-
Notifications
You must be signed in to change notification settings - Fork 179
/
Copy pathfft.py
310 lines (265 loc) · 9.97 KB
/
fft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
#!/usr/bin/env python
"""
PyCUDA-based FFT functions.
"""
import pycuda.driver as drv
import pycuda.gpuarray as gpuarray
import pycuda.elementwise as el
from pycuda.tools import context_dependent_memoize
import pycuda.tools as tools
import numpy as np
from . import cufft
from .cufft import CUFFT_COMPATIBILITY_NATIVE, \
CUFFT_COMPATIBILITY_FFTW_PADDING, \
CUFFT_COMPATIBILITY_FFTW_ASYMMETRIC, \
CUFFT_COMPATIBILITY_FFTW_ALL
from . import cudart
from . import misc
class Plan:
"""
CUFFT plan class.
This class represents an FFT plan for CUFFT.
Parameters
----------
shape : tuple of ints
Transform shape. May contain more than 3 elements.
in_dtype : { numpy.float32, numpy.float64, numpy.complex64, numpy.complex128 }
Type of input data.
out_dtype : { numpy.float32, numpy.float64, numpy.complex64, numpy.complex128 }
Type of output data.
batch : int
Number of FFTs to configure in parallel (default is 1).
stream : pycuda.driver.Stream
Stream with which to associate the plan. If no stream is specified,
the default stream is used.
mode : int
FFTW compatibility mode. Ignored in CUDA 9.2 and later.
inembed : numpy.array with dtype=numpy.int32
number of elements in each dimension of the input array
istride : int
distance between two successive input elements in the least significant
(innermost) dimension
idist : int
distance between the first element of two consective batches in the
input data
onembed : numpy.array with dtype=numpy.int32
number of elements in each dimension of the output array
ostride : int
distance between two successive output elements in the least significant
(innermost) dimension
odist : int
distance between the first element of two consective batches in the
output data
auto_allocate : bool
indicates whether the caller intends to allocate and manage the work area
"""
def __init__(self, shape, in_dtype, out_dtype, batch=1, stream=None,
mode=0x01, inembed=None, istride=1, idist=0, onembed=None,
ostride=1, odist=0, auto_allocate=True):
if np.isscalar(shape):
self.shape = (shape, )
else:
self.shape = shape
self.in_dtype = in_dtype
self.out_dtype = out_dtype
if batch <= 0:
raise ValueError('batch size must be greater than 0')
self.batch = batch
# Determine type of transformation:
if in_dtype == np.float32 and out_dtype == np.complex64:
self.fft_type = cufft.CUFFT_R2C
self.fft_func = cufft.cufftExecR2C
elif in_dtype == np.complex64 and out_dtype == np.float32:
self.fft_type = cufft.CUFFT_C2R
self.fft_func = cufft.cufftExecC2R
elif in_dtype == np.complex64 and out_dtype == np.complex64:
self.fft_type = cufft.CUFFT_C2C
self.fft_func = cufft.cufftExecC2C
elif in_dtype == np.float64 and out_dtype == np.complex128:
self.fft_type = cufft.CUFFT_D2Z
self.fft_func = cufft.cufftExecD2Z
elif in_dtype == np.complex128 and out_dtype == np.float64:
self.fft_type = cufft.CUFFT_Z2D
self.fft_func = cufft.cufftExecZ2D
elif in_dtype == np.complex128 and out_dtype == np.complex128:
self.fft_type = cufft.CUFFT_Z2Z
self.fft_func = cufft.cufftExecZ2Z
else:
raise ValueError('unsupported input/output type combination')
# Check for double precision support:
capability = misc.get_compute_capability(misc.get_current_device())
if capability < 1.3 and \
(misc.isdoubletype(in_dtype) or misc.isdoubletype(out_dtype)):
raise RuntimeError('double precision requires compute capability '
'>= 1.3 (you have %g)' % capability)
if inembed is not None:
inembed = inembed.ctypes.data
if onembed is not None:
onembed = onembed.ctypes.data
# Set up plan:
if len(self.shape) <= 0:
raise ValueError('invalid transform size')
n = np.asarray(self.shape, np.int32)
self.handle = cufft.cufftCreate()
# Set FFTW compatibility mode:
if cufft._cufft_version <= 9010:
cufft.cufftSetCompatibilityMode(self.handle, mode)
# Set auto-allocate mode
cufft.cufftSetAutoAllocation(self.handle, auto_allocate)
self.worksize = cufft.cufftMakePlanMany(
self.handle, len(self.shape), n.ctypes.data, inembed, istride, idist,
onembed, ostride, odist, self.fft_type, self.batch)
# Associate stream with plan:
if stream != None:
cufft.cufftSetStream(self.handle, stream.handle)
def set_work_area(self, work_area):
"""
Associate a caller-managed work area with the plan.
Parameters
----------
work_area : pycuda.gpuarray.GPUArray
"""
cufft.cufftSetWorkArea(self.handle, int(work_area.gpudata))
def __del__(self):
# Don't complain if handle destruction fails because the plan
# may have already been cleaned up:
try:
cufft.cufftDestroy(self.handle)
except:
pass
@context_dependent_memoize
def _get_scale_kernel(dtype):
ctype = tools.dtype_to_ctype(dtype)
return el.ElementwiseKernel(
"{ctype} scale, {ctype} *x".format(ctype=ctype),
"x[i] /= scale")
def _fft(x_gpu, y_gpu, plan, direction, scale=None):
"""
Fast Fourier Transform.
Parameters
----------
x_gpu : pycuda.gpuarray.GPUArray
Input array.
y_gpu : pycuda.gpuarray.GPUArray
Output array.
plan : Plan
FFT plan.
direction : { cufft.CUFFT_FORWARD, cufft.CUFFT_INVERSE }
Transform direction. Only affects in-place transforms.
Optional Parameters
-------------------
scale : int or float
Scale the values in the output array by dividing them by this value.
Notes
-----
This function should not be called directly.
"""
if (x_gpu.gpudata == y_gpu.gpudata) and \
plan.fft_type not in [cufft.CUFFT_C2C, cufft.CUFFT_Z2Z]:
raise ValueError('can only compute in-place transform of complex data')
if direction == cufft.CUFFT_FORWARD and \
plan.in_dtype in np.sctypes['complex'] and \
plan.out_dtype in np.sctypes['float']:
raise ValueError('cannot compute forward complex -> real transform')
if direction == cufft.CUFFT_INVERSE and \
plan.in_dtype in np.sctypes['float'] and \
plan.out_dtype in np.sctypes['complex']:
raise ValueError('cannot compute inverse real -> complex transform')
if plan.fft_type in [cufft.CUFFT_C2C, cufft.CUFFT_Z2Z]:
plan.fft_func(plan.handle, int(x_gpu.gpudata), int(y_gpu.gpudata),
direction)
else:
plan.fft_func(plan.handle, int(x_gpu.gpudata),
int(y_gpu.gpudata))
# Scale the result by dividing it by the number of elements:
if scale is not None:
func = _get_scale_kernel(y_gpu.dtype)
func(y_gpu.dtype.type(scale), y_gpu)
def fft(x_gpu, y_gpu, plan, scale=False):
"""
Fast Fourier Transform.
Compute the FFT of some data in device memory using the
specified plan.
Parameters
----------
x_gpu : pycuda.gpuarray.GPUArray
Input array.
y_gpu : pycuda.gpuarray.GPUArray
FFT of input array.
plan : Plan
FFT plan.
scale : bool, optional
If True, scale the computed FFT by the number of elements in
the input array.
Examples
--------
>>> import pycuda.autoinit
>>> import pycuda.gpuarray as gpuarray
>>> import numpy as np
>>> from skcuda.fft import fft, Plan
>>> N = 128
>>> x = np.asarray(np.random.rand(N), np.float32)
>>> xf = np.fft.fft(x)
>>> x_gpu = gpuarray.to_gpu(x)
>>> xf_gpu = gpuarray.empty(N/2+1, np.complex64)
>>> plan = Plan(x.shape, np.float32, np.complex64)
>>> fft(x_gpu, xf_gpu, plan)
>>> np.allclose(xf[0:N/2+1], xf_gpu.get(), atol=1e-6)
True
Returns
-------
y_gpu : pycuda.gpuarray.GPUArray
Computed FFT.
Notes
-----
For real to complex transformations, this function computes
N/2+1 non-redundant coefficients of a length-N input signal.
"""
if scale == True:
_fft(x_gpu, y_gpu, plan, cufft.CUFFT_FORWARD, x_gpu.size/plan.batch)
else:
_fft(x_gpu, y_gpu, plan, cufft.CUFFT_FORWARD)
def ifft(x_gpu, y_gpu, plan, scale=False):
"""
Inverse Fast Fourier Transform.
Compute the inverse FFT of some data in device memory using the
specified plan.
Parameters
----------
x_gpu : pycuda.gpuarray.GPUArray
Input array.
y_gpu : pycuda.gpuarray.GPUArray
Inverse FFT of input array.
plan : Plan
FFT plan.
scale : bool, optional
If True, scale the computed inverse FFT by the number of
elements in the output array.
Examples
--------
>>> import pycuda.autoinit
>>> import pycuda.gpuarray as gpuarray
>>> import numpy as np
>>> from skcuda.fft import fft, Plan
>>> N = 128
>>> x = np.asarray(np.random.rand(N), np.float32)
>>> xf = np.asarray(np.fft.fft(x), np.complex64)
>>> xf_gpu = gpuarray.to_gpu(xf[0:N/2+1])
>>> x_gpu = gpuarray.empty(N, np.float32)
>>> plan = Plan(N, np.complex64, np.float32)
>>> ifft(xf_gpu, x_gpu, plan, True)
>>> np.allclose(x, x_gpu.get(), atol=1e-6)
True
Notes
-----
For complex to real transformations, this function assumes the
input contains N/2+1 non-redundant FFT coefficents of a signal of
length N.
"""
if scale == True:
_fft(x_gpu, y_gpu, plan, cufft.CUFFT_INVERSE, y_gpu.size/plan.batch)
else:
_fft(x_gpu, y_gpu, plan, cufft.CUFFT_INVERSE)
if __name__ == "__main__":
import doctest
doctest.testmod()