-
Notifications
You must be signed in to change notification settings - Fork 3
/
S2S_Model.py
163 lines (127 loc) · 5.32 KB
/
S2S_Model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
from Arguments import *
from Logger import log
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense, Conv2D, Flatten, Reshape,UpSampling2D,Add,Concatenate
# from keras.utils import print_summary, plot_model
import numpy as np
import tensorflow.keras.backend as K
import os
#######################
# import tensorflow as tf
# import tensorflow.compat.v1 as tf
# tf.disable_v2_behavior()
import tensorflow._api.v2.compat.v1 as tf
tf.disable_v2_behavior()
########################
import h5py
import argparse
def get_model(appliance, input_tensor, window_length, transfer_dense=False, transfer_cnn=False,
cnn='fridge', n_dense=1, pretrainedmodel_dir='./models/'):
reshape = Reshape((-1, window_length, 1),
)(input_tensor)
cnn1 = Conv2D(filters=30,
kernel_size=(10, 1),
strides=(1, 1),
padding='same',
activation='relu',
)(reshape)
cnn2 = Conv2D(filters=30,
kernel_size=(8, 1),
strides=(1, 1),
padding='same',
activation='relu',
)(cnn1)
cnn3 = Conv2D(filters=40,
kernel_size=(6, 1),
strides=(1, 1),
padding='same',
activation='relu',
)(cnn2)
cnn4 = Conv2D(filters=50,
kernel_size=(5, 1),
strides=(1, 1),
padding='same',
activation='relu',
)(cnn3)
cnn5 = Conv2D(filters=50,
kernel_size=(5, 1),
strides=(1, 1),
padding='same',
activation='relu',
)(cnn4)
flat = Flatten(name='flatten')(cnn5)
d = Dense(1024, activation='relu', name='dense')(flat)
if n_dense == 1:
label = d
elif n_dense == 2:
d1 = Dense(1024, activation='relu', name='dense1')(d)
label = d1
elif n_dense == 3:
d1 = Dense(1024, activation='relu', name='dense1')(d)
d2 = Dense(1024, activation='relu', name='dense2')(d1)
label = d2
d_out = Dense(window_length, activation='linear', name='output')(label)
model = Model(inputs=input_tensor, outputs=d_out)
##############################
#session = K.get_session()
session = tf.keras.backend.get_session()
##############################
if transfer_dense:
log("Transfer learning...")
log("...loading an entire pre-trained model")
weights_loader(model, pretrainedmodel_dir+'/cnn_s2p_' + appliance + '_pointnet_model')
model_def = model
elif transfer_cnn and not transfer_dense:
log("Transfer learning...")
log('...loading a ' + appliance + ' pre-trained-cnn')
cnn_weights_loader(model, cnn, pretrainedmodel_dir)
model_def = model
for idx, layer1 in enumerate(model_def.layers):
if hasattr(layer1, 'kernel_initializer') and 'conv2d' not in layer1.name and 'cnn' not in layer1.name:
log('Re-initialize: {}'.format(layer1.name))
layer1.kernel.initializer.run(session=session)
elif not transfer_dense and not transfer_cnn:
log("Standard training...")
log("...creating a new model.")
model_def = model
else:
raise argparse.ArgumentTypeError('Model selection error.')
# Printing, logging and plotting the model
# print_summary(model_def)
model_def.summary()
# plot_model(model, to_file='./model.png', show_shapes=True, show_layer_names=True, rankdir='TB')
# Adding network structure to both the log file and output terminal
files = [x for x in os.listdir('./') if x.endswith(".log")]
with open(max(files, key=os.path.getctime), 'a') as fh:
# Pass the file handle in as a lambda function to make it callable
model_def.summary(print_fn=lambda x: fh.write(x + '\n'))
# Check weights slice
for v in tf.trainable_variables():
if v.name == 'conv2d_1/kernel:0':
cnn1_weights = session.run(v)
return model_def, cnn1_weights
def print_attrs(name, obj):
print(name)
for key, val in obj.attrs.items():
print(" %s: %s" % (key, val))
def cnn_weights_loader(model_to_fill, cnn_appliance, pretrainedmodel_dir):
log('Loading cnn weights from ' + cnn_appliance)
weights_path = pretrainedmodel_dir+'/cnn_s2p_' + cnn_appliance + '_pointnet_model' + '_weights.h5'
if not os.path.exists(weights_path):
print('The directory does not exist or you do not have the files for trained model')
f = h5py.File(weights_path, 'r')
log(f.visititems(print_attrs))
layer_names = [n.decode('utf8') for n in f.attrs['layer_names']]
for name in layer_names:
if 'conv2d_' in name or 'cnn' in name:
g = f[name]
weight_names = [n.decode('utf8') for n in g.attrs['weight_names']]
if len(weight_names):
weight_values = [g[weight_name] for weight_name in weight_names]
model_to_fill.layers[int(name[-1])+1].set_weights(weight_values)
log('Loaded cnn layer: {}'.format(name))
f.close()
print('Model loaded.')
def weights_loader(model, path):
log('Loading cnn weights from ' + path)
model.load_weights(path + '_weights.h5')