-
Notifications
You must be signed in to change notification settings - Fork 101
/
Copy pathconfig.py
305 lines (280 loc) · 14.5 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import argparse
from tokenize import group
def get_config():
"""
The configuration parser for common hyperparameters of all environment.
Please reach each `scripts/train/<env>_runner.py` file to find private hyperparameters
only used in <env>.
"""
parser = argparse.ArgumentParser(formatter_class=argparse.RawDescriptionHelpFormatter)
parser = _get_prepare_config(parser)
parser = _get_replaybuffer_config(parser)
parser = _get_network_config(parser)
parser = _get_recurrent_config(parser)
parser = _get_optimizer_config(parser)
parser = _get_ppo_config(parser)
parser = _get_selfplay_config(parser)
parser = _get_save_config(parser)
parser = _get_log_config(parser)
parser = _get_eval_config(parser)
parser = _get_render_config(parser)
return parser
def _get_prepare_config(parser: argparse.ArgumentParser):
"""
Prepare parameters:
--env-name <str>
specify the name of environment
--algorithm-name <str>
specifiy the algorithm, including `["ppo", "mappo"]`
--experiment-name <str>
an identifier to distinguish different experiment.
--seed <int>
set seed for numpy and torch
--cuda
by default False, will use CPU to train; or else will use GPU;
--n-training-threads <int>
number of training threads working in parallel. by default 1
--n-rollout-threads <int>
number of parallel envs for training rollout. by default 4
--n-render-rollout-threads <int>
number of parallel envs for rendering, could only be set as 1 for some environments.
--num-env-steps <float>
number of env steps to train (default: 1e7)
--model-dir <str>
by default None. set the path to pretrained model.
--use-wandb
[for wandb usage], by default False, if set, will log date to wandb server.
--user-name <str>
[for wandb usage], to specify user's name for simply collecting training data.
--wandb-name <str>
[for wandb usage], to specify user's name for simply collecting training data.
"""
group = parser.add_argument_group("Prepare parameters")
group.add_argument("--env-name", type=str, default='JSBSim',
help="specify the name of environment")
group.add_argument("--algorithm-name", type=str, default='ppo', choices=["ppo", "mappo"],
help="Specifiy the algorithm (default ppo)")
group.add_argument("--experiment-name", type=str, default="check",
help="An identifier to distinguish different experiment.")
group.add_argument("--seed", type=int, default=1,
help="Random seed for numpy/torch")
group.add_argument("--cuda", action='store_true', default=False,
help="By default False, will use CPU to train; or else will use GPU;")
group.add_argument("--n-training-threads", type=int, default=1,
help="Number of torch threads for training (default 1)")
group.add_argument("--n-rollout-threads", type=int, default=4,
help="Number of parallel envs for training/evaluating rollout (default 4)")
group.add_argument("--num-env-steps", type=float, default=1e7,
help='Number of environment steps to train (default: 1e7)')
group.add_argument("--model-dir", type=str, default=None,
help="By default None. set the path to pretrained model.")
group.add_argument("--use-wandb", action='store_true', default=False,
help="[for wandb usage], by default False, if set, will log date to wandb server.")
group.add_argument("--user-name", type=str, default='liuqh',
help="for setprobtitle use")
group.add_argument("--wandb-name", type=str, default='liuqh',
help="[for wandb usage], to specify user's name for simply collecting training data.")
return parser
def _get_replaybuffer_config(parser: argparse.ArgumentParser):
"""
Replay Buffer parameters:
--gamma <float>
discount factor for rewards (default: 0.99)
--buffer-size <int>
the maximum storage in the buffer.
--use-proper-time-limits
by default, the return value does consider limits of time. If set, compute returns with considering time limits factor.
--use-gae
by default, use generalized advantage estimation. If set, do not use gae.
--gae-lambda <float>
gae lambda parameter (default: 0.95)
"""
group = parser.add_argument_group("Replay Buffer parameters")
group.add_argument("--gamma", type=float, default=0.99,
help='discount factor for rewards (default: 0.99)')
group.add_argument("--buffer-size", type=int, default=200,
help="maximum storage in the buffer.")
group.add_argument("--use-proper-time-limits", action='store_true', default=False,
help='compute returns taking into account time limits')
group.add_argument("--use-gae", action='store_false', default=True,
help='Whether to use generalized advantage estimation')
group.add_argument("--gae-lambda", type=float, default=0.95,
help='gae lambda parameter (default: 0.95)')
return parser
def _get_network_config(parser: argparse.ArgumentParser):
"""
Network parameters:
--hidden-size <str>
dimension of hidden layers for mlp pre-process networks
--act-hidden-size <int>
dimension of hidden layers for actlayer
--activation-id
choose 0 to use Tanh, 1 to use ReLU, 2 to use LeakyReLU, 3 to use ELU
--use-feature-normalization
by default False, otherwise apply LayerNorm to normalize feature extraction inputs.
--gain
by default 0.01, use the gain # of last action layer
"""
group = parser.add_argument_group("Network parameters")
group.add_argument("--hidden-size", type=str, default='128 128',
help="Dimension of hidden layers for mlp pre-process networks (default '128 128')")
group.add_argument("--act-hidden-size", type=str, default='128 128',
help="Dimension of hidden layers for actlayer (default '128 128')")
group.add_argument("--activation-id", type=int, default=1,
help="Choose 0 to use Tanh, 1 to use ReLU, 2 to use LeakyReLU, 3 to use ELU (default 1)")
group.add_argument("--use-feature-normalization", action='store_true', default=False,
help="Whether to apply LayerNorm to the feature extraction inputs")
group.add_argument("--gain", type=float, default=0.01,
help="The gain # of last action layer")
group.add_argument("--use-prior", action='store_true', default=False,
help="Whether to use prior hunman info to update network, use only on missile shoot task")
return parser
def _get_recurrent_config(parser: argparse.ArgumentParser):
"""
Recurrent parameters:
--use-recurrent-policy
by default, use Recurrent Policy. If set, do not use.
--recurrent-hidden-size <int>
Dimension of hidden layers for recurrent layers (default 128).
--recurrent-hidden-layers <int>
The number of recurrent layers (default 1).
--data-chunk-length <int>
Time length of chunks used to train a recurrent_policy, default 10.
"""
group = parser.add_argument_group("Recurrent parameters")
group.add_argument("--use-recurrent-policy", action='store_false', default=True,
help='Whether to use a recurrent policy')
group.add_argument("--recurrent-hidden-size", type=int, default=128,
help="Dimension of hidden layers for recurrent layers (default 128)")
group.add_argument("--recurrent-hidden-layers", type=int, default=1,
help="The number of recurrent layers (default 1)")
group.add_argument("--data-chunk-length", type=int, default=10,
help="Time length of chunks used to train a recurrent_policy (default 10)")
return parser
def _get_optimizer_config(parser: argparse.ArgumentParser):
"""
Optimizer parameters:
--lr <float>
learning rate parameter (default: 5e-4, fixed).
"""
group = parser.add_argument_group("Optimizer parameters")
group.add_argument("--lr", type=float, default=5e-4,
help='learning rate (default: 5e-4)')
return parser
def _get_ppo_config(parser: argparse.ArgumentParser):
"""
PPO parameters:
--ppo-epoch <int>
number of ppo epochs (default: 10)
--clip-param <float>
ppo clip parameter (default: 0.2)
--use-clipped-value-loss
by default false. If set, clip value loss.
--num-mini-batch <int>
number of batches for ppo (default: 1)
--value-loss-coef <float>
ppo value loss coefficient (default: 1)
--entropy-coef <float>
ppo entropy term coefficient (default: 0.01)
--use-max-grad-norm
by default, use max norm of gradients. If set, do not use.
--max-grad-norm <float>
max norm of gradients (default: 0.5)
"""
group = parser.add_argument_group("PPO parameters")
group.add_argument("--ppo-epoch", type=int, default=10,
help='number of ppo epochs (default: 10)')
group.add_argument("--clip-param", type=float, default=0.2,
help='ppo clip parameter (default: 0.2)')
group.add_argument("--use-clipped-value-loss", action='store_true', default=False,
help="By default false. If set, clip value loss.")
group.add_argument("--num-mini-batch", type=int, default=1,
help='number of batches for ppo (default: 1)')
group.add_argument("--value-loss-coef", type=float, default=1,
help='ppo value loss coefficient (default: 1)')
group.add_argument("--entropy-coef", type=float, default=0.01,
help='entropy term coefficient (default: 0.01)')
group.add_argument("--use-max-grad-norm", action='store_false', default=True,
help="By default, use max norm of gradients. If set, do not use.")
group.add_argument("--max-grad-norm", type=float, default=2,
help='max norm of gradients (default: 2)')
return parser
def _get_selfplay_config(parser: argparse.ArgumentParser):
"""
Selfplay parameters:
--use-selfplay
by default false. If set, use selfplay algorithms.
--selfplay-algorithm <str>
specifiy the selfplay algorithm, including `["sp", "fsp"]`
--n-choose-opponents <int>
number of different opponents chosen for rollout. (default 1)
--init-elo <float>
initial ELO for policy performance. (default 1000.0)
"""
group = parser.add_argument_group("Selfplay parameters")
group.add_argument("--use-selfplay", action='store_true', default=False,
help="By default false. If set, use selfplay algorithms.")
group.add_argument("--selfplay-algorithm", type=str, default='sp', choices=["sp", "fsp", "pfsp"],
help="Specifiy the selfplay algorithm (default 'sp')")
group.add_argument('--n-choose-opponents', type=int, default=1,
help="number of different opponents chosen for rollout. (default 1)")
group.add_argument('--init-elo', type=float, default=1000.0,
help="initial ELO for policy performance. (default 1000.0)")
return parser
def _get_save_config(parser: argparse.ArgumentParser):
"""
Save parameters:
--save-interval <int>
time duration between contiunous twice models saving.
"""
group = parser.add_argument_group("Save parameters")
group.add_argument("--save-interval", type=int, default=1,
help="time duration between contiunous twice models saving. (default 1)")
return parser
def _get_log_config(parser: argparse.ArgumentParser):
"""
Log parameters:
--log-interval <int>
time duration between contiunous twice log printing.
"""
group = parser.add_argument_group("Log parameters")
group.add_argument("--log-interval", type=int, default=5,
help="time duration between contiunous twice log printing. (default 5)")
return parser
def _get_eval_config(parser: argparse.ArgumentParser):
"""
Eval parameters:
--use-eval
by default, do not start evaluation. If set, start evaluation alongside with training.
--n-eval-rollout-threads <int>
number of parallel envs for evaluating rollout. by default 1
--eval-interval <int>
time duration between contiunous twice evaluation progress.
--eval-episodes <int>
number of episodes of a single evaluation.
"""
group = parser.add_argument_group("Eval parameters")
group.add_argument("--use-eval", action='store_true', default=False,
help="by default, do not start evaluation. If set, start evaluation alongside with training.")
group.add_argument("--n-eval-rollout-threads", type=int, default=1,
help="Number of parallel envs for evaluating rollout (default 1)")
group.add_argument("--eval-interval", type=int, default=25,
help="time duration between contiunous twice evaluation progress. (default 25)")
group.add_argument("--eval-episodes", type=int, default=32,
help="number of episodes of a single evaluation. (default 32)")
return parser
def _get_render_config(parser: argparse.ArgumentParser):
"""
Render parameters:
--render-opponent-index <int>
the index of opponent policy in the opponent pool. by default 0
--render-index <int>
the index of opponent policy in the opponent pool. by default 0
"""
group = parser.add_argument_group("Render parameters")
group.add_argument("--render-opponent-index", type=str, default='latest', help="the index of opponent policy in the opponent pool. by default latest")
group.add_argument("--render-index", type=str, default='latest', help="the index of ego policy. by default latest")
return parser
if __name__ == "__main__":
parser = get_config()
all_args = parser.parse_args()