-
Notifications
You must be signed in to change notification settings - Fork 3
/
fcn_Model.py
134 lines (105 loc) · 4.89 KB
/
fcn_Model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
"""
Created on Sep 2022
"""
from Arguments import *
from Logger import log
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense, Conv1D, Flatten, Reshape, Lambda
from tensorflow.keras.utils import plot_model
import numpy as np
import tensorflow.keras.backend as K
import os
#######################
# import tensorflow as tf
import tensorflow._api.v2.compat.v1 as tf
tf.disable_v2_behavior()
########################
import h5py
import argparse
def get_model(appliance, input_tensor, input_window_length, transfer_dense=False, transfer_cnn=False,
cnn='kettle', n_dense=1, pretrainedmodel_dir='./models/'):
if n_dense == 1:
print(" ")
output_length = 1053
offset = (input_window_length - output_length)//2
reshape = Reshape((input_window_length, 1),
)(input_tensor)
# CNN
x = Conv1D(128, 9, padding='same', activation='relu', dilation_rate=1)(reshape)
# dilated CNN
x = Conv1D(128, 3, padding='same', activation='relu', dilation_rate=2)(x)
x = Conv1D(128, 3, padding='same', activation='relu', dilation_rate=4)(x)
x = Conv1D(128, 3, padding='same', activation='relu', dilation_rate=8)(x)
x = Conv1D(128, 3, padding='same', activation='relu', dilation_rate=16)(x)
x = Conv1D(128, 3, padding='same', activation='relu', dilation_rate=32)(x)
x = Conv1D(128, 3, padding='same', activation='relu', dilation_rate=64)(x)
x = Conv1D(128, 3, padding='same', activation='relu', dilation_rate=128)(x)
x = Conv1D(128, 3, padding='same', activation='relu', dilation_rate=256)(x)
# CNN
x = Conv1D(256, 1, padding='same', activation='relu')(x)
x = Conv1D(1, 1, padding='same', activation=None)(x)
x = Reshape((input_window_length,), input_shape=(input_window_length, 1))(x)
x = Lambda(lambda x: x[:, offset:-offset], output_shape=(output_length,))(x)
model = Model(inputs=input_tensor, outputs=x)
##############################
#session = K.get_session()
session = tf.keras.backend.get_session()
##############################
if transfer_dense:
log("Transfer learning...")
log("...loading an entire pre-trained model")
weights_loader(model, pretrainedmodel_dir+'/cnn_s2p_' + appliance + '_pointnet_model')
model_def = model
elif transfer_cnn and not transfer_dense:
log("Transfer learning...")
log('...loading a ' + appliance + ' pre-trained-cnn')
cnn_weights_loader(model, cnn, pretrainedmodel_dir)
model_def = model
for idx, layer1 in enumerate(model_def.layers):
if hasattr(layer1, 'kernel_initializer') and 'conv2d' not in layer1.name and 'cnn' not in layer1.name:
log('Re-initialize: {}'.format(layer1.name))
layer1.kernel.initializer.run(session=session)
elif not transfer_dense and not transfer_cnn:
log("Standard training...")
log("...creating a new model.")
model_def = model
else:
raise argparse.ArgumentTypeError('Model selection error.')
# Printing, logging and plotting the model
model_def.summary()
# plot_model(model, to_file='./model.png', show_shapes=True, show_layer_names=True, rankdir='TB')
# Adding network structure to both the log file and output terminal
files = [x for x in os.listdir('./') if x.endswith(".log")]
with open(max(files, key=os.path.getctime), 'a') as fh:
# Pass the file handle in as a lambda function to make it callable
model_def.summary(print_fn=lambda x: fh.write(x + '\n'))
# # Check weights slice
# for v in tf.trainable_variables():
# if v.name == 'conv2d_1/kernel:0':
# cnn1_weights = session.run(v)
return model_def
def print_attrs(name, obj):
print(name)
for key, val in obj.attrs.items():
print(" %s: %s" % (key, val))
def cnn_weights_loader(model_to_fill, cnn_appliance, pretrainedmodel_dir):
log('Loading cnn weights from ' + cnn_appliance)
weights_path = pretrainedmodel_dir+'/cnn_s2p_' + cnn_appliance + '_pointnet_model' + '_weights.h5'
if not os.path.exists(weights_path):
print('The directory does not exist or you do not have the files for trained model')
f = h5py.File(weights_path, 'r')
log(f.visititems(print_attrs))
layer_names = [n.decode('utf8') for n in f.attrs['layer_names']]
for name in layer_names:
if 'conv2d_' in name or 'cnn' in name:
g = f[name]
weight_names = [n.decode('utf8') for n in g.attrs['weight_names']]
if len(weight_names):
weight_values = [g[weight_name] for weight_name in weight_names]
model_to_fill.layers[int(name[-1])+1].set_weights(weight_values)
log('Loaded cnn layer: {}'.format(name))
f.close()
print('Model loaded.')
def weights_loader(model, path):
log('Loading cnn weights from ' + path)
model.load_weights(path + '_weights.h5')