-
Notifications
You must be signed in to change notification settings - Fork 179
/
Copy pathspecial.py
180 lines (149 loc) · 4.67 KB
/
special.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#!/usr/bin/env python
"""
PyCUDA-based special functions.
"""
import os
import pycuda.gpuarray as gpuarray
import pycuda.elementwise as elementwise
from pycuda.tools import context_dependent_memoize
import numpy as np
from . import misc
from .misc import init
# Get installation location of C headers:
from . import install_headers
@context_dependent_memoize
def _get_sici_kernel(dtype):
if dtype == np.float32:
args = 'float *x, float *si, float *ci'
op = 'sicif(x[i], &si[i], &ci[i])'
elif dtype == np.float64:
args = 'double *x, double *si, double *ci'
op = 'sici(x[i], &si[i], &ci[i])'
else:
raise ValueError('unsupported type')
return elementwise.ElementwiseKernel(args, op,
options=["-I", install_headers],
preamble='#include "cuSpecialFuncs.h"')
def sici(x_gpu):
"""
Sine/Cosine integral.
Computes the sine and cosine integral of every element in the
input matrix.
Parameters
----------
x_gpu : GPUArray
Input matrix of shape `(m, n)`.
Returns
-------
(si_gpu, ci_gpu) : tuple of GPUArrays
Tuple of GPUarrays containing the sine integrals and cosine
integrals of the entries of `x_gpu`.
Examples
--------
>>> import pycuda.gpuarray as gpuarray
>>> import pycuda.autoinit
>>> import numpy as np
>>> import scipy.special
>>> import special
>>> x = np.array([[1, 2], [3, 4]], np.float32)
>>> x_gpu = gpuarray.to_gpu(x)
>>> (si_gpu, ci_gpu) = sici(x_gpu)
>>> (si, ci) = scipy.special.sici(x)
>>> np.allclose(si, si_gpu.get())
True
>>> np.allclose(ci, ci_gpu.get())
True
"""
si_gpu = gpuarray.empty_like(x_gpu)
ci_gpu = gpuarray.empty_like(x_gpu)
func = _get_sici_kernel(x_gpu.dtype)
func(x_gpu, si_gpu, ci_gpu)
return (si_gpu, ci_gpu)
@context_dependent_memoize
def _get_exp1_kernel(dtype):
if dtype == np.complex64:
args = 'pycuda::complex<float> *z, pycuda::complex<float> *e'
elif dtype == np.complex128:
args = 'pycuda::complex<double> *z, pycuda::complex<double> *e'
else:
raise ValueError('unsupported type')
op = 'e[i] = exp1(z[i])'
return elementwise.ElementwiseKernel(args, op,
options=["-I", install_headers],
preamble='#include "cuSpecialFuncs.h"')
def exp1(z_gpu):
"""
Exponential integral with `n = 1` of complex arguments.
Parameters
----------
z_gpu : GPUArray
Input matrix of shape `(m, n)`.
Returns
-------
e_gpu : GPUArray
GPUarrays containing the exponential integrals of
the entries of `z_gpu`.
Examples
--------
>>> import pycuda.gpuarray as gpuarray
>>> import pycuda.autoinit
>>> import numpy as np
>>> import scipy.special
>>> import special
>>> z = np.asarray(np.random.rand(4, 4)+1j*np.random.rand(4, 4), np.complex64)
>>> z_gpu = gpuarray.to_gpu(z)
>>> e_gpu = exp1(z_gpu)
>>> e_sp = scipy.special.exp1(z)
>>> np.allclose(e_sp, e_gpu.get())
True
"""
e_gpu = gpuarray.empty_like(z_gpu)
func = _get_exp1_kernel(z_gpu.dtype)
func(z_gpu, e_gpu)
return e_gpu
exp1.cache = {}
@context_dependent_memoize
def _get_expi_kernel(dtype):
if dtype == np.complex64:
args = 'pycuda::complex<float> *z, pycuda::complex<float> *e'
elif dtype == np.complex128:
args = 'pycuda::complex<double> *z, pycuda::complex<double> *e'
else:
raise ValueError('unsupported type')
op = 'e[i] = expi(z[i])'
return elementwise.ElementwiseKernel(args, op,
options=["-I", install_headers],
preamble='#include "cuSpecialFuncs.h"')
def expi(z_gpu):
"""
Exponential integral of complex arguments.
Parameters
----------
z_gpu : GPUArray
Input matrix of shape `(m, n)`.
Returns
-------
e_gpu : GPUArray
GPUarrays containing the exponential integrals of
the entries of `z_gpu`.
Examples
--------
>>> import pycuda.gpuarray as gpuarray
>>> import pycuda.autoinit
>>> import numpy as np
>>> import scipy.special
>>> import special
>>> z = np.asarray(np.random.rand(4, 4)+1j*np.random.rand(4, 4), np.complex64)
>>> z_gpu = gpuarray.to_gpu(z)
>>> e_gpu = expi(z_gpu)
>>> e_sp = scipy.special.expi(z)
>>> np.allclose(e_sp, e_gpu.get())
True
"""
e_gpu = gpuarray.empty_like(z_gpu)
func = _get_expi_kernel(z_gpu.dtype)
func(z_gpu, e_gpu)
return e_gpu
if __name__ == "__main__":
import doctest
doctest.testmod()