forked from bojone/SPACES
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract_model.py
188 lines (154 loc) · 5.35 KB
/
extract_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
#! -*- coding: utf-8 -*-
# 法研杯2020 司法摘要
# 抽取式:主要模型
# 科学空间:https://kexue.fm
import json
import numpy as np
from tqdm import tqdm
from bert4keras.backend import keras, K
from bert4keras.layers import LayerNormalization
from bert4keras.optimizers import Adam
from bert4keras.snippets import open
from keras.layers import *
from keras.models import Model
from snippets import *
# 配置信息
input_size = 768
hidden_size = 384
epochs = 20
batch_size = 64
threshold = 0.2
data_extract_json = data_json[:-5] + '_extract.json'
data_extract_npy = data_json[:-5] + '_extract.npy'
if len(sys.argv) == 1:
fold = 0
else:
fold = int(sys.argv[1])
def load_data(filename):
"""加载数据
返回:[(texts, labels, summary)]
"""
D = []
with open(filename, encoding='utf-8') as f:
for l in f:
D.append(json.loads(l))
return D
class ResidualGatedConv1D(Layer):
"""门控卷积
"""
def __init__(self, filters, kernel_size, dilation_rate=1, **kwargs):
super(ResidualGatedConv1D, self).__init__(**kwargs)
self.filters = filters
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.supports_masking = True
def build(self, input_shape):
super(ResidualGatedConv1D, self).build(input_shape)
self.conv1d = Conv1D(
filters=self.filters * 2,
kernel_size=self.kernel_size,
dilation_rate=self.dilation_rate,
padding='same',
)
self.layernorm = LayerNormalization()
if self.filters != input_shape[-1]:
self.dense = Dense(self.filters, use_bias=False)
self.alpha = self.add_weight(
name='alpha', shape=[1], initializer='zeros'
)
def call(self, inputs, mask=None):
if mask is not None:
mask = K.cast(mask, K.floatx())
inputs = inputs * mask[:, :, None]
outputs = self.conv1d(inputs)
gate = K.sigmoid(outputs[..., self.filters:])
outputs = outputs[..., :self.filters] * gate
outputs = self.layernorm(outputs)
if hasattr(self, 'dense'):
inputs = self.dense(inputs)
return inputs + self.alpha * outputs
def compute_output_shape(self, input_shape):
shape = self.conv1d.compute_output_shape(input_shape)
return (shape[0], shape[1], shape[2] // 2)
def get_config(self):
config = {
'filters': self.filters,
'kernel_size': self.kernel_size,
'dilation_rate': self.dilation_rate
}
base_config = super(ResidualGatedConv1D, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
x_in = Input(shape=(None, input_size))
x = x_in
x = Masking()(x)
x = Dropout(0.1)(x)
x = Dense(hidden_size, use_bias=False)(x)
x = Dropout(0.1)(x)
x = ResidualGatedConv1D(hidden_size, 3, dilation_rate=1)(x)
x = Dropout(0.1)(x)
x = ResidualGatedConv1D(hidden_size, 3, dilation_rate=2)(x)
x = Dropout(0.1)(x)
x = ResidualGatedConv1D(hidden_size, 3, dilation_rate=4)(x)
x = Dropout(0.1)(x)
x = ResidualGatedConv1D(hidden_size, 3, dilation_rate=8)(x)
x = Dropout(0.1)(x)
x = ResidualGatedConv1D(hidden_size, 3, dilation_rate=1)(x)
x = Dropout(0.1)(x)
x = ResidualGatedConv1D(hidden_size, 3, dilation_rate=1)(x)
x = Dropout(0.1)(x)
x = Dense(1, activation='sigmoid')(x)
model = Model(x_in, x)
model.compile(
loss='binary_crossentropy', optimizer=Adam(), metrics=['accuracy']
)
model.summary()
def evaluate(data, data_x, threshold=0.2):
"""验证集评估
"""
y_pred = model.predict(data_x)[:, :, 0]
total_metrics = {k: 0.0 for k in metric_keys}
for d, yp in tqdm(zip(data, y_pred), desc=u'评估中'):
yp = yp[:len(d[0])]
yp = np.where(yp > threshold)[0]
pred_summary = ''.join([d[0][i] for i in yp])
metrics = compute_metrics(pred_summary, d[2], 'char')
for k, v in metrics.items():
total_metrics[k] += v
return {k: v / len(data) for k, v in total_metrics.items()}
class Evaluator(keras.callbacks.Callback):
"""训练回调
"""
def __init__(self):
self.best_metric = 0.0
def on_epoch_end(self, epoch, logs=None):
metrics = evaluate(valid_data, valid_x, threshold + 0.1)
if metrics['main'] >= self.best_metric: # 保存最优
self.best_metric = metrics['main']
model.save_weights('weights/extract_model.%s.weights' % fold)
metrics['best'] = self.best_metric
print(metrics)
if __name__ == '__main__':
# 加载数据
data = load_data(data_extract_json)
data_x = np.load(data_extract_npy)
data_y = np.zeros_like(data_x[..., :1])
for i, d in enumerate(data):
for j in d[1]:
data_y[i, j] = 1
train_data = data_split(data, fold, num_folds, 'train')
valid_data = data_split(data, fold, num_folds, 'valid')
train_x = data_split(data_x, fold, num_folds, 'train')
valid_x = data_split(data_x, fold, num_folds, 'valid')
train_y = data_split(data_y, fold, num_folds, 'train')
valid_y = data_split(data_y, fold, num_folds, 'valid')
# 启动训练
evaluator = Evaluator()
model.fit(
train_x,
train_y,
epochs=epochs,
batch_size=batch_size,
callbacks=[evaluator]
)
else:
model.load_weights('weights/extract_model.%s.weights' % fold)