-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain.py
251 lines (223 loc) · 9.92 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import os
import sys
import random
import argparse
import datetime
import numpy as np
import tensorflow as tf
from time import time
from models import BetaVAEVC
from audio import TestUtils
from datasets import TFRecordWriter
from configs import CNENHPS, Logger
def set_seeds(seed):
os.environ['PYTHONHASHSEED'] = str(seed)
random.seed(seed)
tf.random.set_seed(seed)
np.random.seed(seed)
return
def set_global_determinism(seed):
set_seeds(seed=seed)
os.environ['TF_DETERMINISTIC_OPS'] = '1'
os.environ['TF_CUDNN_DETERMINISTIC'] = '1'
return
def main():
parser = argparse.ArgumentParser('Training parameters parser')
parser.add_argument('--data_dir', type=str, help='dataset tfrecord directory')
parser.add_argument('--out_dir', type=str, help='directory to save logs', default='outputs')
args = parser.parse_args()
hparams = CNENHPS()
# set random seed
set_global_determinism(hparams.Train.random_seed)
# validate log directories
out_dir = args.out_dir
if not os.path.isdir(out_dir):
os.makedirs(out_dir)
model_dir = os.path.join(out_dir, 'models')
if not os.path.isdir(model_dir):
os.makedirs(model_dir)
log_dir = os.path.join(out_dir, 'logs')
if not os.path.isdir(log_dir):
os.makedirs(log_dir)
test_dir = os.path.join(out_dir, 'tests')
if not os.path.isdir(test_dir):
os.makedirs(test_dir)
# set up test utils
tester = TestUtils(hparams, test_dir)
# set up logger
sys.stdout = Logger(log_dir)
current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
train_dir = os.path.join(log_dir, current_time, 'train')
os.makedirs(train_dir)
val_dir = os.path.join(log_dir, current_time, 'val')
os.makedirs(val_dir)
# hyperparameters
data_records = TFRecordWriter(
save_dir=args.data_dir, chunk_size=hparams.Dataset.chunk_size)
train_set = data_records.create_dataset(
buffer_size=hparams.Dataset.buffer_size,
num_parallel_reads=hparams.Dataset.num_parallel_reads,
batch_size=hparams.Train.train_batch_size,
num_mels=hparams.Audio.num_mels,
shuffle_buffer=hparams.Train.shuffle_buffer,
shuffle=hparams.Train.shuffle,
tfrecord_files=data_records.get_tfrecords_list('train'),
seed=hparams.Train.random_seed)
val_set = data_records.create_dataset(
buffer_size=hparams.Dataset.buffer_size,
num_parallel_reads=hparams.Dataset.num_parallel_reads,
batch_size=hparams.Train.train_batch_size,
num_mels=hparams.Audio.num_mels,
shuffle_buffer=hparams.Train.shuffle_buffer,
shuffle=hparams.Train.shuffle,
tfrecord_files=data_records.get_tfrecords_list('val'),
seed=hparams.Train.random_seed)
test_set = data_records.create_dataset(
buffer_size=hparams.Dataset.buffer_size,
num_parallel_reads=hparams.Dataset.num_parallel_reads,
batch_size=hparams.Train.test_batch_size,
num_mels=hparams.Audio.num_mels,
shuffle_buffer=hparams.Train.shuffle_buffer,
shuffle=hparams.Train.shuffle,
tfrecord_files=data_records.get_tfrecords_list('test'),
seed=hparams.Train.random_seed,
drop_remainder=True)
# 2. setup model
model = BetaVAEVC(hparams)
learning_rate = hparams.Train.learning_rate
optimizer = tf.keras.optimizers.Adam(
learning_rate, beta_1=0.9, beta_2=0.999, epsilon=1e-07)
# 3. define training step
@tf.function(input_signature=[
tf.TensorSpec(shape=[None, None, hparams.Audio.num_mels], dtype=tf.float32),
tf.TensorSpec(shape=[None, None, hparams.Audio.num_mels], dtype=tf.float32),
tf.TensorSpec(shape=[None], dtype=tf.int32)])
def train_step(mels, mel_ext, m_lengths):
print('Tracing back at train_step')
with tf.GradientTape() as tape:
predictions, mel_l2, content_kl, spk_kl = model(
inputs=mels, mel_lengths=m_lengths, inp_ext=mel_ext,
training=True, reduce_loss=True)
loss = (mel_l2 + hparams.Train.content_kl_weight * content_kl
+ hparams.Train.spk_kl_weight * spk_kl)
gradients = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
return loss, mel_l2, content_kl, spk_kl
# 4. define validate step
@tf.function(input_signature=[
tf.TensorSpec(shape=[None, None, hparams.Audio.num_mels], dtype=tf.float32),
tf.TensorSpec(shape=[None, None, hparams.Audio.num_mels], dtype=tf.float32),
tf.TensorSpec(shape=[None], dtype=tf.int32)])
def val_step(mels, mel_ext, m_lengths):
print('Tracing back at val step')
predictions, mel_l2, content_kl, spk_kl = model(
inputs=mels, mel_lengths=m_lengths, inp_ext=mel_ext,
training=False, reduce_loss=True)
loss = (mel_l2 + hparams.Train.content_kl_weight * content_kl
+ hparams.Train.spk_kl_weight * spk_kl)
return loss, mel_l2, content_kl, spk_kl
# @tf.function
def train_one_epoch(dataset):
# print('tracing back at train_one_epoch')
step = 0
total = 0.0
mel_l2 = 0.0
kl = 0.0
spk_kl = 0.
for _, train_mels, train_m_lengths, train_mel_ext in dataset:
step_start = time()
_total, _mel_l2, _kl, _spk_kl = train_step(
train_mels, train_mel_ext, train_m_lengths)
step_end = time()
print('Step {}: total {:.4f}, mel-l2 {:.4f}, content-kl {:.4f},'
' spk-kl: {:.4f}, time {:.4f}'.format(
step, _total.numpy(), _mel_l2.numpy(), _kl.numpy(),
_spk_kl.numpy(), step_end - step_start))
step += 1
total += _total.numpy()
mel_l2 += _mel_l2.numpy()
kl += _kl.numpy()
spk_kl += _spk_kl.numpy()
return total / step, mel_l2 / step, kl / step, spk_kl / step
# @tf.function
def val_one_epoch(dataset):
step = 0
total = 0.0
mel_l2 = 0.0
kl = 0.0
spk_kl = 0.
for _, val_mels, val_m_lengths, val_mel_ext in dataset:
_total, _mel_l2, _kl, _spk_kl = val_step(
val_mels, val_mel_ext, val_m_lengths)
step += 1
total += _total.numpy()
mel_l2 += _mel_l2.numpy()
kl += _kl.numpy()
spk_kl += _spk_kl.numpy()
return total / step, mel_l2 / step, kl / step, spk_kl / step
# 8. setup summary writer
train_summary_writer = tf.summary.create_file_writer(train_dir)
val_summary_writer = tf.summary.create_file_writer(val_dir)
# 9. setup checkpoint: all workers will need checkpoint manager to load checkpoint
checkpoint = tf.train.Checkpoint(step=tf.Variable(0, dtype=tf.int64, trainable=False),
optimizer=optimizer, model=model)
manager = tf.train.CheckpointManager(checkpoint, model_dir, max_to_keep=20)
checkpoint.restore(manager.latest_checkpoint)
if manager.latest_checkpoint:
print("Restored from {}".format(manager.latest_checkpoint))
step = checkpoint.step.numpy()
else:
print("Initializing from scratch.")
step = 0
# 8. start training
for epoch in range(step + 1, hparams.Train.epochs + 1):
print('Training Epoch {} ...'.format(epoch))
epoch_start = time()
train_total, train_mel_l2, train_kl, train_spk_kl = train_one_epoch(train_set)
epoch_dur = time() - epoch_start
print('\nTraining Epoch {} finished in {:.3f} Secs'.format(epoch, epoch_dur))
# save summary and evaluate
with train_summary_writer.as_default():
tf.summary.scalar('total-loss', train_total, step=epoch)
tf.summary.scalar('recon-loss', train_mel_l2, step=epoch)
tf.summary.scalar('content-kl', train_kl, step=epoch)
tf.summary.scalar('speaker-kl', train_spk_kl, step=epoch)
# validation
print('Validation ...')
val_start = time()
val_total, val_mel_l2, val_kl, val_spk_kl = val_one_epoch(val_set)
print('Validation finished in {:.3f} Secs'.format(time() - val_start))
with val_summary_writer.as_default():
tf.summary.scalar('total-loss', val_total, step=epoch)
tf.summary.scalar('recon-loss', val_mel_l2, step=epoch)
tf.summary.scalar('content-kl', val_kl, step=epoch)
tf.summary.scalar('speaker-kl', val_spk_kl, step=epoch)
print('Epoch {}: l2 {:.4f} / {:.4f}, content-kl {:.4f} / {:.4f}, spk-kl: {:.4f} / {:.4f}'.format(
epoch, train_mel_l2, val_mel_l2, train_kl, val_kl, train_spk_kl, val_spk_kl))
if epoch % hparams.Train.ckpt_interval == 0:
# save checkpoint
save_path = manager.save(checkpoint_number=epoch)
print("Saved checkpoint for epoch {}: {}".format(epoch, save_path))
# test
if epoch % hparams.Train.test_interval == 0:
print('Testing ...')
i = 0
ref_mels = None
ref_spk_ids = None
for test_ids, test_mels, test_m_lengths, test_mel_ext in test_set.take(2):
if i == 0:
ref_mels = test_mel_ext
ref_spk_ids = test_ids
i += 1
continue
post_mel, _ = model.post_inference(test_mels, test_m_lengths, ref_mels)
fids = [sid.decode('utf-8') + '-ref-' + rid.decode('utf-8')
for sid, rid in zip(test_ids.numpy(), ref_spk_ids.numpy())]
try:
tester.synthesize_and_save_wavs(
epoch, post_mel.numpy(), test_m_lengths.numpy(), fids, 'post')
except:
print('Something wrong with the generated waveform!')
print('test finished, check {} for the results'.format(test_dir))
if __name__ == '__main__':
main()