You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hi, I try to write my dataframe to tfrecords but encounter the error, log is as below
Caused by: java.lang.RuntimeException: Cannot convert field to unsupported data type ArrayType(ArrayType(DoubleType,true),true) at org.tensorflow.spark.datasources.tfrecords.serde.DefaultTfRecordRowEncoder$.org$tensorflow$spark$datasources$tfrecords$serde$DefaultTfRecordRowEncoder$$encodeFeature(DefaultTfRecordRowEncoder.scala:144) at org.tensorflow.spark.datasources.tfrecords.serde.DefaultTfRecordRowEncoder$$anonfun$encodeExample$1.apply(DefaultTfRecordRowEncoder.scala:64) at org.tensorflow.spark.datasources.tfrecords.serde.DefaultTfRecordRowEncoder$$anonfun$encodeExample$1.apply(DefaultTfRecordRowEncoder.scala:61) at scala.collection.immutable.List.foreach(List.scala:392) at org.tensorflow.spark.datasources.tfrecords.serde.DefaultTfRecordRowEncoder$.encodeExample(DefaultTfRecordRowEncoder.scala:61) at org.tensorflow.spark.datasources.tfrecords.DefaultSource$$anonfun$2.apply(DefaultSource.scala:59) at org.tensorflow.spark.datasources.tfrecords.DefaultSource$$anonfun$2.apply(DefaultSource.scala:56) at scala.collection.Iterator$$anon$11.next(Iterator.scala:410) at org.apache.spark.internal.io.SparkHadoopWriter$$anonfun$4.apply(SparkHadoopWriter.scala:129) at org.apache.spark.internal.io.SparkHadoopWriter$$anonfun$4.apply(SparkHadoopWriter.scala:127) at org.apache.spark.util.Utils$.tryWithSafeFinallyAndFailureCallbacks(Utils.scala:1394) at org.apache.spark.internal.io.SparkHadoopWriter$.org$apache$spark$internal$io$SparkHadoopWriter$$executeTask(SparkHadoopWriter.scala:139) ... 10 more
I presume such feature is already supported though it's not specifically addressed in README
The text was updated successfully, but these errors were encountered:
I have never tested ArrayType(ArrayType(DoubleType). I think FloatType should work.
You can try to cast to Float first.
Make sure you use SequenceExamples.
Thank you for your timely reply, I will try then. Now my work around is to save it as string, and parse it with tf.strings functions,seems not a big overhead so far.
Hi, I try to write my dataframe to tfrecords but encounter the error, log is as below
Caused by: java.lang.RuntimeException: Cannot convert field to unsupported data type ArrayType(ArrayType(DoubleType,true),true) at org.tensorflow.spark.datasources.tfrecords.serde.DefaultTfRecordRowEncoder$.org$tensorflow$spark$datasources$tfrecords$serde$DefaultTfRecordRowEncoder$$encodeFeature(DefaultTfRecordRowEncoder.scala:144) at org.tensorflow.spark.datasources.tfrecords.serde.DefaultTfRecordRowEncoder$$anonfun$encodeExample$1.apply(DefaultTfRecordRowEncoder.scala:64) at org.tensorflow.spark.datasources.tfrecords.serde.DefaultTfRecordRowEncoder$$anonfun$encodeExample$1.apply(DefaultTfRecordRowEncoder.scala:61) at scala.collection.immutable.List.foreach(List.scala:392) at org.tensorflow.spark.datasources.tfrecords.serde.DefaultTfRecordRowEncoder$.encodeExample(DefaultTfRecordRowEncoder.scala:61) at org.tensorflow.spark.datasources.tfrecords.DefaultSource$$anonfun$2.apply(DefaultSource.scala:59) at org.tensorflow.spark.datasources.tfrecords.DefaultSource$$anonfun$2.apply(DefaultSource.scala:56) at scala.collection.Iterator$$anon$11.next(Iterator.scala:410) at org.apache.spark.internal.io.SparkHadoopWriter$$anonfun$4.apply(SparkHadoopWriter.scala:129) at org.apache.spark.internal.io.SparkHadoopWriter$$anonfun$4.apply(SparkHadoopWriter.scala:127) at org.apache.spark.util.Utils$.tryWithSafeFinallyAndFailureCallbacks(Utils.scala:1394) at org.apache.spark.internal.io.SparkHadoopWriter$.org$apache$spark$internal$io$SparkHadoopWriter$$executeTask(SparkHadoopWriter.scala:139) ... 10 more
I presume such feature is already supported though it's not specifically addressed in README
The text was updated successfully, but these errors were encountered: