forked from roatienza/deep-text-recognition-benchmark
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinfer_utils.py
93 lines (77 loc) · 3.86 KB
/
infer_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import torch
import argparse
from PIL import Image
from torchvision import transforms
class ViTSTRFeatureExtractor:
def __init__(self, input_channel=1, imgH=224, imgW=224):
self.imgH = imgH
self.imgW = imgW
self.transform = NormalizePAD((input_channel, imgH, imgW))
def __call__(self, img_path):
img = Image.open(img_path).convert('L')
img = img.resize((self.imgW, self.imgH), Image.BICUBIC)
img = self.transform(img)
img = torch.unsqueeze(img, dim=0)
return img
class NormalizePAD:
def __init__(self, max_size, PAD_type='right'):
self.toTensor = transforms.ToTensor()
self.max_size = max_size
self.max_width_half = max_size[2] // 2
self.PAD_type = PAD_type
def __call__(self, img):
img = self.toTensor(img)
img.sub_(0.5).div_(0.5)
c, h, w = img.size()
pad_img = torch.FloatTensor(*self.max_size).fill_(0)
pad_img[:, :, :w] = img # right pad
if self.max_size[2] != w: # add border Pad
pad_img[:, :, w:] = img[:, :, w - 1].unsqueeze(2).expand(c, h, self.max_size[2] - w)
return pad_img
class TokenLabelConverter:
""" Convert between text-label and text-index """
def __init__(self, args):
# character (str): set of the possible characters.
# [GO] for the start token of the attention decoder. [s] for end-of-sentence token.
self.SPACE = '[s]'
self.GO = '[GO]'
self.list_token = [self.GO, self.SPACE]
self.character = self.list_token + list(args.character)
self.dict = {word: i for i, word in enumerate(self.character)}
self.batch_max_length = args.batch_max_length + len(self.list_token)
def encode(self, text):
""" convert text-label into text-index.
"""
length = [len(s) + len(self.list_token) for s in text] # +2 for [GO] and [s] at end of sentence.
batch_text = torch.LongTensor(len(text), self.batch_max_length).fill_(self.dict[self.GO])
for i, t in enumerate(text):
txt = [self.GO] + list(t) + [self.SPACE]
txt = [self.dict[char] for char in txt]
batch_text[i][:len(txt)] = torch.LongTensor(txt) # batch_text[:, 0] = [GO] token
return batch_text.to(device)
def decode(self, text_index, length):
""" convert text-index into text-label. """
texts = []
for index, l in enumerate(length):
text = ''.join([self.character[i] for i in text_index[index, :]])
texts.append(text)
return texts
def get_args():
parser = argparse.ArgumentParser(description='ViTSTR evaluation')
parser.add_argument('--image', default=None, help='path to input image')
parser.add_argument('--batch_max_length', type=int, default=25, help='maximum-label-length')
parser.add_argument('--imgH', type=int, default=224, help='the height of the input image')
parser.add_argument('--imgW', type=int, default=224, help='the width of the input image')
parser.add_argument('--rgb', action='store_true', help='use rgb input')
parser.add_argument('--character', type=str,
default='0123456789abcdefghijklmnopqrstuvwxyz', help='character label')
parser.add_argument('--input-channel', type=int, default=1,
help='the number of input channel of Feature extractor')
parser.add_argument('--model', default="vitstr_small_patch16_224_aug_infer.pth", help='ViTSTR model')
parser.add_argument('--gpu', action='store_true', help='use gpu for model inference')
parser.add_argument('--time', action='store_true', help='perform speed benchmark')
# For Raspberry Pi 4
parser.add_argument('--quantized', action='store_true', help='Model quantization')
parser.add_argument('--rpi', action='store_true', help='run on rpi 4')
args = parser.parse_args()
return args