Autoware package based on IMM-UKF-PDA tracker.
- From a sourced terminal:
roslaunch lidar_tracker imm_ukf_pda_tracker.launch
- From Runtime Manager:
Computing Tab -> Detection/ lidar_detector -> imm_ukf_pda_tracker
A. Arya Senna Abdul Rachman, 3D-LIDAR Multi Object Tracking for Autonomous Driving. 2017. paper
M. Schreire, Bayesian environment representation, prediction, and criticality assessment for driver assistance systems. 2017. paper
eucledian_cluster
node.ray_ground_filter
node./tf
topic. Below video is from Suginami data which contais /tf topic: (autoware-20180205150908.bag
). You can download it from ROSBAG STORE for free. Otherwise, you need to do localization with a map to produce /tf topic fromvelodyne
toworld
.wayarea
info from vectormap if is possible.
Launch file available parameters for imm_ukf_pda_tracker
Parameter | Type | Description |
---|---|---|
input topic |
String | Input topic(type: autoware_msgs::CloudClusterArray). Default /cloud cluster . |
output topic |
String | Output topic(type: autoware_msgs::CloudClusterArray). Default /tracking_cluster_array . |
pointcloud frame |
String | Pointcloud frame. Default velodyne . |
life time thres |
Int | The minimum frames for targets to be visualized. Default 8 . |
gating thres |
Double | The value of gate threshold for measurement validation. Default 9.22 . |
gate probability |
Double | The probability that the gate contains the true measurement. Default 0.99 . |
detection probability |
Double | The probability that a target is detected. Default 0.9 . |
distance thres |
Double | The distance threshold for associating bounding box over frames. Default 100 . |
static velocity thres |
Double | The velocity threshold for classifying static/dynamic. Default 0.5 . |
velocity_explosion thres |
Double | The threshold for stopping kalman filter update. Default 1000 . |
use_sukf |
bool | Use standard kalman filter. Default false . |
is_debug |
bool | Turning on debu mode. Publishing rosmarkers for debug. Default false . |
Launch file available parameters for visualize_detected_objects
Parameter | Type | Description |
---|---|---|
input_topic |
String | Input topic(type: autoware_msgs::CloudClusterArray). Default /tracking_cluster_array . |
pointcloud frame |
String | Pointcloud frame. Default velodyne . |
Node: imm_ukf_pda_tracker
Topic | Type | Objective |
---|---|---|
/detection/lidar_objects |
autoware_msgs::DetectedObjectArray |
Segmented pointcloud from a clustering algorithm like eucledian cluster. |
/tf |
tf |
Tracking objects in world coordinate. |
Node: visualize_detected_objects
Topic | Type | Objective |
---|---|---|
/detected_objects |
autoware_msgs::DetectedObjectArray |
Objects with tracking info. |
Node: imm_ukf_pda_tracker
Topic | Type | Objective |
---|---|---|
/detected_objects |
autoware_msgs::DetectedObjectArray |
Added info like velocity, yaw ,yaw_rate and static/dynamic class to DetectedObject msg. |
/bounding_boxes_tracked |
jsk_recognition_msgs::BoundingBoxArray |
Visualze bounsing box nicely in rviz by JSK bounding box. Label contains information about static/dynamic class |
Node: visualize_detected_objects
Topic | Type | Objective |
---|---|---|
/detected_objects/velocity_arrow |
visualization_msgs::Marker |
Visualize velocity and yaw of the targets. |
/detected_objects/target_id |
visualization_msgs::Marker |
Visualize targets' id. |
Please notice that benchmark scripts are in another repository. You can tune parameters by using benchmark based on KITTI dataset. The repository is here.