-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathops.py
56 lines (41 loc) · 2.61 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import tensorflow as tf
import math
def conv_out_size_same(size, stride):
return int(math.ceil(float(size) / float(stride)))
def conv_cond_concat(x, y):
#Concatenate conditioning vector on feature map axis.
x_shapes = x.shape
y_shapes = y.shape
return tf.concat([x, y*tf.zeros([x_shapes[0], x_shapes[1], x_shapes[2] , y_shapes[3]])], 3)
def conv2d(input_, output_dim, k_h=5, k_w=5, d_h=2, d_w=2, stddev=0.02, name="conv2d"):
with tf.variable_scope(name):
w = tf.get_variable('w', [k_h, k_w, input_.get_shape()[-1], output_dim], initializer=tf.truncated_normal_initializer(stddev=stddev))
conv = tf.nn.conv2d(input_, w, strides=[1, d_h, d_w, 1], padding='SAME')
biases = tf.get_variable('biases', [output_dim], initializer=tf.constant_initializer(0.0))
conv = tf.reshape(tf.nn.bias_add(conv, biases), conv.get_shape())
return conv
def deconv2d(input_, output_shape, k_h=5, k_w=5, d_h=2, d_w=2, stddev=0.02, name='deconv2d'):
with tf.variable_scope(name):
# filter : [height, width, output_channels, in_channels]
w = tf.get_variable('w', [k_h, k_w, output_shape[-1], input_.get_shape()[-1]], initializer=tf.random_normal_initializer(stddev=stddev))
try:
deconv = tf.nn.conv2d_transpose(input_, w, output_shape=output_shape, strides=[1, d_h, d_w, 1])
# Support for verisons of TensorFlow before 0.7.0
except AttributeError:
deconv = tf.nn.deconv2d(input_, w, output_shape=output_shape,strides=[1, d_h, d_w, 1])
biases = tf.get_variable('biases', [output_shape[-1]], initializer=tf.constant_initializer(0.0))
deconv = tf.reshape(tf.nn.bias_add(deconv, biases), deconv.get_shape())
return deconv
def fully_connected(input_, output_size, scope=None, stddev=0.02, bias_start=0.0):
shape = input_.get_shape().as_list()
with tf.variable_scope(scope or "Linear"):
try:
matrix = tf.get_variable("Matrix", [shape[1], output_size], tf.float32, tf.random_normal_initializer(stddev=stddev))
except ValueError as err:
# msg = "NOTE: Usually, this is due to an issue with the image dimensions. Did you correctly set '--crop' or '--input_height' or '--output_height'?"
err.args = err.args
raise
bias = tf.get_variable("bias", [output_size], initializer=tf.constant_initializer(bias_start))
return tf.matmul(input_, matrix) + bias
def batch_norm(input , scope="scope" , train=True):
return tf.contrib.layers.batch_norm(input , epsilon=1e-5, decay=0.9 , scale=True, scope=scope , is_training=train , updates_collections=None)