forked from NKU-IIPLab/SDRN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathopinionMining.py
211 lines (180 loc) · 9.37 KB
/
opinionMining.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# -*- coding: utf-8 -*-
# @Author: Shaowei Chen, Contact: [email protected]
# @Date: 2020-4-26 16:47:32
import torch
import torch.nn as nn
from relationAttention import RelationAttention
from crf_new import CRF
from bert.modeling import BertModel, BERTLayerNorm
import threading
import torch.nn.functional as F
import torch.nn.init as init
class opinionMining(nn.Module):
def __init__(self, args, config, label_alphabet):
super(opinionMining, self).__init__()
print("build network...")
self.gpu = args.ifgpu
self.label_size = label_alphabet.size()
self.bert_encoder_dim = config.hidden_size
self.target_hidden_dim = args.target_hidden_dim
self.relation_hidden_dim = args.relation_hidden_dim
self.relation_threds = args.relation_threds
self.drop = args.dropout
self.step = args.step
# encoder
self.bert = BertModel(config)
# target syn
self.targetSyn_r = nn.Parameter(torch.Tensor(self.target_hidden_dim, self.bert_encoder_dim))
self.targetSyn_s = nn.Parameter(torch.Tensor(self.target_hidden_dim, self.bert_encoder_dim))
# relation syn
self.relationSyn_u = nn.Parameter(torch.Tensor(self.relation_hidden_dim, self.bert_encoder_dim))
self.relationSyn_s = nn.Parameter(torch.Tensor(self.relation_hidden_dim, self.bert_encoder_dim))
init.xavier_uniform(self.targetSyn_r)
init.xavier_uniform(self.targetSyn_s)
init.xavier_uniform(self.relationSyn_u)
init.xavier_uniform(self.relationSyn_s)
# crf
self.targetHidden2Tag = nn.Parameter(torch.Tensor(self.label_size + 2, self.target_hidden_dim))
self.targetHidden2Tag_b = nn.Parameter(torch.Tensor(1, self.label_size + 2))
init.xavier_uniform(self.targetHidden2Tag)
init.xavier_uniform(self.targetHidden2Tag_b)
self.crf = CRF(self.label_size, self.gpu)
# relation
self.relationAttention = RelationAttention(args)
# other
self.dropout = nn.Dropout(self.drop)
self.softmax = nn.Softmax(dim=2)
if self.gpu:
self.bert = self.bert.cuda()
self.targetSyn_r.data = self.targetSyn_r.cuda()
self.targetSyn_s.data = self.targetSyn_s.cuda()
self.relationSyn_u.data = self.relationSyn_u.cuda()
self.relationSyn_s.data = self.relationSyn_s.cuda()
self.targetHidden2Tag.data = self.targetHidden2Tag.cuda()
self.targetHidden2Tag_b.data = self.targetHidden2Tag_b.cuda()
self.relationAttention = self.relationAttention.cuda()
self.dropout = self.dropout.cuda()
self.softmax = self.softmax.cuda()
def init_weights(module):
if isinstance(module, BERTLayerNorm):
module.beta.data.normal_(mean=0.0, std=config.initializer_range)
module.gamma.data.normal_(mean=0.0, std=config.initializer_range)
self.apply(init_weights)
def neg_log_likelihood_loss(self, all_input_ids, all_segment_ids, all_labels, all_relations, all_input_mask):
batch_size = all_input_ids.size(0)
seq_len = all_input_ids.size(1)
maskTemp1 = all_input_mask.view(batch_size, 1, seq_len).repeat(1, seq_len, 1)
maskTemp2 = all_input_mask.view(batch_size, seq_len, 1).repeat(1, 1, seq_len)
maskMatrix = maskTemp1 * maskTemp2
targetPredictScore, r_tensor = self.mainStructure(maskMatrix, all_input_ids, all_segment_ids, self.step,
all_input_mask)
# target Loss
target_loss = self.crf.neg_log_likelihood_loss(targetPredictScore, all_input_mask.byte(), all_labels)
scores, tag_seq = self.crf._viterbi_decode(targetPredictScore, all_input_mask.byte())
target_loss = target_loss / batch_size
# relation Loss
weight = torch.FloatTensor([0.01, 1.0]).cuda()
relation_loss_function = nn.CrossEntropyLoss(weight=weight)
relationScoreLoss = r_tensor.view(-1, 1)
relationlabelLoss = all_relations.view(batch_size * seq_len * seq_len)
relationScoreLoss = torch.cat([1 - relationScoreLoss, relationScoreLoss], 1)
relation_loss = relation_loss_function(relationScoreLoss, relationlabelLoss)
return target_loss, relation_loss, tag_seq, r_tensor
def forward(self, all_input_ids, all_segment_ids, all_input_mask):
batch_size = all_input_ids.size(0)
seq_len = all_input_ids.size(1)
maskTemp1 = all_input_mask.view(batch_size, 1, seq_len).repeat(1, seq_len, 1)
maskTemp2 = all_input_mask.view(batch_size, seq_len, 1).repeat(1, 1, seq_len)
maskMatrix = maskTemp1 * maskTemp2
targetPredictScore, r_tensor = self.mainStructure(maskMatrix, all_input_ids, all_segment_ids, self.step,
all_input_mask)
scores, tag_seq = self.crf._viterbi_decode(targetPredictScore, all_input_mask.byte())
return tag_seq, r_tensor
def mainStructure(self, maskMatrix, all_input_ids, all_segment_ids, steps, all_input_mask):
batch_size = all_input_ids.size(0)
seq_len = all_input_ids.size(1)
# bert
all_encoder_layers, _ = self.bert(all_input_ids, all_segment_ids, all_input_mask)
sequence_output = all_encoder_layers[-1]
sequence_output = self.dropout(sequence_output)
# T tensor and R tensor
t_tensor = torch.zeros(batch_size, seq_len, seq_len)
r_tensor = torch.zeros(batch_size, seq_len, seq_len)
if self.gpu:
t_tensor = t_tensor.cuda()
r_tensor = r_tensor.cuda()
for i in range(steps):
# target syn
r_temp = r_tensor.ge(self.relation_threds).float()
r_tensor = r_tensor * r_temp # b x s x s
target_weighted = torch.bmm(r_tensor, sequence_output)
target_div = torch.sum(r_tensor, 2)
targetIfZero = target_div.eq(0).float()
target_div = target_div + targetIfZero
target_div = target_div.unsqueeze(2).repeat(1, 1, self.bert_encoder_dim)
target_r = torch.div(target_weighted, target_div)
target_hidden = F.linear(sequence_output, self.targetSyn_s, None) + F.linear(target_r, self.targetSyn_r, None)
target_hidden = F.tanh(target_hidden)
# relation syn
relation_weighted = torch.bmm(t_tensor, sequence_output)
relation_div = torch.sum(t_tensor, 2)
relationIfZero = relation_div.eq(0).float()
relation_div = relation_div + relationIfZero
relation_div = relation_div.unsqueeze(2).repeat(1, 1, self.bert_encoder_dim)
relation_a = torch.div(relation_weighted, relation_div)
relation_hidden = F.linear(sequence_output, self.relationSyn_s, None)+F.linear(relation_a, self.relationSyn_u, None)
relation_hidden = F.tanh(relation_hidden)
# crf
targetPredictInput = F.linear(target_hidden, self.targetHidden2Tag, self.targetHidden2Tag_b)#self.targetHidden2Tag(target_hidden)
# Relation Attention
relationScore = self.relationAttention(relation_hidden)
# update T_tensor
tag_score, tag_seq = self.crf._viterbi_decode(targetPredictInput, all_input_mask.byte())
threads = []
temp_T_tensor = torch.zeros(batch_size, seq_len, seq_len)
if self.gpu:
temp_T_tensor = temp_T_tensor.cuda()
for i in range(batch_size):
t = threading.Thread(target=self.makeEntity, args=(i, tag_seq[i, :], temp_T_tensor, seq_len))
threads.append(t)
for i in range(batch_size):
threads[i].start()
for i in range(batch_size):
threads[i].join()
tag_score_final = tag_score.unsqueeze(2).repeat(1, 1, seq_len)+tag_score.unsqueeze(1).repeat(1, seq_len, 1)
t_tensor = tag_score_final * temp_T_tensor
# Update R_tensor
r_tensor = relationScore * (maskMatrix.float())
return targetPredictInput, r_tensor
def makeEntity(self, idx, tag_seq, temp_T_tensor, seq_len):
# don't consider the entity which starts with "I-X"
tag_seq = tag_seq.cpu()
Abegin = -1
Aend = -1
Obegin = -1
Oend = -1
for idy in range(seq_len):
if tag_seq[idy] in [0, 1, 2, 4]:
if Abegin != -1:
temp_T_tensor[idx, Abegin:Aend, Abegin:Aend] = torch.ones(Aend - Abegin, Aend - Abegin)
Abegin = -1
Aend = -1
if Obegin != -1:
temp_T_tensor[idx, Obegin:Oend, Obegin:Oend] = torch.ones(Oend - Obegin, Oend - Obegin)
Obegin = -1
Oend = -1
if tag_seq[idy] == 2:
Abegin = idy
Aend = idy + 1
if tag_seq[idy] == 3 and Abegin != -1:
Aend += 1
if tag_seq[idy] == 4:
Obegin = idy
Oend = idy + 1
if tag_seq[idy] == 5 and Obegin != -1:
Oend += 1
if Abegin != -1:
temp_T_tensor[idx, Abegin:Aend, Abegin:Aend] = torch.ones(Aend - Abegin, Aend - Abegin)
if Obegin != -1:
temp_T_tensor[idx, Obegin:Oend, Obegin:Oend] = torch.ones(Oend - Obegin, Oend - Obegin)
return temp_T_tensor