forked from PaddlePaddle/PaddleDetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpicodet_mnn.cpp
253 lines (222 loc) · 8.84 KB
/
picodet_mnn.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// reference from https://github.com/RangiLyu/nanodet/tree/main/demo_mnn
#include "picodet_mnn.hpp"
using namespace std;
PicoDet::PicoDet(const std::string &mnn_path, int input_width, int input_length,
int num_thread_, float score_threshold_,
float nms_threshold_) {
num_thread = num_thread_;
in_w = input_width;
in_h = input_length;
score_threshold = score_threshold_;
nms_threshold = nms_threshold_;
PicoDet_interpreter = std::shared_ptr<MNN::Interpreter>(
MNN::Interpreter::createFromFile(mnn_path.c_str()));
MNN::ScheduleConfig config;
config.numThread = num_thread;
MNN::BackendConfig backendConfig;
backendConfig.precision = (MNN::BackendConfig::PrecisionMode)2;
config.backendConfig = &backendConfig;
PicoDet_session = PicoDet_interpreter->createSession(config);
input_tensor = PicoDet_interpreter->getSessionInput(PicoDet_session, nullptr);
}
PicoDet::~PicoDet() {
PicoDet_interpreter->releaseModel();
PicoDet_interpreter->releaseSession(PicoDet_session);
}
int PicoDet::detect(cv::Mat &raw_image, std::vector<BoxInfo> &result_list,
bool has_postprocess) {
if (raw_image.empty()) {
std::cout << "image is empty ,please check!" << std::endl;
return -1;
}
image_h = raw_image.rows;
image_w = raw_image.cols;
cv::Mat image;
cv::resize(raw_image, image, cv::Size(in_w, in_h));
PicoDet_interpreter->resizeTensor(input_tensor, {1, 3, in_h, in_w});
PicoDet_interpreter->resizeSession(PicoDet_session);
std::shared_ptr<MNN::CV::ImageProcess> pretreat(MNN::CV::ImageProcess::create(
MNN::CV::BGR, MNN::CV::BGR, mean_vals, 3, norm_vals, 3));
pretreat->convert(image.data, in_w, in_h, image.step[0], input_tensor);
auto start = chrono::steady_clock::now();
// run network
PicoDet_interpreter->runSession(PicoDet_session);
// get output data
std::vector<std::vector<BoxInfo>> results;
results.resize(num_class);
if (has_postprocess) {
auto bbox_out_tensor = PicoDet_interpreter->getSessionOutput(
PicoDet_session, nms_heads_info[0].c_str());
auto class_out_tensor = PicoDet_interpreter->getSessionOutput(
PicoDet_session, nms_heads_info[1].c_str());
// bbox branch
auto tensor_bbox_host =
new MNN::Tensor(bbox_out_tensor, MNN::Tensor::CAFFE);
bbox_out_tensor->copyToHostTensor(tensor_bbox_host);
auto bbox_output_shape = tensor_bbox_host->shape();
int output_size = 1;
for (int j = 0; j < bbox_output_shape.size(); ++j) {
output_size *= bbox_output_shape[j];
}
std::cout << "output_size:" << output_size << std::endl;
bbox_output_data_.resize(output_size);
std::copy_n(tensor_bbox_host->host<float>(), output_size,
bbox_output_data_.data());
delete tensor_bbox_host;
// class branch
auto tensor_class_host =
new MNN::Tensor(class_out_tensor, MNN::Tensor::CAFFE);
class_out_tensor->copyToHostTensor(tensor_class_host);
auto class_output_shape = tensor_class_host->shape();
output_size = 1;
for (int j = 0; j < class_output_shape.size(); ++j) {
output_size *= class_output_shape[j];
}
std::cout << "output_size:" << output_size << std::endl;
class_output_data_.resize(output_size);
std::copy_n(tensor_class_host->host<float>(), output_size,
class_output_data_.data());
delete tensor_class_host;
} else {
for (const auto &head_info : non_postprocess_heads_info) {
MNN::Tensor *tensor_scores = PicoDet_interpreter->getSessionOutput(
PicoDet_session, head_info.cls_layer.c_str());
MNN::Tensor *tensor_boxes = PicoDet_interpreter->getSessionOutput(
PicoDet_session, head_info.dis_layer.c_str());
MNN::Tensor tensor_scores_host(tensor_scores,
tensor_scores->getDimensionType());
tensor_scores->copyToHostTensor(&tensor_scores_host);
MNN::Tensor tensor_boxes_host(tensor_boxes,
tensor_boxes->getDimensionType());
tensor_boxes->copyToHostTensor(&tensor_boxes_host);
decode_infer(&tensor_scores_host, &tensor_boxes_host, head_info.stride,
score_threshold, results);
}
}
auto end = chrono::steady_clock::now();
chrono::duration<double> elapsed = end - start;
cout << "inference time:" << elapsed.count() << " s, ";
for (int i = 0; i < (int)results.size(); i++) {
nms(results[i], nms_threshold);
for (auto box : results[i]) {
box.x1 = box.x1 / in_w * image_w;
box.x2 = box.x2 / in_w * image_w;
box.y1 = box.y1 / in_h * image_h;
box.y2 = box.y2 / in_h * image_h;
result_list.push_back(box);
}
}
cout << "detect " << result_list.size() << " objects" << endl;
return 0;
}
void PicoDet::decode_infer(MNN::Tensor *cls_pred, MNN::Tensor *dis_pred,
int stride, float threshold,
std::vector<std::vector<BoxInfo>> &results) {
int feature_h = ceil((float)in_h / stride);
int feature_w = ceil((float)in_w / stride);
for (int idx = 0; idx < feature_h * feature_w; idx++) {
const float *scores = cls_pred->host<float>() + (idx * num_class);
int row = idx / feature_w;
int col = idx % feature_w;
float score = 0;
int cur_label = 0;
for (int label = 0; label < num_class; label++) {
if (scores[label] > score) {
score = scores[label];
cur_label = label;
}
}
if (score > threshold) {
const float *bbox_pred =
dis_pred->host<float>() + (idx * 4 * (reg_max + 1));
results[cur_label].push_back(
disPred2Bbox(bbox_pred, cur_label, score, col, row, stride));
}
}
}
BoxInfo PicoDet::disPred2Bbox(const float *&dfl_det, int label, float score,
int x, int y, int stride) {
float ct_x = (x + 0.5) * stride;
float ct_y = (y + 0.5) * stride;
std::vector<float> dis_pred;
dis_pred.resize(4);
for (int i = 0; i < 4; i++) {
float dis = 0;
float *dis_after_sm = new float[reg_max + 1];
activation_function_softmax(dfl_det + i * (reg_max + 1), dis_after_sm,
reg_max + 1);
for (int j = 0; j < reg_max + 1; j++) {
dis += j * dis_after_sm[j];
}
dis *= stride;
dis_pred[i] = dis;
delete[] dis_after_sm;
}
float xmin = (std::max)(ct_x - dis_pred[0], .0f);
float ymin = (std::max)(ct_y - dis_pred[1], .0f);
float xmax = (std::min)(ct_x + dis_pred[2], (float)in_w);
float ymax = (std::min)(ct_y + dis_pred[3], (float)in_h);
return BoxInfo{xmin, ymin, xmax, ymax, score, label};
}
void PicoDet::nms(std::vector<BoxInfo> &input_boxes, float NMS_THRESH) {
std::sort(input_boxes.begin(), input_boxes.end(),
[](BoxInfo a, BoxInfo b) { return a.score > b.score; });
std::vector<float> vArea(input_boxes.size());
for (int i = 0; i < int(input_boxes.size()); ++i) {
vArea[i] = (input_boxes.at(i).x2 - input_boxes.at(i).x1 + 1) *
(input_boxes.at(i).y2 - input_boxes.at(i).y1 + 1);
}
for (int i = 0; i < int(input_boxes.size()); ++i) {
for (int j = i + 1; j < int(input_boxes.size());) {
float xx1 = (std::max)(input_boxes[i].x1, input_boxes[j].x1);
float yy1 = (std::max)(input_boxes[i].y1, input_boxes[j].y1);
float xx2 = (std::min)(input_boxes[i].x2, input_boxes[j].x2);
float yy2 = (std::min)(input_boxes[i].y2, input_boxes[j].y2);
float w = (std::max)(float(0), xx2 - xx1 + 1);
float h = (std::max)(float(0), yy2 - yy1 + 1);
float inter = w * h;
float ovr = inter / (vArea[i] + vArea[j] - inter);
if (ovr >= NMS_THRESH) {
input_boxes.erase(input_boxes.begin() + j);
vArea.erase(vArea.begin() + j);
} else {
j++;
}
}
}
}
inline float fast_exp(float x) {
union {
uint32_t i;
float f;
} v{};
v.i = (1 << 23) * (1.4426950409 * x + 126.93490512f);
return v.f;
}
inline float sigmoid(float x) { return 1.0f / (1.0f + fast_exp(-x)); }
template <typename _Tp>
int activation_function_softmax(const _Tp *src, _Tp *dst, int length) {
const _Tp alpha = *std::max_element(src, src + length);
_Tp denominator{0};
for (int i = 0; i < length; ++i) {
dst[i] = fast_exp(src[i] - alpha);
denominator += dst[i];
}
for (int i = 0; i < length; ++i) {
dst[i] /= denominator;
}
return 0;
}