-
Notifications
You must be signed in to change notification settings - Fork 361
/
Copy pathkeywords_textrank.py
92 lines (80 loc) · 3.57 KB
/
keywords_textrank.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
#!/usr/bin/env python3
# coding: utf-8
# File: textrank.py
# Author: lhy<[email protected],https://huangyong.github.io>
# Date: 18-4-17
import jieba.posseg as pseg
from collections import defaultdict
import sys
'''textrank图算法'''
class textrank_graph:
def __init__(self):
self.graph = defaultdict(list)
self.d = 0.85 #d是阻尼系数,一般设置为0.85
self.min_diff = 1e-5 #设定收敛阈值
#添加节点之间的边
def addEdge(self, start, end, weight):
self.graph[start].append((start, end, weight))
self.graph[end].append((end, start, weight))
#节点排序
def rank(self):
#默认初始化权重
weight_deafault = 1.0 / (len(self.graph) or 1.0)
#nodeweight_dict, 存储节点的权重
nodeweight_dict = defaultdict(float)
#outsum,存储节点的出度权重
outsum_node_dict = defaultdict(float)
#根据图中的边,更新节点权重
for node, out_edge in self.graph.items():
#是 [('是', '全国', 1), ('是', '调查', 1), ('是', '失业率', 1), ('是', '城镇', 1)]
nodeweight_dict[node] = weight_deafault
outsum_node_dict[node] = sum((edge[2] for edge in out_edge), 0.0)
#初始状态下的textrank重要性权重
sorted_keys = sorted(self.graph.keys())
#设定迭代次数,
step_dict = [0]
for step in range(1, 1000):
for node in sorted_keys:
s = 0
#计算公式:(edge_weight/outsum_node_dict[edge_node])*node_weight[edge_node]
for e in self.graph[node]:
s += e[2] / outsum_node_dict[e[1]] * nodeweight_dict[e[1]]
#计算公式:(1-d) + d*s
nodeweight_dict[node] = (1 - self.d) + self.d * s
step_dict.append(sum(nodeweight_dict.values()))
if abs(step_dict[step] - step_dict[step - 1]) <= self.min_diff:
break
#利用Z-score进行权重归一化,也称为离差标准化,是对原始数据的线性变换,使结果值映射到[0 - 1]之间。
#先设定最大值与最小值均为系统存储的最大值和最小值
(min_rank, max_rank) = (sys.float_info[0], sys.float_info[3])
for w in nodeweight_dict.values():
if w < min_rank:
min_rank = w
if w > max_rank:
max_rank = w
for n, w in nodeweight_dict.items():
nodeweight_dict[n] = (w - min_rank/10.0) / (max_rank - min_rank/10.0)
return nodeweight_dict
'''基于textrank图算法的关键词提取'''
class TextRank:
def __init__(self):
self.candi_pos = ['n', 'v']
self.stop_pos = ['nt']
self.span = 5
def extract_keywords(self, word_list, num_keywords):
g = textrank_graph()
cm = defaultdict(int)
for i, word in enumerate(word_list):
if word[1][0] in self.candi_pos and len(word[0]) > 1:
for j in range(i + 1, i + self.span):
if j >= len(word_list):
break
if word_list[j][1][0] not in self.candi_pos or word_list[j][1] in self.stop_pos or len(word_list[j][0]) < 2:
continue
pair = tuple((word[0], word_list[j][0]))
cm[(pair)] += 1
for terms, w in cm.items():
g.addEdge(terms[0], terms[1], w)
nodes_rank = g.rank()
nodes_rank = sorted(nodes_rank.items(), key=lambda asd:asd[1], reverse=True)
return nodes_rank[:num_keywords]