average().delta1, epoch)
logger.add_scalar('VAL_CAP80/DENSE_Delta2', avg80_dense.average().delta2, epoch)
logger.add_scalar('VAL_CAP80/DENSE_Delta3', avg80_dense.average().delta3, epoch)