-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patharucodetector.py
109 lines (82 loc) · 4.31 KB
/
arucodetector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import time
import cv2
import numpy as np
import topics
import msgs
class ArucoDetector(object):
def __init__(self):
# Load the dictionary that was used to generate the markers.
# There's different aruco marker dictionaries, this code uses 5x5
self.dictionary = cv2.aruco.Dictionary_get(cv2.aruco.DICT_5X5_250)
# Initialize the detector parameters using default values
self.detector_parameters = cv2.aruco.DetectorParameters_create()
self.detector_parameters.perspectiveRemoveIgnoredMarginPerCell = 0.3 # default 0.13
self.detector_parameters.minMarkerPerimeterRate = 0.01 # default 0.03
self.lookup_table = np.interp(np.arange(0, 256), [0, 158, 216, 255], [0, 22, 80, 176]).astype(np.uint8)
self.dont_detect_aruco = False
self.subscriber_list = []
def subscribe(self, subscriber):
self.subscriber_list.append(subscriber)
def publish(self, msg, topic):
for subscriber in self.subscriber_list:
subscriber.receive_msg(msg=msg, topic=topic)
def predict(self, img):
start_time = time.time()
img = cv2.LUT(img, self.lookup_table)
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
marker_corner_list, marker_id_list, rejected_candidates = cv2.aruco.detectMarkers(img, self.dictionary, parameters=self.detector_parameters)
# # # draw box around aruco marker within camera frame
# # img = cv2.aruco.drawDetectedMarkers(img, marker_corner_list, marker_id_list)
marker_center_list = []
# if a tag is found...
if marker_id_list is None:
return 0, [], []
# for every tag in the array of detected tags...
# flatten the ArUco IDs list
marker_id_list = marker_id_list.flatten()
# TODO: remove duplicate ids from marker_id_list and marker_corner_list
# loop over the detected ArUCo corners
for (marker_corner, marker_id) in zip(marker_corner_list, marker_id_list):
# TODO: soh considerar deteccao se o marker tiver 20x20cm mesmo
corner_center = marker_corner[0]
M = cv2.moments(corner_center)
# cX = int(M["m10"] / M["m00"])
# cY = int(M["m01"] / M["m00"])
marker_center_list.append([
int(M["m10"] / M["m00"]),
int(M["m01"] / M["m00"])
])
# # extract the marker corners (which are always returned in
# # top-left, top-right, bottom-right, and bottom-left order)
# corners = markerCorner.reshape((4, 2))
# (topLeft, topRight, bottomRight, bottomLeft) = corners
# # convert each of the (x, y)-coordinate pairs to integers
# topRight = (int(topRight[0]), int(topRight[1]))
# bottomRight = (int(bottomRight[0]), int(bottomRight[1]))
# bottomLeft = (int(bottomLeft[0]), int(bottomLeft[1]))
# topLeft = (int(topLeft[0]), int(topLeft[1]))
# # compute and draw the center (x, y)-coordinates of the ArUco marker
# cX = int((topLeft[0] + bottomRight[0]) / 2.0)
# cY = int((topLeft[1] + bottomRight[1]) / 2.0)
elapsed_time = time.time() - start_time
# TODO: return aruco marker direction (north, east, south, west, etc)
return elapsed_time, marker_id_list, marker_center_list
def receive_msg(self, msg, topic):
if topic == topics.TOPIC_DONT_DETECT_ARUCO:
self.dont_detect_aruco = msg.boolean
return
elif topic == topics.TOPIC_IMAGE_ARRAY:
if self.dont_detect_aruco:
return
elapsed_time, marker_id_list, marker_center_list = self.predict(msg.image.copy())
# publish a separate message for each marker id
for id, center in zip(marker_id_list, marker_center_list):
prediction_msg = msgs.ArucoDetection(marker_id=id, marker_center=center, elapsed_time=elapsed_time, image_creation_time=msg.creation_time)
self.publish(prediction_msg, topics.TOPIC_ARUCO_DETECTION)
print(
"ids:", marker_id_list,
"corners:", marker_center_list,
"elapsed_time:", elapsed_time,
# "FPS:", round(1/elapsed_time),
"image_creation_time:", msg.creation_time,
)