-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy patheval_single.py
133 lines (114 loc) · 4.32 KB
/
eval_single.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import logging
import os
import time
import traceback
from torch.utils.data import DataLoader
import constant as C
import torch
from argparse import ArgumentParser
from model import Linear, LSTM, CRF, CharCNN, Highway, LstmCrf
from util import evaluate
from data import ConllParser, SeqLabelDataset, SeqLabelProcessor
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger()
argparser = ArgumentParser()
argparser.add_argument('--model', help='Path to the model file')
argparser.add_argument('--file', help='Path to the file to evaluate')
argparser.add_argument('--log', help='Path to the log dir')
argparser.add_argument('--gpu', action='store_true')
argparser.add_argument('--device', default=0, type=int)
args = argparser.parse_args()
use_gpu = args.gpu and torch.cuda.is_available()
if use_gpu:
torch.cuda.set_device(args.device)
# Parameters
model_file = args.model
data_file = args.file
log_writer = None
if args.log:
log_file = os.path.join(args.log, 'log.{}.txt'.format(timestamp))
log_writer = open(log_file, 'a', encoding='utf-8')
logger.addHandler(logging.FileHandler(log_file, encoding='utf-8'))
# Load saved model
logger.info('Loading saved model from {}'.format(model_file))
state = torch.load(model_file)
token_vocab = state['vocab']['token']
label_vocab = state['vocab']['label']
char_vocab = state['vocab']['char']
train_args = state['args']
charcnn_filters = [[int(f.split(',')[0]), int(f.split(',')[1])]
for f in train_args['charcnn_filters'].split(';')]
# Resume model
logger.info('Resuming the model')
word_embed = torch.nn.Embedding(train_args['word_embed_size'],
train_args['word_embed_dim'],
sparse=True,
padding_idx=C.PAD_INDEX)
char_embed = CharCNN(len(char_vocab),
train_args['char_embed_dim'],
filters=charcnn_filters)
char_hw = Highway(char_embed.output_size,
layer_num=train_args['charhw_layer'],
activation=train_args['charhw_func'])
feat_dim = word_embed.embedding_dim + char_embed.output_size
lstm = LSTM(feat_dim,
train_args['lstm_hidden_size'],
batch_first=True,
bidirectional=True,
forget_bias=train_args['lstm_forget_bias'])
crf = CRF(label_size=len(label_vocab) + 2)
linear = Linear(in_features=lstm.output_size,
out_features=len(label_vocab))
lstm_crf = LstmCrf(
token_vocab, label_vocab, char_vocab,
word_embedding=word_embed,
char_embedding=char_embed,
crf=crf,
lstm=lstm,
univ_fc_layer=linear,
embed_dropout_prob=train_args['feat_dropout'],
lstm_dropout_prob=train_args['lstm_dropout'],
char_highway=char_hw if train_args['use_highway'] else None
)
word_embed.load_state_dict(state['model']['word_embed'])
char_embed.load_state_dict(state['model']['char_embed'])
char_hw.load_state_dict(state['model']['char_hw'])
lstm.load_state_dict(state['model']['lstm'])
crf.load_state_dict(state['model']['crf'])
linear.load_state_dict(state['model']['linear'])
lstm_crf.load_state_dict(state['model']['lstm_crf'])
if use_gpu:
lstm_crf.cuda()
# Load dataset
logger.info('Loading data')
parser = ConllParser()
test_set = SeqLabelDataset(data_file, parser=parser)
test_set.numberize(token_vocab, label_vocab, char_vocab)
idx_token = {v: k for k, v in token_vocab.items()}
idx_label = {v: k for k, v in label_vocab.items()}
processor = SeqLabelProcessor(gpu=use_gpu)
try:
results = []
dataset_loss = []
for batch in DataLoader(
test_set,
batch_size=50,
shuffle=False,
collate_fn=processor.process
):
tokens, labels, chars, seq_lens, char_lens = batch
pred, loss = lstm_crf.predict(
tokens, labels, seq_lens, chars, char_lens)
results.append((pred, labels, seq_lens, tokens))
dataset_loss.append(loss.data[0])
dataset_loss = sum(dataset_loss) / len(dataset_loss)
fscore, prec, rec = evaluate(results, idx_token, idx_label,
writer=log_writer)
if args.log:
logger.info('Log file: {}'.format(log_file))
log_writer.close()
except KeyboardInterrupt:
traceback.print_exc()
if log_writer:
log_writer.close()