-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathmodel.py
144 lines (120 loc) · 6.1 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# -*- coding: utf-8 -*-
#pylint: skip-file
import sys
import numpy as np
import torch
import torch as T
import torch.nn as nn
from torch.autograd import Variable
from utils_pg import *
from gru_dec import *
from lstm_dec_v2 import *
from word_prob_layer import *
class Model(nn.Module):
def __init__(self, modules, consts, options):
super(Model, self).__init__()
self.has_learnable_w2v = options["has_learnable_w2v"]
self.is_predicting = options["is_predicting"]
self.is_bidirectional = options["is_bidirectional"]
self.beam_decoding = options["beam_decoding"]
self.cell = options["cell"]
self.device = options["device"]
self.copy = options["copy"]
self.coverage = options["coverage"]
self.avg_nll = options["avg_nll"]
self.dim_x = consts["dim_x"]
self.dim_y = consts["dim_y"]
self.len_x = consts["len_x"]
self.len_y = consts["len_y"]
self.hidden_size = consts["hidden_size"]
self.dict_size = consts["dict_size"]
self.pad_token_idx = consts["pad_token_idx"]
self.ctx_size = self.hidden_size * 2 if self.is_bidirectional else self.hidden_size
self.w_rawdata_emb = nn.Embedding(self.dict_size, self.dim_x, self.pad_token_idx)
if self.cell == "gru":
self.encoder = nn.GRU(self.dim_x, self.hidden_size, bidirectional=self.is_bidirectional)
self.decoder = GRUAttentionDecoder(self.dim_y, self.hidden_size, self.ctx_size, self.device, self.copy, self.coverage, self.is_predicting)
else:
self.encoder = nn.LSTM(self.dim_x, self.hidden_size, bidirectional=self.is_bidirectional)
self.decoder = LSTMAttentionDecoder(self.dim_y, self.hidden_size, self.ctx_size, self.device, self.copy, self.coverage, self.is_predicting)
self.get_dec_init_state = nn.Linear(self.ctx_size, self.hidden_size)
self.word_prob = WordProbLayer(self.hidden_size, self.ctx_size, self.dim_y, self.dict_size, self.device, self.copy, self.coverage)
self.init_weights()
def init_weights(self):
init_uniform_weight(self.w_rawdata_emb.weight)
if self.cell == "gru":
init_gru_weight(self.encoder)
else:
init_lstm_weight(self.encoder)
init_linear_weight(self.get_dec_init_state)
def nll_loss(self, y_pred, y, y_mask, avg=True):
cost = -T.log(T.gather(y_pred, 2, y.view(y.size(0), y.size(1), 1)))
cost = cost.view(y.shape)
y_mask = y_mask.view(y.shape)
if avg:
cost = T.sum(cost * y_mask, 0) / T.sum(y_mask, 0)
else:
cost = T.sum(cost * y_mask, 0)
cost = cost.view((y.size(1), -1))
return T.mean(cost)
def encode(self, x, len_x, mask_x):
self.encoder.flatten_parameters()
emb_x = self.w_rawdata_emb(x)
emb_x = torch.nn.utils.rnn.pack_padded_sequence(emb_x, len_x)
hs, hn = self.encoder(emb_x, None)
hs, _ = torch.nn.utils.rnn.pad_packed_sequence(hs)
dec_init_state = T.sum(hs * mask_x, 0) / T.sum(mask_x, 0)
dec_init_state = T.tanh(self.get_dec_init_state(dec_init_state))
return hs, dec_init_state
def decode_once(self, y, hs, dec_init_state, mask_x, x=None, max_ext_len=None, acc_att=None):
batch_size = hs.size(1)
if T.sum(y) < 0:
y_emb = Variable(T.zeros((1, batch_size, self.dim_y))).to(self.device)
else:
y_emb = self.w_rawdata_emb(y)
mask_y = Variable(T.ones((1, batch_size, 1))).to(self.device)
if self.copy and self.coverage:
hcs, dec_status, atted_context, att_dist, xids, C = self.decoder(y_emb, hs, dec_init_state, mask_x, mask_y, x, acc_att)
elif self.copy:
hcs, dec_status, atted_context, att_dist, xids = self.decoder(y_emb, hs, dec_init_state, mask_x, mask_y, xid=x)
elif self.coverage:
hcs, dec_status, atted_context, att_dist, C = self.decoder(y_emb, hs, dec_init_state, mask_x, mask_y, init_coverage=acc_att)
else:
hcs, dec_status, atted_context = self.decoder(y_emb, hs, dec_init_state, mask_x, mask_y)
if self.copy:
y_pred = self.word_prob(dec_status, atted_context, y_emb, att_dist, xids, max_ext_len)
else:
y_pred = self.word_prob(dec_status, atted_context, y_emb)
if self.coverage:
return y_pred, hcs, C
else:
return y_pred, hcs
def forward(self, x, len_x, y, mask_x, mask_y, x_ext, y_ext, max_ext_len):
hs, dec_init_state = self.encode(x, len_x, mask_x)
y_emb = self.w_rawdata_emb(y)
y_shifted = y_emb[:-1, :, :]
y_shifted = T.cat((Variable(torch.zeros(1, *y_shifted[0].size())).to(self.device), y_shifted), 0)
h0 = dec_init_state
if self.cell == "lstm":
h0 = (dec_init_state, dec_init_state)
if self.coverage:
acc_att = Variable(torch.zeros(T.transpose(x, 0, 1).size())).to(self.device) # B * len(x)
if self.copy and self.coverage:
hcs, dec_status, atted_context, att_dist, xids, C = self.decoder(y_shifted, hs, h0, mask_x, mask_y, x_ext, acc_att)
elif self.copy:
hcs, dec_status, atted_context, att_dist, xids = self.decoder(y_shifted, hs, h0, mask_x, mask_y, xid=x_ext)
elif self.coverage:
hcs, dec_status, atted_context, att_dist, C = self.decoder(y_shifted, hs, h0, mask_x, mask_y, init_coverage=acc_att)
else:
hcs, dec_status, atted_context = self.decoder(y_shifted, hs, h0, mask_x, mask_y)
if self.copy:
y_pred = self.word_prob(dec_status, atted_context, y_shifted, att_dist, xids, max_ext_len)
cost = self.nll_loss(y_pred, y_ext, mask_y, self.avg_nll)
else:
y_pred = self.word_prob(dec_status, atted_context, y_shifted)
cost = self.nll_loss(y_pred, y, mask_y, self.avg_nll)
if self.coverage:
cost_c = T.mean(T.sum(T.min(att_dist, C), 2))
return y_pred, cost, cost_c
else:
return y_pred, cost, None