forked from PaddlePaddle/PaddleDetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlc_pan.py
168 lines (149 loc) · 6.06 KB
/
lc_pan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.regularizer import L2Decay
from ppdet.core.workspace import register, serializable
from ..shape_spec import ShapeSpec
from ..backbones.lcnet import DepthwiseSeparable
from .csp_pan import ConvBNLayer, Channel_T, DPModule
__all__ = ['LCPAN']
@register
@serializable
class LCPAN(nn.Layer):
"""Path Aggregation Network with LCNet module.
Args:
in_channels (List[int]): Number of input channels per scale.
out_channels (int): Number of output channels (used at each scale)
kernel_size (int): The conv2d kernel size of this Module.
num_features (int): Number of output features of CSPPAN module.
num_csp_blocks (int): Number of bottlenecks in CSPLayer. Default: 1
use_depthwise (bool): Whether to depthwise separable convolution in
blocks. Default: True
"""
def __init__(self,
in_channels,
out_channels,
kernel_size=5,
num_features=3,
use_depthwise=True,
act='hard_swish',
spatial_scales=[0.125, 0.0625, 0.03125]):
super(LCPAN, self).__init__()
self.conv_t = Channel_T(in_channels, out_channels, act=act)
in_channels = [out_channels] * len(spatial_scales)
self.in_channels = in_channels
self.out_channels = out_channels
self.spatial_scales = spatial_scales
self.num_features = num_features
conv_func = DPModule if use_depthwise else ConvBNLayer
NET_CONFIG = {
#k, in_c, out_c, stride, use_se
"block1": [
[kernel_size, out_channels * 2, out_channels * 2, 1, False],
[kernel_size, out_channels * 2, out_channels, 1, False],
],
"block2": [
[kernel_size, out_channels * 2, out_channels * 2, 1, False],
[kernel_size, out_channels * 2, out_channels, 1, False],
]
}
if self.num_features == 4:
self.first_top_conv = conv_func(
in_channels[0], in_channels[0], kernel_size, stride=2, act=act)
self.second_top_conv = conv_func(
in_channels[0], in_channels[0], kernel_size, stride=2, act=act)
self.spatial_scales.append(self.spatial_scales[-1] / 2)
# build top-down blocks
self.upsample = nn.Upsample(scale_factor=2, mode='nearest')
self.top_down_blocks = nn.LayerList()
for idx in range(len(in_channels) - 1, 0, -1):
self.top_down_blocks.append(
nn.Sequential(* [
DepthwiseSeparable(
num_channels=in_c,
num_filters=out_c,
dw_size=k,
stride=s,
use_se=se)
for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG[
"block1"])
]))
# build bottom-up blocks
self.downsamples = nn.LayerList()
self.bottom_up_blocks = nn.LayerList()
for idx in range(len(in_channels) - 1):
self.downsamples.append(
conv_func(
in_channels[idx],
in_channels[idx],
kernel_size=kernel_size,
stride=2,
act=act))
self.bottom_up_blocks.append(
nn.Sequential(* [
DepthwiseSeparable(
num_channels=in_c,
num_filters=out_c,
dw_size=k,
stride=s,
use_se=se)
for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG[
"block2"])
]))
def forward(self, inputs):
"""
Args:
inputs (tuple[Tensor]): input features.
Returns:
tuple[Tensor]: CSPPAN features.
"""
assert len(inputs) == len(self.in_channels)
inputs = self.conv_t(inputs)
# top-down path
inner_outs = [inputs[-1]]
for idx in range(len(self.in_channels) - 1, 0, -1):
feat_heigh = inner_outs[0]
feat_low = inputs[idx - 1]
upsample_feat = self.upsample(feat_heigh)
inner_out = self.top_down_blocks[len(self.in_channels) - 1 - idx](
paddle.concat([upsample_feat, feat_low], 1))
inner_outs.insert(0, inner_out)
# bottom-up path
outs = [inner_outs[0]]
for idx in range(len(self.in_channels) - 1):
feat_low = outs[-1]
feat_height = inner_outs[idx + 1]
downsample_feat = self.downsamples[idx](feat_low)
out = self.bottom_up_blocks[idx](paddle.concat(
[downsample_feat, feat_height], 1))
outs.append(out)
top_features = None
if self.num_features == 4:
top_features = self.first_top_conv(inputs[-1])
top_features = top_features + self.second_top_conv(outs[-1])
outs.append(top_features)
return tuple(outs)
@property
def out_shape(self):
return [
ShapeSpec(
channels=self.out_channels, stride=1. / s)
for s in self.spatial_scales
]
@classmethod
def from_config(cls, cfg, input_shape):
return {'in_channels': [i.channels for i in input_shape], }