A basic standard flow that using custom python tool calls Azure OpenAI with connection info stored in custom connection.
Tools used in this flow:
prompt
tool- custom
python
Tool
Connections used in this flow:
- None
Install promptflow sdk and other dependencies:
pip install -r requirements.txt
Prepare your Azure Open AI resource follow this instruction and get your api_key
if you don't have one.
Create connection if you haven't done that.
# Override keys with --set to avoid yaml file changes
pf connection create -f custom.yml --set secrets.api_key=<your_api_key> configs.api_base=<your_api_base>
Ensure you have created basic_custom_connection
connection.
pf connection show -n basic_custom_connection
# test with default input value in flow.dag.yaml
pf flow test --flow .
# test with flow inputs
pf flow test --flow . --inputs text="Hello World!"
# test node with inputs
pf flow test --flow . --node llm --inputs prompt="Write a simple Hello World! program that displays the greeting message when executed."
- create run
pf run create --flow . --data ./data.jsonl --stream
- list and show run meta
# list created run
pf run list -r 3
# get a sample run name
name=$(pf run list -r 10 | jq '.[] | select(.name | contains("basic_with_connection")) | .name'| head -n 1 | tr -d '"')
# show specific run detail
pf run show --name $name
# show output
pf run show-details --name $name
# visualize run in browser
pf run visualize --name $name
Ensure you have created open_ai_connection
connection before.
pf connection show -n open_ai_connection
Create connection if you haven't done that.
# Override keys with --set to avoid yaml file changes
pf connection create --file ../../../connections/azure_openai.yml --set api_key=<your_api_key> api_base=<your_api_base>
Run flow with newly created connection.
pf run create --flow . --data ./data.jsonl --connections llm.connection=open_ai_connection --stream
Ensure you have created open_ai_connection
connection in cloud. Reference this notebook on how to create connections in cloud with UI.
Run flow with connection open_ai_connection
.
# set default workspace
az account set -s <your_subscription_id>
az configure --defaults group=<your_resource_group_name> workspace=<your_workspace_name>
pfazure run create --flow . --data ./data.jsonl --connections llm.connection=open_ai_connection --stream --runtime demo-mir