-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtests.py
466 lines (396 loc) · 14 KB
/
tests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
import numpy as np
import matplotlib.pyplot as plt
from pca import pca
from scale import scaler
from integrator import integrator
from regressor import regressor
from neuralnet import nnregressor
from weight import weighter
from inputs import inputs
###############
############### functions to create test datasets
############### all 3 are identical except for target functions (should combine)
def test_func_create_dataset(number_of_datasets):
### create dataset for regression test
max_dev = 0.1
integ1 = integrator(10,0,0,0,0)
for i in range(number_of_datasets):
test_points = [0.5+max_dev*np.random.rand(), 0.2+max_dev*np.random.rand(),\
0.1+max_dev*np.random.rand(), 0.0+max_dev*np.random.rand()]
result = integ1.integrate_ODEs_test(test_points)
if i ==0:
array_shape = result.y.shape
ppa = integ1.t.size
data_array = np.zeros((array_shape[0], ppa*number_of_datasets))
rate_array = np.zeros(data_array.shape)
data_array[:,i*ppa:(i+1)*ppa] = result.y
result_rates = np.gradient(result.y,result.t,axis=1)
rate_array[:,i*ppa:(i+1)*ppa] = result_rates
return data_array, rate_array
def test_func_create_dataset_simple(number_of_datasets):
### create dataset for regression test
max_dev = 0.1
integ1 = integrator(10,0,0,0,0)
for i in range(number_of_datasets):
test_points = [0.5+max_dev*np.random.rand(), 0.1+max_dev*np.random.rand()]
result = integ1.integrate_ODEs_test_simple(test_points)
if i ==0:
array_shape = result.y.shape
ppa = integ1.t.size
data_array = np.zeros((array_shape[0], ppa*number_of_datasets))
rate_array = np.zeros(data_array.shape)
data_array[:,i*ppa:(i+1)*ppa] = result.y
result_rates = np.gradient(result.y,result.t,axis=1)
rate_array[:,i*ppa:(i+1)*ppa] = result_rates
return data_array, rate_array
def test_func_create_dataset_simple_2(number_of_datasets):
### create dataset for regression test
max_dev = 0.01
integ1 = integrator(10,0,0,0,0)
for i in range(number_of_datasets):
test_points = [0.5+max_dev*np.random.rand(), 0.1+max_dev*np.random.rand(), \
0.2+max_dev*np.random.rand()]
result = integ1.integrate_ODEs_test_simple_2(test_points)
if i ==0:
array_shape = result.y.shape
ppa = integ1.t.size
data_array = np.zeros((array_shape[0], ppa*number_of_datasets))
rate_array = np.zeros(data_array.shape)
data_array[:,i*ppa:(i+1)*ppa] = result.y
result_rates = np.gradient(result.y,result.t,axis=1)
rate_array[:,i*ppa:(i+1)*ppa] = result_rates
return data_array, rate_array
###############
############### functions to run larger tests of multiple functions / classes
###############
def test_func_scaler():
# runs a test of std scaling to compare against scipy standard scaler
test_mat = np.array([[1,2,4],[4,5,6],[7,8,9],[10,11,12]])
num_features = 3
num_samples = 4
sc = scaler(test_mat,num_samples,num_features)
sc.scale_std()
print(sc.data)
sc.apply_scaling()
print(sc.data)
plt.figure(1)
plt.plot(sc.data)
print("\n\n\n")
sc.reset_data()
print(sc.data)
sc.scale_scipy_std()
print(sc.data)
plt.figure(2)
plt.plot(sc.data)
plt.show()
def test_func_pca():
print("obsolete test, exiting")
exit()
# runs a test of PCA methods to compare against scipy
#test_mat = np.array([[1,2,4],[4,5,6],[7,8,9],[10,11,12]])
#features = 3
#samples = 4
#test_mat = np.random.rand(samples,features)
#pcac = pca(test_mat, samples, features, 3)
#pcac.pca_scipy()
#print("\n\n\n")
#print("Principal Axis A = \n",pcac.principal_axis, \
# '\n\n',\
# 'Principle Components Z =\n',pcac.principal_components)
#print("\n\n\n")
#pcac.pca_EVD()
def test_func_io():
# tests IO class
dirname = "data"
ioc = inputs()
ioc.read_dens_file(dirname)
ioc.read_rates_file(dirname)
#ioc.permute_data_in_time()
print(ioc.bulkdata.shape)
print(ioc.bulkrates.shape)
def test_func_holistic(n_components):
# runs a test on multiple modules, in sequence
# - read inputs
# - scale and weight
# - apply pca
# - unapply pca
# - print results
### LOAD INPUT DATA
print("Reading Inputs")
dirname = "data"
ioc = inputs()
ioc.read_dens_file(dirname)
#ioc.read_rates_file(dirname)
ioc.salt_arrays_for_log()
### INITIALIZE SCALER
print("Initializing Scaler")
num_samples, num_features = ioc.bulkdata.shape
w_array = [1,0,0,0]
w_mag = 1.
sc = scaler(ioc.bulkdata, num_samples, num_features,1,w_mag,w_array)
# SET SCALER TO STD SCALING AND APPLY
# (USE LOG AS WELL)
print("Scaling")
sc.scale_log()
sc.scale_std()
sc.apply_scaling()
# SET PCA AND APPLY
print("Applying PCA")
pcac = pca(sc.data, num_samples, num_features, n_components)
pcac.pca_scipy()
# LOAD TRANSOFMRED DATA INTO SCALER AND UNSCALE
print("Loading New Data")
sc.load_data(pcac.transformed_data)
print("Unscaling")
sc.unapply_scaling()
sc.unscale_log()
print("Results")
plt.figure(1)
plt.semilogy(sc.original_data)
plt.ylim([10e-1,10e20])
plt.figure(3)
plt.semilogy(sc.data)
plt.ylim([10e-1,10e20])
plt.show()
def test_func_regressor(n_comp):
# runs a test on multiple modules, in sequence
# - read inputs
# - scale and weight
# - apply pca
# - train GPR (or other) regressor
# - integrate ODE in PC space for set time
# - unapply pca
# - print results
### LOAD INPUT DATA
print("Reading Inputs")
dirname = "data"
ioc = inputs()
ioc.read_dens_file(dirname)
ioc.read_rates_file(dirname)
ioc.salt_arrays_for_log()
ioc.permute_data_in_time()
### INITIALIZE SCALER
print("Initializing Scaler")
num_samples, num_features = ioc.data_rand.shape
sc = scaler(ioc.data_rand, num_samples, num_features)
#print(ioc.bulkdata)
# SET SCALER TO STD SCALING AND APPLY
# (USE LOG AS WELL)
print("Scaling")
sc.scale_log()
sc.scale_std()
sc.apply_scaling()
# SET PCA AND APPLY
print("Applying PCA")
pcac = pca(sc.data, num_samples, num_features, n_comp)
pcac.pca_scipy()
# LOAD TRANSOFMRED DATA INTO SCALER AND UNSCALE
print("Loading New Data")
sc.load_data(pcac.transformed_data)
print("Unscaling")
sc.unapply_scaling()
sc.unscale_log()
print("Initializing Regression")
reg = regressor(ioc.data_rand, pcac.principal_components, ioc.rates_rand, sc.D, \
pcac.principal_axis, num_samples, num_features, n_comp)
print("Training regression model")
reg.train_GPR()
print("Initializing integrator")
integ = integrator(1, pcac.principal_axis, pcac.principal_components, \
ioc.data_rand, reg)
print("Integrating Principal Component Expressions")
#result = integ.integrate_ODEs()
#print("Converting Principal components back to real state variables")
#computed_densities = result.y.T.dot(pcac.principal_axis)
#plt.figure(1)
#plt.semilogy(result.t,result.y.T)
plt.figure(2)
plt.plot(ioc.data_rand)
plt.figure(3)
plt.plot(ioc.rates_rand)
#plt.figure(2)
#plt.semilogy(range(reg.Spc.shape[0]),reg.Spc[:,0], range(reg.Spc.shape[0]),-reg.Spc[:,0])
plt.show()
def test_func_regressor_example(input_data, number_of_datasets, n_comp):
# regression example using data from test_func_create_dataset()
# runs a test on multiple modules, in sequence
# - read inputs
# - scale and weight
# - apply pca
# - train GPR, SVR, or other regression
# - integrate ODE in PC space for set time
# - unapply pca
# - print results
final_time = 10.0
data_array = input_data[0].T
rate_array = input_data[1].T
#############################
############################# INPUT DATA
#############################
### LOAD INPUT DATA
print("Reading Inputs")
ioc = inputs()
ioc.bulkdata = data_array
ioc.bulkrates = rate_array
ioc.salt_arrays_for_log()
ioc.permute_data_in_time()
### INITIALIZE SCALER
print("Initializing Scaler")
num_samples, num_features = ioc.data_rand.shape
w_array = [1,0,0,0]
w_mag = 1.
sc = scaler(ioc.data_rand, num_samples, num_features,1,w_mag,w_array)
#############################
############################# SCALE DATA AND RUN PCA
#############################
# SET SCALER TO STD SCALING AND APPLY
# (USE LOG AS WELL)
print("Scaling")
sc.scale_std()
sc.scale_log()
sc.center()
sc.apply_scaling()
# SET PCA AND APPLY
print("Applying PCA")
pcac = pca(sc.data, num_samples, num_features, n_comp)
pcac.pca_scipy()
plt.figure(1)
plt.plot(pcac.principal_components)
#############################
############################# CREATE REGRESSOR AND INTEGRATE
#############################
print("Initializing Regression")
reg = regressor(ioc.data_rand, pcac.principal_components, ioc.rates_rand, sc.D, \
pcac.principal_axis, num_samples, num_features, n_comp)
print("Training regression model")
reg.train_SVR()
print("Initializing integrator")
integ = integrator(final_time, pcac.principal_axis, pcac.principal_components, \
ioc.data_rand, reg)
print("Integrating Principal Component Expressions")
# compute initial points by the following procedure
# 1. get initial points
y0 = ioc.bulkdata[0,:]
# 2. scale initial points
sc.load_data(y0)
sc.data = sc.data.reshape(1,-1)
sc.scale_log()
sc.center()
sc.apply_scaling()
# 3. convert to principal components
y0 = sc.data.dot(pcac.principal_axis)
result = integ.integrate_ODEs(y0.flatten())
print("Converting Principal components back to real state variables")
computed_densities = (result.y.T).dot(pcac.principal_axis.T)
# LOAD TRANSOFMRED DATA INTO SCALER AND UNSCALE
print("Loading New Data")
sc.load_data(computed_densities)
print("Unscaling")
sc.unapply_scaling()
sc.uncenter()
sc.unscale_log()
computed_densities = computed_densities.dot(pcac.principal_axis.T)
#plt.figure(5)
#plt.plot(result.t,result.y.T)
plt.figure(6)
plt.plot(sc.data)
plt.ylim([0,1.0])
plt.figure(7)
plt.plot(ioc.bulkdata[0:50,:])
plt.ylim([0,1.0])
#print(ioc.bulkdata[0,:])
#print(y0)
def test_func_regressor_nn_example(input_data, number_of_datasets, n_comp):
# Should be identical to regular nonlinear regression code except with
# NN functions replacing GPR, SVR, etc
#
# regression example using data from test_func_create_dataset()
# runs a test on multiple modules, in sequence
# - read inputs
# - scale and weight
# - apply pca
# - train NN regressor
# - integrate ODE in PC space for set time
# - unapply pca
# - print results
final_time = 10.0
data_array = input_data[0].T
rate_array = input_data[1].T
#############################
############################# INPUT DATA
#############################
### LOAD INPUT DATA
print("Reading Inputs")
ioc = inputs()
ioc.bulkdata = data_array
ioc.bulkrates = rate_array
ioc.salt_arrays_for_log()
ioc.permute_data_in_time()
### INITIALIZE SCALER
print("Initializing Scaler")
num_samples, num_features = ioc.data_rand.shape
w_array = [1,0,0,0]
w_mag = 1.
sc = scaler(ioc.data_rand, num_samples, num_features,1,w_mag,w_array)
#############################
############################# SCALE DATA AND RUN PCA
#############################
# SET SCALER TO STD SCALING AND APPLY
# (USE LOG AS WELL)
print("Scaling")
sc.scale_std()
sc.scale_log()
sc.center()
sc.apply_scaling()
# species weighting
# SET PCA AND APPLY
print("Applying PCA")
pcac = pca(sc.data, num_samples, num_features, n_comp)
pcac.pca_scipy()
plt.figure(1)
plt.plot(pcac.principal_components)
#############################
############################# CREATE REGRESSOR AND INTEGRATE
#############################
print("Initializing Regression")
reg = nnregressor(ioc.data_rand, pcac.principal_components, ioc.rates_rand, sc.D, \
pcac.principal_axis, num_samples, num_features, n_comp)
reg.create_or_load_model()
print("Training regression model")
reg.train_NN()
print("Initializing integrator")
integ = integrator(final_time, pcac.principal_axis, pcac.principal_components, \
ioc.data_rand, reg)
print("Integrating Principal Component Expressions")
# compute initial points by the following procedure
# 1. get initial points
y0 = ioc.bulkdata[0,:]
# 2. scale initial points
sc.load_data(y0)
sc.data = sc.data.reshape(1,-1)
sc.scale_log()
sc.center()
sc.apply_scaling()
# 3. convert to principal components
y0 = sc.data.dot(pcac.principal_axis)
result = integ.integrate_ODEs(y0.flatten())
print("Converting Principal components back to real state variables")
computed_densities = (result.y.T).dot(pcac.principal_axis.T)
# LOAD TRANSOFMRED DATA INTO SCALER AND UNSCALE
print("Loading New Data")
sc.load_data(computed_densities)
print("Unscaling")
sc.unapply_scaling()
sc.uncenter()
sc.unscale_log()
computed_densities = computed_densities.dot(pcac.principal_axis.T)
#plt.figure(5)
#plt.plot(result.t,result.y.T)
plt.figure(6)
plt.plot(sc.data)
plt.ylim([0,1.0])
plt.figure(7)
plt.plot(ioc.bulkdata[0:50,:])
plt.ylim([0,1.0])
#print(ioc.bulkdata[0,:])
#print(y0)