-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_optimizer.py
183 lines (137 loc) · 6.02 KB
/
main_optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import re, time, os
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import xml.etree.ElementTree as ET
import PIL
from tqdm import tqdm, tqdm_notebook
from tensorflow.python.keras.preprocessing.image import load_img, img_to_array
from tensorflow.python.keras import Sequential
from tensorflow.python.keras.applications import NASNetMobile
from tensorflow.python.keras.callbacks import TensorBoard, EarlyStopping, ReduceLROnPlateau
from tensorflow.python.keras.layers import Dense, Dropout, Conv2D, MaxPool2D, BatchNormalization, GlobalAveragePooling2D
RANDOM_STATE = 20
NAME = f"dogs_breeds_{int(time.time())}"
IMAGE_WIDTH = 224
IMAGE_HEIGHT = 224
IMAGE_CHANNELS = 3
IMAGE_SIZE = (IMAGE_WIDTH, IMAGE_HEIGHT)
INPUT_SHAPE = (*IMAGE_SIZE, IMAGE_CHANNELS)
BATCH_SIZE = 16
EPOCHS = 40
np.random.seed(RANDOM_STATE)
# Preprocess
foldername_pattern = re.compile(r"n\d{8}-(.*)")
image_paths = []
annotation_paths = []
categories = []
category_names = {}
for index, folder in enumerate(os.listdir("data/Images")):
category = foldername_pattern.search(folder).groups()[0]
category_names[index] = category.replace("_", " ").capitalize()
for item in os.listdir(f"data/Images/{folder}"):
image_paths.append(f"data/Images/{folder}/{item}")
annotation_paths.append(f"data/Annotation/{folder}/{item.split('.')[0]}")
categories.append(index)
df_input = pd.DataFrame({"image_file": image_paths, "annotation_file": annotation_paths, "category": categories})
df_input = df_input.sample(frac=1, random_state=RANDOM_STATE).reset_index(drop=True)
# Load the data
X = []
X_cropped = []
X_flipped = []
y = []
for index, row in tqdm(df_input.iterrows(), total=len(df_input)):
img = load_img(row["image_file"])
annotation_tree = ET.parse(row["annotation_file"])
bndbox = {i.tag: int(i.text) for i in annotation_tree.getroot()[5][4]}
img_cropped = img.crop((bndbox["xmin"], bndbox["ymin"], bndbox["xmax"], bndbox["ymax"]))
img_flipped = img_cropped.transpose(PIL.Image.FLIP_LEFT_RIGHT)
img_cropped = img_cropped.resize(IMAGE_SIZE)
img_flipped = img_flipped.resize(IMAGE_SIZE)
img = img.resize(IMAGE_SIZE)
X.append(img_to_array(img))
X_cropped.append(img_to_array(img_cropped))
X_flipped.append(img_to_array(img_flipped))
y.append(row["category"])
X = np.array(X)
X_cropped = np.array(X_cropped)
X_flipped = np.array(X_flipped)
y = np.array(y)
# Shuffle all data
shuffled_index = np.random.permutation(len(X))
X, X_cropped, X_flipped, y = (array[shuffled_index] for array in [X, X_cropped, X_flipped, y])
# Split each X and Y to test, train and validation accroding to distribution
split_distribution = [int(0.8 * len(X)), int(0.9 * len(X))]
X_splitted, X_cropped_splitted, X_flipped_splitted, y_splitted = (
np.split(array, split_distribution) for array in [X, X_cropped, X_flipped, y]
)
# Concatenate the repsective stage datasets together by zipping them and then concatenating
X = list(zip(X_splitted, X_cropped_splitted, X_flipped_splitted))
y = list(zip(y_splitted, y_splitted, y_splitted))
X_train, X_validation, X_test = (np.concatenate(array) / 255.0 for array in X)
y_train, y_validation, y_test = (np.concatenate(array) for array in y)
# Shuffle each stage datasets again after concatenation
shuffled_index = np.random.permutation(len(X_train))
X_train = X_train[shuffled_index]
y_train = y_train[shuffled_index]
shuffled_index = np.random.permutation(len(X_validation))
X_validation = X_validation[shuffled_index]
y_validation = y_validation[shuffled_index]
shuffled_index = np.random.permutation(len(X_test))
X_test = X_test[shuffled_index]
y_test = y_test[shuffled_index]
# plt.figure(figsize=(20, 20)) # width, height in inches
# for i in range(len(X_train)):
# plt.subplot(6, 6, i + 1)
# plt.title(category_names[y_train[i]])
# plt.imshow(X_train[i])
# plt.show()
# Define the callbacks
tensorboard_cb = TensorBoard(log_dir=f"logs/{NAME}")
earlystop_cb = EarlyStopping(patience=8)
reducelronplateau_cb = ReduceLROnPlateau(monitor="val_loss", patience=4, verbose=1, factor=0.5, min_lr=0.0000001)
# Define optimizer variables
dense_layers = [1, 2, 3]
dense_nodes = [512, 1024, 2048]
dropout = [0.0, 0.2, 0.5]
# Define and compile models
for dense_layer_count in dense_layers:
for dense_nodes_count in dense_nodes:
for dropout_amout in dropout:
MODEL_NAME = (
NAME
+ f"_{dense_layer_count}_layers_{dense_nodes_count}_nodes_{str(dropout_amout).replace('.','_')}_dropout"
)
print(MODEL_NAME)
tensorboard_cb = TensorBoard(log_dir=f"logs/{MODEL_NAME}")
earlystop_cb = EarlyStopping(patience=8)
reducelronplateau_cb = ReduceLROnPlateau(
monitor="val_loss", patience=4, verbose=1, factor=0.5, min_lr=0.0000001
)
base_model = NASNetMobile(weights="imagenet", include_top=False, input_shape=INPUT_SHAPE)
for layer in base_model.layers:
layer.trainable = False
model = Sequential()
model.add(base_model)
model.add(GlobalAveragePooling2D())
for i in range(dense_layer_count):
model.add(Dense(dense_nodes_count, activation="relu"))
model.add(Dropout(rate=dropout_amout))
model.add(Dense(len(category_names), activation="softmax"))
model.compile(optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"])
# Train the model
model.fit(
x=X_train,
y=y_train,
validation_data=(X_validation, y_validation),
epochs=EPOCHS,
batch_size=BATCH_SIZE,
callbacks=[tensorboard_cb, earlystop_cb, reducelronplateau_cb],
verbose=1,
)
model.save(f"models/{MODEL_NAME}.h5", overwrite=True)
# Score the model
score = model.evaluate(X_test, y_test)
print("Test loss:", score[0])
print("Test accuracy:", score[1])