diff --git a/.github/workflows/CI.yml b/.github/workflows/CI.yml
new file mode 100644
index 0000000..c69bf3e
--- /dev/null
+++ b/.github/workflows/CI.yml
@@ -0,0 +1,30 @@
+name: CI
+
+on: [push]
+
+jobs:
+ build:
+ runs-on: ${{ matrix.os }}
+ continue-on-error: ${{ matrix.os == 'windows-latest' }}
+ strategy:
+ matrix:
+ os: [ubuntu-latest, macos-latest, windows-latest]
+ python-version:
+ - "3.10"
+ - "3.12"
+ - "3.13"
+ - "3.13t"
+ # NOTE: Example for excluding specific python versions for an different OS's.
+ # exclude:
+ # - os: windows-latest
+ # python-version: 3.6
+ # - os: macos-latest
+ # python-version: 3.8
+ steps:
+ - uses: actions/checkout@v4
+ - name: Install uv and set the python version
+ uses: astral-sh/setup-uv@v5
+ with:
+ python-version: ${{ matrix.python-version }}
+ - name: Run tests
+ run: uv run pytest -s
diff --git a/.gitignore b/.gitignore
new file mode 100644
index 0000000..0c1cc23
--- /dev/null
+++ b/.gitignore
@@ -0,0 +1,12 @@
+# Python-generated files
+__pycache__/
+*.py[oc]
+build/
+dist/
+wheels/
+*.egg-info
+
+# Virtual environments
+.venv
+
+demos/emcee.ipynb
diff --git a/.python-versions b/.python-versions
new file mode 100644
index 0000000..c31d378
--- /dev/null
+++ b/.python-versions
@@ -0,0 +1,3 @@
+3.10
+3.13
+3.13t
diff --git a/LICENSE b/LICENSE
index 070475d..b94b391 100644
--- a/LICENSE
+++ b/LICENSE
@@ -1,6 +1,6 @@
MIT License
-Copyright (c) 2025 Los Alamos National Laboratory
+Copyright (c) 2024 Los Alamos National Laboratory
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
diff --git a/README.md b/README.md
new file mode 100644
index 0000000..84f0ee3
--- /dev/null
+++ b/README.md
@@ -0,0 +1,181 @@
+# Arianna
+A probabilistic programming language for python built on numpy.
+
+## Installation
+**pip**
+```
+pip install git+https://github.com/lanl/arianna.git
+```
+
+**uv**
+```
+uv add git+https://github.com/lanl/arianna.git
+```
+
+## Usage
+
+**Model Specification (linear regression)**
+```python
+from typing import Optional
+
+import numpy as np
+from numpy.random import default_rng
+
+from arianna.distributions import Gamma, Normal
+from arianna.ppl.context import Context, Predictive
+from arianna.ppl.inference import (
+ AIES,
+ AffineInvariantMCMC,
+ Chain,
+ LaplaceApproximation,
+ ParallelAIES,
+ RandomWalkMetropolis,
+)
+
+# Type annotation are, of course, optional. Provided only for clarity.
+def linear_regression(
+ ctx: Context,
+ X: np.ndarray,
+ y: Optional[np.ndarray]=None,
+ bias: bool=True
+) -> None:
+ _, p = X.shape
+ beta = ctx.rv("beta", Normal(np.zeros(p), 10))
+ sigma = ctx.rv("sigma", Gamma(1, 1))
+ mu = ctx.cached("mu", X @ beta)
+ if bias:
+ alpha = ctx.rv("alpha", Normal(0, 10))
+ mu += alpha
+
+ ctx.rv("y", Normal(mu, sigma), obs=y)
+```
+
+**Simulate data from Prior Predictive**
+```python
+nobs = 100
+rng = np.random.default_rng(0)
+
+# Generate random predictors (X).
+X = rng.normal(0, 1, (nobs, 1))
+
+# Simulate from prior predictive using Predictive.
+sim_truth = Predictive.run(
+ linear_regression, # supplied model here.
+ state=dict(sigma=0.7),
+ rng=rng,
+ X=X,
+ # since y is None, the returned dictionary will contain y sampled from it's
+ # predictive distributions.
+ y=None,
+ # Not return cached values, so the sim_truth will contain only parameters
+ # and y.
+ return_cached=False,
+)
+
+# pop y so that sim_truth contains only model parameters.
+y = sim_truth.pop("y")
+
+# Now sim_truth is a dict containing ("beta", "sigma", "alpha").
+```
+
+**Affine invariant ensemble sampler**
+```python
+aies = AIES(
+ linear_regression, # model function.
+ nwalkers=10, # number of walkers.
+ # Whether or not to transform parameters into unconstrained space.
+ transform=True, # Set to true when possible.
+ # Random number generator for reproducibility.
+ rng=default_rng(0),
+ # Provide data.
+ X=X, y=y,
+)
+
+# Does 3000 steps, with 10 walkers, after burning for 3000, and thins by 1. At
+# the end, 3000 = 3000*10 samples will be aggregated from all 10 walkers. Then,
+# by default, these samples are passed into an importance sampler to reweight
+# the samples, yielding 3000 samples.
+chain = aies.fit(nsteps=3000, burn=3000, thin=1)
+```
+
+`chain` is an object that contains posterior samples (states).
+You can iterate over `chain`.
+
+```python
+for state in chain:
+ print(state) # state is a e.g., dict(alpha=1.3, beta=2.5, sigma=0.6, mu=some_long_array)
+ break # just print the first one.
+```
+
+You can convert `chain` into a large dict with `bundle = chain.bundle`,
+which is a `dict[str, ndarray]`.
+
+You can also get the samples directly with `chain.samples`.
+
+**Parallel Affine invariant ensemble sampler**
+Works only in python 3.13t. But 3.13t does not yet work with `jupyter`.
+
+```python
+from concurrent.futures import ThreadPoolExecutor
+
+paies = ParallelAIES(
+ linear_regression, # model function.
+ ThreadPoolExecutor(4) # use 4 cores.
+ nwalkers=10, # number of walkers.
+ # Whether or not to transform parameters into unconstrained space.
+ transform=True, # Set to true when possible.
+ # Random number generator for reproducibility.
+ rng=default_rng(0),
+ # Provide data.
+ X=X, y=y,
+)
+
+# Same as non-parallel version, but will be faster in python 3.13t.
+# Will be slightly slower than the non-parallel version in GIL enabled python
+# builds, i.e. python 3.9, 3.10, 3.11, 3.12, 3.13.
+chain = paies.fit(nsteps=3000, burn=3000, thin=1)
+```
+
+**Laplace Approximation**
+```python
+la = LaplaceApproximation(
+ linear_regression,
+ transform=True,
+ rng=default_rng(0),
+ X=X, y=y,
+)
+
+# The MAP estimate and inverse Hessian are computed via L-BFGS optimization.
+# Those estimates are used to construct a MvNormal object. 3000 samples are
+# drawn from that resulting MvNormal.
+chain = la.fit(nsamples=3000)
+```
+
+**Posterior Predictive**
+```python
+rng = default_rng
+xnew = np.linspace(-3, 3, 50)
+Xnew = xnew.reshape(-1, 1)
+ynew = Chain(
+ Predictive.run(
+ linear_regression, state=state, rng=rng, X=Xnew, y=None
+ )
+ for state in chain
+).get("y")
+```
+
+See [demos](demos/).
+
+## Threading
+As of 8 Jan 2025, `jupyter` does not work with the threaded version of python
+3.13 (3.13t). You can install `arianna` with python 3.13 or python 3.13t but
+you cannot install `jupyter` also. If you must use `jupyter`, use python 3.12.
+
+## Developer Notes
+
+### Updating versions
+1. Update version in `pyproject.toml`
+2. `uv sync`
+3. `git commit -am 'some message'`
+4. Update git tag
+5. `git push --tags`
diff --git a/demos/friedman.ipynb b/demos/friedman.ipynb
new file mode 100644
index 0000000..4a8e837
--- /dev/null
+++ b/demos/friedman.ipynb
@@ -0,0 +1,490 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%load_ext autoreload\n",
+ "%autoreload 2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from concurrent.futures import ThreadPoolExecutor\n",
+ "from typing import Optional\n",
+ "\n",
+ "import matplotlib.pyplot as plt\n",
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "import seaborn as sns\n",
+ "from numpy.random import default_rng\n",
+ "\n",
+ "import aria.distributions as dist\n",
+ "from aria.ppl.context import Context, Predictive\n",
+ "from aria.ppl.inference import (\n",
+ " AIES,\n",
+ " Chain,\n",
+ " ParallelAIES,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def plot_theta_pairs(df: pd.DataFrame, truth=None, title: Optional[str] = None):\n",
+ " # Initialize the PairGrid\n",
+ " g = sns.PairGrid(df, corner=True)\n",
+ "\n",
+ " # Map the upper and lower triangles with scatter plots\n",
+ " g.map_lower(sns.scatterplot)\n",
+ "\n",
+ " g.set(xlim=(0, 1), ylim=(0, 1))\n",
+ "\n",
+ " # Map the diagonal with histograms or KDE plots\n",
+ " g.map_diag(sns.histplot)\n",
+ "\n",
+ " if truth is not None:\n",
+ " # Iterate through each axis in the PairGrid\n",
+ " for i, j in zip(*np.tril_indices_from(g.axes, -1)):\n",
+ " ax = g.axes[i, j]\n",
+ " # Add the custom point\n",
+ " ax.scatter( # type: ignore\n",
+ " truth[j], truth[i], color=\"orange\", s=100, edgecolor=\"k\"\n",
+ " )\n",
+ "\n",
+ " if title is not None:\n",
+ " plt.suptitle(title)\n",
+ "\n",
+ " plt.tight_layout()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Friedman function (Friedman, 1991, Multivariate Adaptive Regression Splines)\n",
+ "class Friedman:\n",
+ " def __init__(self, theta):\n",
+ " self.theta = theta\n",
+ "\n",
+ " def __call__(self, x):\n",
+ " return (\n",
+ " 10.0 * np.sin(np.pi * self.theta[0] * x)\n",
+ " + 20.0 * (self.theta[1] - 0.5) ** 2\n",
+ " + 10 * self.theta[2]\n",
+ " + 5.0 * self.theta[3]\n",
+ " )"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Make data.\n",
+ "rng = np.random.default_rng(1)\n",
+ "theta_true = rng.uniform(0, 1, 6) # using only first 4 elements.\n",
+ "f_true = Friedman(theta_true)\n",
+ "sigma_true = 0.5\n",
+ "grid_size = 30 # sample size\n",
+ "x = np.linspace(0, 1, grid_size)\n",
+ "y = rng.normal(f_true(x), sigma_true)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def model(ctx: Context, x, y):\n",
+ " theta = ctx.rv(\"theta\", dist.Uniform(np.zeros(6), 1))\n",
+ " sigma = ctx.rv(\"sigma\", dist.Gamma(1, 0.5))\n",
+ " f = Friedman(theta)\n",
+ " fx = ctx.cached(\"fx\", f(x))\n",
+ " ctx.rv(\"y\", dist.Normal(fx, sigma), obs=y)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAGwCAYAAACzXI8XAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAARLpJREFUeJzt3QeclNW5x/GH3qTJ0rsgKC0motixJajRaFCj0WuJLYmaGyXRWJJYo8Z4Y8m1XMWo8Wq8FkSDBBUUUEFUFFxFaYKAFAHp0nfu539eDswu23dm3jK/7+fzOruzM7vvDuu+/z3nOc+plUqlUgYAABBDtcM+AQAAgOoiyAAAgNgiyAAAgNgiyAAAgNgiyAAAgNgiyAAAgNgiyAAAgNiqawlXVFRkixcvtqZNm1qtWrXCPh0AAFAJanO3bt0669Chg9WuXTt/g4xCTOfOncM+DQAAUA0LFy60Tp065W+Q0UiMfyGaNWsW9ukAAIBKWLt2rRuI8NfxvA0yfjpJIYYgAwBAvFRUFkKxLwAAiC2CDAAAiC2CDAAAiC2CDAAAiC2CDAAAiC2CDAAAiC2CDAAAiC2CDAAAiC2CDAAAiC2CDAAAiC2CDAAAiC2CDAAAiC2CDAAAiK3E734NAEi4VMps61azTZvMtmwxq13brE6d0g8kDkEGABBN27ebbd4cBBTdpr+t23XrzNavDw4FGIWZbduC5yrM+ECT/nbdumb16gVHgwa73q5ff9fH9LY/9Jj0t2sahnR+/lx1m34UFQXn4M8j/Tb9bX0v2IkgAwD5TsHABwIda9aY1apl1qSJWaNGxY+GDTNzIdVFe+NGs2+/DW79oa+/dm1wq4+lX/h9SBGdX3ooUdDQ+ek+jdDo85c89HkUgNLvU1jyb+t56fQ1SgYKhZnGjYPXZo89dgUdf+vP1x/6evo+/KH79Jj0Q+dQUnmjSv7r6WjYMPi+dZ/OS+fkD92XBwgyAJAPdKHWhTQ9sKxaZbZiRTCyoRChQKOLuS7g4i/suqimX6ybNTNr3jy4TQ85upDqVhd9XbB9OEkPKwpJOvQ1/cXef930r+UDii7UTZvuChL+3HL1milo+BClQ6/b6tW77ksPPzq3kmFI348fUfGBSN9T+n2ljfL4kKVDX8efi973YdN/fPuOMObPQZ9fh/59Wrc2a9GieMDRv1MuX8csI8gAQBLoAqpA4IOBRgJ0wVNgUFhZuTIIErpfF2HRRdT/Ra8LnoJKaaMtulCmjzIsWWL25ZfFR0hKTsmUnDbxF870x+mCqous3o7idIkPVZUd2UgPgZn42jr0elVFUVHwb6xD/+aLFgX/fjo3P2ql171VK7OCgl3hRiNM+lko62cgwggyAJANunD4C72/uFV0W1aNiA8n6YfuSx9h0dsKKH6kQB/3owP+L3RdrHTxqurFUSMGftSlrO/V13z4EKWvoVEbX4eSD6IwylG7dhBUdJTkR8n0s/LNN2affrrrOfr58KNg6VNnfvqsrCMC3zNBBgCqytc++MNfvHWovkOjIDpK1nSkqyjU6OLi6ynSA0r61EXJ4lV/EfLTMLlapaNz9iMXuvAhmurv+DdSwCwtMPswqpDz9dfB++n1O75mKP1Q4NEU1oABZm3bWhgIMgBQkv5q9WHET8fobV+Emv5LX7fp4SK9+LSsIKHH+6Pk/em3er6vEfGBJQJ/ASNh6tQpfQSntGkrH6p9sNa05ezZZh06EGQAIOf0y9gHFN36v0T1vl9h4ilI+CJUX2vgQ0vMagqAatHPuZ9SSqdwHyKCDIDk01+SflmvDq34WLYsWH3iV9SUrAVp3373X9gAIocgAyB5NBWkIW8dWmGjW9/HQ6FG0zM+sGj1RqZ6owDIOYIMgPhTzYqWmiqwLFwYjLZo5EWFin6ZrwoSNYdPm3ogUQgyAOJZ2+KDy+LFZl99FQQX3a/pIIWWLl3yZ9kvkMcIMgCiT6sjFFx0KLioyZeCi4pxfafZTp3ypiU7gF0IMgCiSQW4Ci2aKtKhAl3Vvmj1kIKLlntSjAvkPYIMgGiFFxXnLlhg9sUXwV5AKsL19S0qygWANAQZAOHSKIsfeZk7N1gSrVVFLVua9ehBcS6AchFkAIQTXkqOvIjCS/fuwfQRAFQCvy0A5Da8+JEXwguADOA3B4DsUR8XLY2ePz8YedEWANKiBeEFQEbwWwRA5mk7AIWXzz4Lgoy66RJeAGQBv1EAZIbCijrqatpo5sxg9KVJk6C/C8ukAWQJQQZAzWtfvvwyCC8q3tX7BQVmvXqxfxGArCPIAKi6VCrYHkB1L59/brZ8edBVV71etK8RAOQIQQZA5WkvI6060uiLamBUC6NVRz170u8FQCgIMgAqpiZ1Ci4zZgR1MGpY16ZNUP8CACEiyAAou3hXHXdnzw4O7XWkrQK6dmVXaQCRQZABsPt+Ryre1eiLdpnWztMq3m3XLhiJAYAIIcgACPjiXfV+UfFuo0Zm7duzUSOASCPIAPlMoy0adZk1K+j/smEDxbsAYoUgA+Rz511NH6kORlq3pngXQOwQZIB86v3y9ddmc+YEy6dXrjTbYw867wKINYIMkA8bN6p4V7UvGoVRMW+rVnTeBZAIBBkgycuntWXAxx8HRby+94tGYQAgIQgyQBKnkFTAqwCjaSTp2JHVRwASiSADJCnAqHC3sDBYhaQRGS2fZu8jAAlGkAGSYOnSYARGHXg3bzbr0MGsSZOwzwoAso4gA8SZViF98kmwA/WmTcEIDDUwAPIIQQaIIy2dVoBRHxg1sVOA6dw57LMCkGPbt2+3GTNm2DfffGN77rmn9enTx+rkWTNLggwQJ6tWmX36aXCsXRvsf0QTOyAvTZo0yR555BFboT9sdiho1couvvhiO+SQQyxf0EQCiEsn3nffNXv+ebPJk4N9kPbZx6xFi7DPDEBIIeaOO+4oFmJk5cqV7n59PF8wIgNEmVYeqYD3/feDFUnqA9O7N7tQA3k8RaNz1UhMqpSPpcxMvx2GDx9ugwYNiuz3kEkEGSCqtAP1Bx8EhbzqAaNOvHnwSwnItbhN0ShwlRyJKRlmlq9Y4R7Xv39/SzqmloCo0fLpqVPNRo4MinnVzE51MIQYIOPiOEWjUaNMPi7uCDJAlBraaU+kf/3L7I03guCiURjVwwDI+RSN7Zii0eOiRFNfmXxc3BFkgCjQCqQJE8xeftlsyRKzHj3MWrcO+6yARKvKFE2UqH5HU19lVcrVMrPWBQXucfmAIAOEadu2YProxReDgl7tSt2tm1m9emGfGZB4cZ2iUQGv6nekVomP+fcvuuiivCj0FYIMEOa2AmPGBIe68moaqWnTsM8KyBtxnqJREfI111xjrfTHT5qCggJ3fxSLlLOFVUtArm3cGOyLNG1a0JW3SxezBg3CPisg7/gpGhX2llYnU2tHMIjqFI3CyqBBg2KzbDxbCDJALot5v/gimEJauDDoCaPNHQGEOkWj1UkKLakYTtHUqVOnRkusa9I/xz9364wZtm3PPW3/ffYJ5bWqlUrpt2tyrV271po3b25r1qyxZs2ahX06yOdiXgUY7Y+k/9FZTg1Euo+MimUVYpI8RTOpBv1z0p+7t5m9ql9znTrZvffea0OHDs3p9ZsgA2ST/veaM8dsypRgNZICDLtTA5ETp86+meyfkypxvx+JKq/OpuRzfZD5bEfH8eeffz4jYYYgswNBBqHuj6TOvNOnB6uQ1NiuNvX1AMIPbRdddFGZS899bZBGXEqGudKe64OMFqnXqlXLOnXqZPPmzatxEKzs9ZvfqkC2amHUE+a994JamM6dCTEAYt8/Z0ZFz02lbOHChfbWW29ZrlDsC2TSt98GozBakaTgwv5IABLUP+ebSj53iabSc4QgA2SKtheYPDlYkaTVSExlAkhY/5w9K/nc9u3bW64QZIBM9IX58MNgFEZ7suy9N6MwABLZP6dPRc/dUSNz+OGHW64waQ/UxKJFZqNGqYw/GIHp3p0QAyDS6tRgi4Nyn7tj1dI999yT0xVfBBmgOjZvDpZUq6B38WKznj3NWrQI+6wAxJBWAhUWFtqECRPcbS522z6kBlsclPVcjcRkaul1VYS6/Pr222+3ESNG2Oeff26NGjVyL86f//xn6927987HbNq0yX7zm9/YM888Y5s3b7YhQ4bYAw88YG3btq3U12D5NTJOweXdd4OVSVqR1LJl2GcE5L249oGpSVO6TNieqc6+xxxj+597bkZf81j0kTnuuOPszDPPtAMOOMC2bdtm1113nX3yySfuhWnSpIl7zC9/+Ut75ZVX7PHHH3ff0OWXX261a9e2d955p1JfgyCDjNmyJdgjSauStMmj9khil2rA8j0MhNGULlJmzdIF3axv34x+2lgEmZKWL19ubdq0ccNrRxxxhDv51q1b29NPP22nnXaae4xGb/bdd1+bPHmyHXTQQRV+ToIMMmL58mBFkv6HLSgwKzGkCiAccQ0DNWlKFzmzwg0ykaqR0cmmL++aOnWqbd261Y499tidj9lnn32sS5cuLsiURtNP+ubTD6DaNFet/ZFeeinYakDFvIQYIBK1Ivq4LvSl/TXu7xs+fHhOak5y2ZQOEV1+XVRUZFdccYUdeuih1q9fP3ff0qVLrX79+taiRBGl6mP0sbLqbm666aacnDMSTsFatTAKMvprQMuqAURmeqgqYaAmO0RHrSkdIjoic9lll7n6GBX11sS1117rRnb8oVbJQJVotnX27GAUprAw2F6gXbuwzwpI/PRQyVCiXiW6Xx9PWhioSVM6RDDIqIB31KhR9uabb7rlW167du1sy5Yttnr16mKPX7ZsmftYaRo0aODm0tIPoEpbDEycaDZ6tNmGDcEoTKNGYZ8VkFg1mR6KcxjwjeVK9mLxdH/rMprSIUJBRnXGCjEvvviivfHGG9Zd9Qdp9t9/f6tXr56NGzdu530zZ860BQsW2MEHHxzCGSPRNHqn5nba6LF1azVFYKNHIMK1IlEJA9XpA1OTpnSIUI2MppO0Iumll16ypk2b7qx7UZWy+sro9sILL7Rhw4a5RK3RlV/96lcuxFRmxRJQ6WXVH32k6nK2GAByrCbTQz4MaPpJF/9UCGGgJku/fWO53Z5fUODOO4qrraIo1CDz4IMPutsjjzyy2P2PPfaYnX/++e7tu+++2/WNOfXUU4s1xAMy4uuvg+0FVBOjJos0twNyqqbTQ2GGgbKWfvvansos/dbHBw0aFMtmflERqT4y2UAfGZRKIy8aqtaqpHXrzLp2NatfP+yzAvKO76dS0QaGFfVTyXVn30T1gakp+sgAOabi8ddfDw5tcqapJEIMEIpM1Yro41piPXjwYHeb7fBAH5joIMggf2jwUX85aFm1esOomLeSe3YByN7mhzXZwDAscV76nTSRaYgHZJWWUr//vtn06cHoi0ZhWJEERGa/o7jVisR56XfSEGSQfF9+GRT0LloUjMLssUfYZwREUnXrTDJR9Jo+PRQHful3RbU99IHJPoIMkmvzZpZVA1keUamooV2tHQ3tNNoS1dGV6ojC0m8EGFtHMqkn0SuvmL31llnTpsFmj/xCATK6RUC+F73GsbYniRiRQbJs2xYU8qo77/r1Zj16mNWrF/ZZAZFV0xGVfC96jVttTxIRZJAc+kWpvjD6y08FduxWjZDkuqdJTdR0B2mKXuNV25NEBBnEX1FRsKxaIWbFiqC5XcOGYZ8V8lRNV+/kWk1HVCh6RdiokUG8afpo/Hizf/87KO7t1YsQg1jWmoSlpiMqbH6IsBFkEF/z5pm9/HKwKqldO7MOHYJOvUAIjd0qqjWxHbUmlW0SlyuZ2EGaoleEiaklxM+mTUF40dJqdetlWTUiMDVU01qTuC8jpugVYWFEBvGyeHGwrPqdd8yaNzfr1o0Qg0hMDcV59U6mRlRyvd8RIIzIIB62bjX7+ONgmwGNyPTsybJqRGoZctxX7zCigrgiyCD6li8PViTNnKk/Ec06dgz7jJBANZ0aSsLqHZYRI46YWkJ0qSiysDDYrXr27GAaqcTQN5ApNZ0aYvUOEA6CDKJp1Sqz118PDtFUUoMGYZ8VEiwTU0Os3gFyj6klRAvN7RCSTE0NUWsC5BZBBtGxbp3ZlCnBdFLjxkFzO/rCIIa7GVNrAuQOU0sIn3rBzJ0b1MKoN0z79jS3QyiYGgLihxEZhOvbb4Ml1dOnB/1gNApTm3yN8DA1BMQLQQbhWbDAbPLk4FYjMM2ahX1GQOynhuK08zaQCQQZ5J42d9QUkrYZUHEvWwwAebnzNpAJjOEjt7QSSVsMvPWWWdOmbDEA5PHO20AmEGSQO3PmmI0aZTZ/vlmPHmYtW4Z9RkAixHXnbSATCDLIvm3bzN57z+zf/zbbuJF9koAQt1cAkoYaGWTX+vXBTtXqDdOmDaMwQBbEeedtoKYIMsieJUvMJk4MViWpFoYOvUBWxH3nbaAmCDLIToO7zz4LRmI2bGBVEpBlSdh5G6guamSQWVu2BAHmtdeC91XUS4hBCFTYWlhYaBMmTHC3SS50Zedt5DNGZJA5q1cHy6o//5wGdwhVPvZT8dsr7PZ9FxS4EJPU7xuolUppHiC51q5da82bN7c1a9ZYMy6s2aM6GNXDLF1q1r27Wf36YZ8R8ryfSqqMkYmk75lEZ1/k3KxZZscdZ9a3byjXb0ZkUDPqzPvxx8FWA1pmrXoY9kpCRPup1NrRT0V7KUX14l7TIBLn7RWA6iDIoPrUE+bdd4PtBlq0MOvUKewzQoJU54JelX4qUbzY5+OUGFBTBBlUz/LlQT3M3LlmnTubNWkS9hkhQap7QY9zP5WypsT8FgNJnxIDqos5AFR9KmnmzGC/JL/VACEGEdkzKK79VNhiAKg+ggyqtipp7Fiz0aPZagCRvKD7fiollyB7ur91BPupsMUAUH0EGVRMFw39Ah050mz69GBptephapV1uQDCuaDHtZ9KnKfEgLARZFA+XVTU3G7MGLPNm8169zZr3Djss0JCZeKC7vuptGrVqtj96qcS1TqTuE6JAVFAsS9Kt3VrsM2Adq3WlFLXruyVhNhc0BVWtMQ6Lv1U2GIAqD5GZLC7ZcuCERi/zUCvXoQY5EQma1x8P5XBgwe726iGmDhPiQFRQJBB8X2Spk4NamFmzw52rG7blloY5Ew+X9DjOCUGRAFbFCDw1VdmU6YEfWEKCoIDCKlLbWl9ZFrnyZ5BbDGA2JnFFgUI06ZNwUqkDz8MinnVF4Yl1Qi5S23calwyiS0GgKohyOT7Ro8ahVFjuzZt2GIAkepSywUdQGVQI5OP1q41e/tts3/9y2zJkqCxHcs6kSF0qQWQS4zI5BN14/3882CTRw33t29v1rx52GeFhIn7xo0A4oUgky89YebMCepgFi82a9kyWFJdmwE5ZB5dagHkEkEm6Rs8qv5FIzC6VUfevfdW8UHYZ4YEo0stgFwiyCSRVtRr5EUBRiMxGnlRT5j69cM+M+QButQCyCXmFpJm+XKzN94we/HFoKmdNnjs3p0Qg5zJ56Z2AHKPIJOklUjvvGM2YkQwEqNhe61GatQo7DNDHqJLLYBcYWopCSuRtLnjtGnBSiRtKaBRGCBk+dzUDkDuEGTivBJJU0daiaReMBqB6d2bfZEQqXb5NLUDkG0EmbjWwUyeHOxvsccerERC5LYYAIBcoUYmbsupP/3U7KWXgtVIKuLt2JEQg6xtMVCysZ3fYkAfB4AoIMjExbp1wWqkV18NllerkJeVSKjE1FBhYaFNmDDB3VZmWwC2GAAQJ0wtxcG8efoTOegN06VL0NgOyNLUEFsMAIgTRmSibPPmoBbmlVfMVq0KamEIMcjy1BBbDACIE4JMVC1bFgQY7VKtjR27dqUWBpVS06khthgAECcEmajRxaWw0Ozll4P9kXr0MGvRIuyzQoxUZWqovC0GylrIr/tbs8UAgIggyETJmjVmY8eavfZa0A9GU0n16oV9VohZwW5Np4bYYgBAnFDsGwVahfTFF0E9jJrbaRqJrQVQzYLdTEwN+S0GdvvaBQUuxNBHBkBUEGTCtmmT2QcfBB169Rdur17BbtXIe75gt2Stiy/YLWvPokztPs0WAwDigCATJo2+aPWIRmO0P1KzZmGfESLS5r+igt1aOwp2FTRKfi4/NaSwo8elajA1xBYDAKKOIBMGNbf75BOz6dODERk1t6vLP0UShdXLhakhAPmCq2cuKbTMnGn20UfBfklt2gRbDCCRqjs1lKleLkwNAcgHBJlc2LbNbO7coA7mq6+CvjDUwiRaTaaGMtnLhakhAElHkMn2aqSFC4MAozqYhg2DvjBMIyVeTaeGMlWwCwBJx5BAtnz9tdnrr5uNHBk0ttMeSZ07E2LyBL1cACA3CDLZaGqnbQVGjAg69LZuHYzCNGgQ9pkhhzLZy6VVq1bF7tdITHn1NQCQT0IdHpg4caL95S9/salTp9qSJUvsxRdftFNOOWXnx88//3x74oknij1nyJAhNmbMGIucjRvNPvvMbNo0VXOatW1LIW8eo5cLAORBkNmwYYN95zvfsQsuuMCGDh1a6mOOO+44e+yxx3a+3yBqIxtbt5rNmRPUwSxerD+xzXr3DrYYQN6ilwsA5EGQOf74491RHgWXdu3aWWR3qH7nnaAGRlsKaG8k/lLGDvRyAYDsi3zl6fjx461NmzbWsmVLO/roo+3WW2/drWYg3ebNm93hrV27NnsnN3u22axZQYCpXz97XwexxdQQAORxkNG0kqacunfvbnPnzrXrrrvOjeBMnjy5zAvB7bffbjfddFNuTrCoKFhSTYhBOZgaAoA8DTJnnnnmzrd1IRgwYID16NHDjdIcc8wxpT7n2muvtWHDhhUbkemsZc8AACBxYrX8eq+99nL1BXNUXFtOTU2zZs2KHQAAIJliFWQWLVrklrO2b98+7FMBAAD5PrW0fv36YqMr8+bNs2nTprmCSB2qdTn11FPdqiXVyFx99dXWs2dP10sGAAAg1CDzwQcf2FFHHbXzfV/bct5559mDDz5oH3/8sWuIt3r1auvQoYP94Ac/sFtuuSV6vWQAAED+BZkjjzzSUtpYsQyvvvpqTs8HKG83a5ZQA0D0RHrVEhAFkyZN2r2pXatWrnMvTe0AIFyxKvYFwggx2mYgPcSIis51vz4OAAgPQQYoZzpJIzGlTX76+4YPH+4eBwAIB0EGKINqYkqOxJQMM8tXrHCPAwCEgyADlEGFvZl8HAAg8yj2RV6ozqojPa4yKvs4AEDmEWSQeNVddaSwo8epsLe0Opla+jwFBe5xAIBwMLWERKvJqiON2Cjs+NCSzr9/0UUX0U8GAEJEkEFiZWLVkUZsrrnmGmvVqlWx+zUSo/vpIwMA4WJqCYlVlVVH/fv3L/NxCiuDBg2isy8ARBBBBomVyVVHCi3lhR0AQDiYWkJiseoIAJKPIIPE8quOShbqerq/NauOACDWCDJILFYdAUDyEWSQaKw6AoBkq3Kx73nnnWcXXnihHXHEEdk5IyDDWHUEAMlV5SCzZs0aO/bYY61r1672s5/9zAWbjh07ZufsYPm+TUCmsOoIAJKpykFm5MiRtnz5cnvyySftiSeesBtuuMEFG43SnHzyyVavXr3snCnycpsAAAAyXiPTunVrGzZsmE2fPt2mTJliPXv2tHPOOcc6dOhgV155pc2ePbs6nxYJVZNtAkqO6BQWFtqECRPcbXkdeQEA+aFGDfGWLFlir7/+ujs0dH/CCSe4C4ymDO68804XapDfKtomoNaObQJUw1LeNBMjOgCAjIzIbN261V544QU78cQTXZ3Mc889Z1dccYUtXrzYTTWNHTvWnn32Wbv55pur+qmR59sEZHtEBwCQPFUekWnfvr0VFRXZT3/6U3vvvfdsv/322+0xRx11lLVo0SJT54g83iYgUyM6AIBkqnKQufvuu+3000+3hg0blvkYhZh58+bV9NyQADXdJiBTGz8CAJKpylNLKuotL8QAmdwmIJMbPwIAkofOvoj0NgFs/AgAKA9BBpHeJoCNHwEAWVt+DWR7mwA/oqPVSQot6UW/bPwIACDIIGequ02AH9HZrY9MQYELMfSRAYD8RZBBLLDxIwCgNAQZVAkbPwIAooQgg0pjmwAAQNSwagmVwjYBAIAoIsigQhVtE2A7tglgN2oAQK4RZJCTjR8BAMgGggwqxDYBAICoIsigQmwTAACIKlYt5ZnqLJ/22wSosLe0OplaO5rTsU0AACDXCDJ5pLrLp9kmAAAQVUwt5YmaLp+uycaPAABkCyMyeaCi5dO1diyf1hYA5Y2qsE0AACBqCDJ5oCrLpyvaAoBtAgAAUcLUUh5g+TQAIKkIMnmA5dMAgKQiyOQBv3zarzAqSfe3Zvk0ACCGCDIxLd4tLCy0CRMmuNuK9jjyy6elZJhh+TQAIM4o9s2TXjB++fRuzy0ocCGG5dMAgDgiyMSwF0zJZdS+F0xF/VxYPg0ASBqCTJ71gmH5NAAgSaiRSWAvGAAA8gVBJiboBQMAwO4IMjFBLxgAAHZHkIkJesEAALA7gkwM+sAIvWAAANgdq5Zi0gdG6AUDAEBxBJkY9YEResEAALALQSZmfWCEXjAAAASokckR+sAAAJB5BJkcoQ8MAACZR5DJEfrAAACQeQSZHKEPDAAAmUeQyRH6wAAAkHkEmRzyfWBatWpV7H71ganM0msAAFAcy69zjD4wAABkDkEmBPSBAQAgM5haAgAAsUWQAQAAsUWQAQAAsUWQAQAAsUWQAQAAsUWQAQAAscXy62rYvn27vfXWW7b1jTes28qVtle3bvSBAQAg30ZkJk6caCeddJJ16NDBatWqZSNHjiz28VQqZX/84x+tffv21qhRIzv22GNt9uzZFqYRI0ZYt27d7KijjrKbb7nF7n/gAbe1wKRJk0I9LwAA8lGoQWbDhg32ne98x+6///5SP37nnXfafffdZw899JBNmTLFmjRpYkOGDLFNmzZZWCHmtNNOs0WLFhW7f+XKlXbHHXcQZgAAyKeppeOPP94dpdFozD333GO///3v7eSTT3b3/eMf/7C2bdu6kZszzzyz1Odt3rzZHd7atWszNp3061//2p3Xbue6Y+PH4cOHu+0HmGYCACDPi33nzZtnS5cuddNJXvPmzV1QmDx5cpnPu/32293j/NG5c+eMnI9qYkqOxJQMM8tXrHB7KAEAgDwPMgoxohGYdHrff6w01157ra1Zs2bnsXDhwoycz5IlSyr1OG0ECQAAciNxq5YaNGjgjkxTwXFlaDdrAACQ5yMy7dq1c7fLli0rdr/e9x/LpcMPP9w6derkVleVRve2LiiwPn365PzcAADIV5ENMt27d3eBZdy4ccUKd7V66eCDD875+aiA995773Vvlwwz/j0tw6bQFwCAPAky69evt2nTprnDF/jq7QULFriwcMUVV9itt95qL7/8shUWFtq5557res6ccsopoZzv0KFD7fnnn7eOHTsWu7+goMCuueYaO+SQQ0I5LwAA8lWoNTIffPCBayznDRs2zN2ed9559vjjj9vVV1/tes1ccskltnr1ajvssMNszJgx1rBhw9DOWWFGy8GLdfb9/vcZiQEAIAS1UqU1RkkQTUdpGbZWMDVr1iyzn3ziRLMPPzTr0SOznxcAgLiYNcvsuOPM+vYN5fod2RoZAACAihBkAABAbBFkAABAbBFkAABAbBFkAABAbBFkAABAbBFkAABAbBFkAABAbBFkAABAbBFkAABAbBFkAABAbBFkAABAbIW6+zUAAFmh/ZCLioJj+/bityXvS3+7Xj2zFi3MmjQxq1Ur7O8ClUCQAQBElw8YW7cGt9u2BUfJ9xVcFDx069WpY1a79q7bkm83aBAEl/TbtWvNli0z++ors/r1g1CjnZf1PEQSQQYAEK7Nm82+/TY4Nm4MwouncFK37u5H06ZmjRubNWwYjJ4ohCh4KJD4xyh8lHerMFOSgtCqVWZLl5p9+WUQaL74IjiP5s2DYKOvgcggyAAAckMjKAoqPrRs2RIEB4UQhZJWrczatQtGQBRKfDDxb6e/n61pH33ePfcMjj59zNavD0KNAs28eWYLFgTfxx57mLVsadaoUXbOA5VGkAEAZJbCiUZZ0kOLn/rR6IlCS6dOZq1bB6HFHxpdiRoFlp49g+Ogg4JppyVLglGar78Ovkd9Pwo1eix1NTlHkAEA1IxCy4YNwejFpk1BaFEo0QVeYaVt2+BC7wOLpoVKm9aJOo0cdekSHAMHmq1YEYzWKNQo4CxeHIzQ6PvVY5ETBBkAQOWpsNaHFj/SoukejUZ07mzWvn0QWlRPosASxVGWTFCdjQKLjgEDzFavDoLMZ5+ZLVoU1Pm0aRMEN0ZpsoogAwAonWpBFFYUXHTofV3ANT2kehZdwFVLouCiIth8HYVQUNFroGOffYJ6mlmzzObODcKN7tfIFCufsoIgAwAIRlZU7+FHW1SIq+kfhRaNrOy9d3AxVmDxfVawO4UVP/30ve8F004zZgShRkXKGsGhQDijCDIAkI/Uh0WBRcHFL3nWBVYBpXfvXXUtCi1xrWkJm1/91K9fsJRbgWbhwmB6rqAgeG2ZdqoxggwAJJ1CiqaIfHDxU0Sqa9Fy544dd02N6OKqHivIHNUJKRxqVEsrnmbPDo6ZM4MaGo100Zum2vhpBYCkhRatHNIoi4KLVhTpr36tINJF008R+dCi+5EbGtVSaNSx335BX5pPPw1uFWRUd6RRMUJNlRBkACDuHXEVWnRopEWhxS997t7drEOHILD45c9MEUWD/k2++12zvn2DaafPPw8Kg1euDKb9PNXVqIg6/WDErBheDQCIOl3YfHM53aoQV3xHXL9axocV1bTolr/so09BRaNkari3bt2uBoJ+tZiWdWvLBL2vW4VXBVZRaG2wY2sG3Wo0R7d5VndDkAGAqFBA0bRQ+iGqZ1FgUSFut27BFER6czlWwcSfwof/Ny3rZyM95Piap1WrzNasCQKugpD/mdHIm34uNDrnbxM6GkeQAYBc0l/Tvn2/Dyv+L2yNoPgLj4pw01v4K7AoyCT0YoQK+L2mNCVV2tL5TZuCYKNDgUYjOcuXByFH01W+47ICU8mAE/P+NgQZAMgG/QXta1d0EfHTQekXEgUVvwxXK4gUVHSr0RcCCyqr1o6fKR36mUqnnzsfbnSrYKM9ovyUlX4+FXD086bnqiNzzBBkACBTew35Ghbftt9PB6k5mqaD0sOKDmpYkG316+/qZ5NOvWzSA466Ec+ZEywP18+qHh+TkRqCDABUtfutr1Hw9Qi+6Fb7DGlKSCMs+stWU0K6P8+KLxEDdevu6tIs++4brKJSmFHjPt0qdGu/KIWhCCPIAEBpgUUrhXyBpUZb/JJYTQnpF3zXrkH3Wx9adOTrXkNIhlatgqN//109bhYsCIK4ftY1ihhBBBkA+Vtwq6Dij/RlraJpHz/S0qlT8JepDywsbUaSNW4c9LdRN2IFGe3oPX9+0OfGTztFaJSRIAMgmSMqfjTF913RiIruF839+1UgCiv65aweLH4pc/qh0ZeY1AoAGZ9+2muvoLHismXBjt46/NYKCvcRaM4X/hkAQE1oFCW9t4YPLOnN4vz0j94vGVT0OFYIAWXT6Itqv3RoawXt5K1pJ+3srT8G0kcyQ0CQARAPCie+JX/66iCFEAUUHZ07F++9okM1LQAyQ/9PqSi4T59gawUFGo3WhDjVRJABEE2aDtLS0LVrixfa+mZxvtDWBxYVIjKyAuSGRjJ79Qq2VlCQKa1RX44QZABEg8KKQosOhRgNWatmRQWHCi3pewixOgiIhtq1g7YDISLIAAgvuPgRF00ZqWhQIUUb6HXsGHS8VREuoQVAOQgyAHJDnUQVXHSovsUHF62K0PJmH1yoaQFQBQQZAJkfadEIS/qhqSIFF9WxqF2/inJ9cGHnZgA1QJABUL2g4pvI+bdLNpLTocZZWv7sO4YqvGh1EQBkCEEGQNmBRa35/WaI6c3kfFBRbxbfp8UvgfaHRlrofgsgywgyAIKGVj606CgqCgKLpoI0kjJgQLBiqGRQifhmcgCSjyAD5BuFFBXbrl+/azNEhRaFExXfarmzpoD8zrhq0Q8AEUWQAfIhtPhuuJs2BR04FVo02tKtW7Bfig8tGnWJ0GZwAFARggyQFL59vw8uCjEKJX5PIW381qHDrtCi0Rc2QwQQcwQZII71LOmjLAowCiwqrNVIi1YK7btvcOu74eqIwC61AJBp/GYD4rBySIFFt1o55KeGVLuiERZNDaVvkkhfFgB5hCADRHW5s6aGNMqiwKLRlb59g6XO6ZskMjUEIM8RZICo9GjR1I9Ci5Y79+sX3KpPiw5WDgFAqQgyQLZpZEWBRXsM+emh9NDSv38w4qLA4hvLAQAqhSADZKMYVz1aFFw02iKaBtK0kEKL74Sr4EJoAYAaIcgAmdzV2fdp0SohFeFqg0S/z5DqWujRAgAZRZABqlPfsnZtMOqipc+1awfBpVOnYFdnH1w0CgMAyCqCDFAR7eys0RaFF72tlUQKLmowp/Ci+hYFF6aJACDnCDJASRpl8VNFGn3xwUV7EKlvi0KLwkvDhmGfKQDkPYIMoOCi0RYfXLSjs+pZ1B23fftdU0Xs9AwAkUOQQf5RQa6fKlKhrg8uffoUH3EhuABA5BFkkGwKKloCrcJc38PFBxc1nUsfcdEUEgAgVggySFbjOb8nkYKL+rloRZEaz6l3i1r8+9EWHQQXAIg9ggziPUXkR1p8/xatHPIritTHRY3nFGIUZujhAgCJQ5BBfGi0ZfXqILyIVg0poCi0aIoovWOuRmIAAIlHkEF0aWpIBbkKL1pZpNEWTQkNGBBMEfngwhQRAOQtggyiRVNECi5aVSQqyu3Z06xr12CqSAGG0RYAwA4EGYRfoKvQovCiEKPpIl+Yq+kihRdNHwEAUAqCDHJP00Rr1gSHlkNr1EUjLjratjUrKDCrUyfsswQipaioyLZoiwwgIerVq2d1MvC7niCD3BbqavRFfVw06jJwYNCATuFFK40AlEoBZt68eS7MAEnSokULa9eundWqwapSggyyR6uLVq0KlkerUFcjLfvvv2vKiCJdoEKpVMqWLFni/nLt3Lmz1aZGDAn5uf7222/t66+/du+313WhmggyyBxNE2nEReFl40azPfYwa9fOrEeP4LZ1awp1gSratm2b+4XfoUMHa8wO60iQRo0auVuFmTZt2lR7mokgg8wskVZ40YaLmiJSrYvv7aLl0jSiA6ptu/4fM83IsvcXkqfxjnC+devWZAaZG2+80W666aZi9/Xu3ds+//zz0M4JO8KL6l0UXjRnrwZ0++wTBBiNvKi3C4CMqkkNAZDkn+tIBxnp27evjR07duf7detG/pSTvdpo2bJg2kgjLd/5jlnnzsHIi6aRAADIscinAgUXVTRX1ubNm93hrdW0B2pGdS87CrKsU6egx4tGX5ivB1BFRx55pO233352zz33hH0qSIjIV17Onj3bFbnttddedvbZZ9uCBQvKffztt99uzZs333moyh/VoCmjFSvMZs4M+r3su6/Zj38cHHqbEAMgy8aPH++mHlZrKhuI44jMoEGD7PHHH3d1MVp+qHqZww8/3D755BNrWkbfkWuvvdaGDRtWbESGMFMFKtjV6ItGYbQdwCGHmO29d7B0mjl6INZFw2+99Zb7XaqlrvpdmolmZEDYIj0ic/zxx9vpp59uAwYMsCFDhtjo0aNdMn/22WfLfE6DBg2sWbNmxQ5UsmHdvHlm8+cHxbtDhpj95CdBkNGyaUIMEFsjRoywbt262VFHHWVnnXWWu9X7uj+bNmzYYOeee67tscceLjz913/9V7GPP/nkkzZw4ED3h6lKCHRuvq/I/Pnz3XlKy5Yt3cjM+eef794fM2aMHXbYYa6ZWqtWrezEE0+0uXPnZvV7QXRFOsiUpB/aXr162Zw5c8I+leT0fdHKo1mzglEYLZn+0Y/MTjst2GGaAl4g9hRWTjvtNFu0aFGx+7/66it3fzbDzFVXXWUTJkywl156yV577TU3VfThhx/u/LiW3N5yyy02ffp0GzlypAsvPqxoJP2FF15wb8+cOdONJN177707A5JG3j/44AMbN26caxL44x//mM7HeSrSU0slrV+/3qXuc845J+xTibdt24L6F807a/RF3XZ79QqWTtOwDkjUdNKvf/1r10W1JN2nUY4rrrjCTj755IxPM+n39aOPPmr/+7//a8ccc4y774knnrBOWjCwwwUXXLDzbdVB3nfffXbAAQe452oUZ0+tjjQ1Am/j/pD1Tj311GJf6+9//7u1bt3aZsyYYf369cvo94Hoi/RV67e//a1L80rpkyZNcolb/7P99Kc/DfvU4ke/yFS0q+FXTSE1aGB29NFmp5+uZQTBnkeEGCBRVBNTciSmZJhZuHChe1ym6Y9O7RGlWkdPwUQ1j97UqVPtpJNOsi5durjppcGDB7v7K1rUoUUgug4o/Kh8QNNklXkekinSIzL6H1A/rCtXrnRpW3Oi7777rnsblbRpUzD6ouJdjb706RNsGaC/ihRmACSWpmMy+bhM0vSQah91PPXUU+73uoKI3q9ol2+Fn65du9ojjzziVrVqSkkjMewOnp8iHWSeeeaZsE8hvp13VfvyzTfBxoyaMjr0ULMuXei6C+SRym7EV5MN+8rSo0cPq1evnk2ZMsWNuMiqVats1qxZbuRFHdr1R+odd9yxc2Wpal7S+W0Z/DYNoueoZkYhRiuv5O233874+SM+Ih1kUEUaddHoi/4q0dyyhnRVwKsgwzJLIO/oQq+aFBX2llYnoxoZfdwHgkxSjcuFF17oCn61skh1Ltdff/3O3bsVbhRU/va3v9kvfvEL11ZDhb/pNOqicxw1apSdcMIJbpNBrWDS53v44YddANMozjXXXJPx80d8UBQRdwotixebaf8p1cDstZfGXc3OPNPssMPMOnYkxAB5SjWFfqVPyT1t/PvqsJutfjJ/+ctfXEjSVNCxxx7rygP21+ICU1eH1q5P2HPPPWd9+vRxIzN33XVXsed37NjR9Q9TUGnbtq1dfvnlLghptF71NZpOuvLKK93XQf6qlSotpieIGuKpw++aNWsy31Nm4kQzLSVUzUmuacXR8uVBga5qhvymjWpiR88XIDE2bdpk8+bNs+7du1vDhg2r9Tm0xFqrl9ILfzWdoxAzdOjQDJ4tkLmf78pev5laihNlTtW9KMDoH3W//YIQpRVHqoUBgFIorGiJNZ19kUQEmThQk6eVK4NDxboHHxyMwGjbAACoBIUWbdgIJA1BJuoBRqMvWoGk4l0V5KkHQ8uWYZ8ZAACRQJCJIi011JYBa9cGNS/ab0Sdd9k3CgCAYggyUds6YNmyYBl127ZmBx4Y7DzdpEnYZwYAQCQRZKJg61azpUuDHajVmErLplXE26hR2GcGAECkEWTCtHlzEGB0q86W/fsHfWDYOgAAgEohyIS1jFp7m2zYEGwbMGBA0IGXJdQAAFQJQSaMTRy//DJYhXT88UENTF3+GQAAqA62KMglrUTSNvPagfqUU8z23ZcQA6B6Nm4MtiXJ1aGvlwPdunVzHYfj7sYbb7T91LR0h/PPP99O0e/9GsjE56gM7SLes2dPmzRp0s77tMnnQQcd5Lrvpn9f5dHjX3jhBcs2rqK52g9JozBNm5ode6xZ374EGADVp1Dx0ktBj6lcUf+qk0+u9CIEXXSfeOIJ97Z2wdYmkeeee65dd911Vrec33/vv/++NUngSk3teVXZHYHmz5/vWvZ/9NFHxUJDVT5HTTz00EPu6x9yyCE777vhhhvcv4t2HteGoJXx+9//3u2F9eMf/3jnZqHZwNU02/yWAj17Bh15tawaAGr6x5FCjEJFNfdfqvKUuL6evm4VVlMed9xx9thjj9nmzZtt9OjRdtlll7lQc+2115Y6CqDdsLWZZE34z5MJmfxc2jMoCp+jIgpK//3f/20333xzsfvnzp1rP/zhD92O5JV1/PHH20UXXWT//ve/3XOzhamlbPaEmTs3WFJ9xBFmJ5xAiAGQWQoxGr3I9lHNsNSgQQNr166du/j98pe/dDtgv/zyy8WmSf70pz9Zhw4drLe6lpcytbRgwQK3T5RGAbRx4E9+8hNbpn5bJaZwhg8fXu7Gmtppu0WLFjZy5Ejbe++93eOGDBliCxcurPBzrV692l2QFbJ0DkcffbRNnz692OfX7t3aobtp06Z24YUXus0Qy5sWKioqsjvvvNNN4eh10oiVXgvR15bvfve7bpdyv7VE+ud4+OGH3etWpA7wafRaXXDBBTvff+mll+x73/ue+1722msvt5v4Nl2fyqBdxX1o8XQOul/hRm/rdfrHP/7h/k1mz56983GXXnqp7bPPPvatrns7tsU44YQT3G7l2USQyQbNJ+sft2NHs5NOChrbZSjVA0BcNWrUyI1yeOPGjXNTFa+//rqNGjVqt8frIq0L8zfffGMTJkxwj/viiy/sjDPOKPa4OXPmuFoM7fI9bdq0Mr++LrAKC7oIv/POOy6gnHnmmRV+rtNPP92+/vprN7KgC7qCwTHHHOPOS5599ll3cb/tttvsgw8+cJtyPvDAA+W+FhqVUvj5wx/+YDNmzLCnn37aBSF577333O3YsWPdJp86l5J0TitXrrQ333xz5306nzFjxtjZZ5/t3tcmoZrO087n+hr/8z//4wKdD0yl0XN69erlApmnc+jbt6/95je/cW//9re/dZ9XIUVfS8HolVdecQHwqaeessaNG+987oEHHug+ZzYxtZTprQUWLQqWV2tucf/9aWoHIO9pukKh5dVXX7Vf/epXO+9XzYUufmVN3+g5hYWFNm/ePOusXltmLoTooqpamgMOOMDdp3Ck+yualtq6daubNhk0aJB7XzU8++67rwsOuuCW9rnefvtt93EFGY2cyF133eVGdp5//nm75JJL3AiSRmF0yK233upCSMlRGW/dunWu3kXnct5557n7evToYYepGarZzq/dqlUrN6JVmpYtW7qpm6efftqFKtH5FBQU2FHa1sbMjb5cc801O7+GRmRuueUWu/rqq13NS2m+/PJLN9KTTueguiaNwKSfj4LRgAED7D//8z9d2FKY21/XvTT6XBr1UijNVp0MIzKZsn59MAqjZdUnnmh26KGEGAB5TaMsuvhpWkMXXY2k6GLn9e/fv9walM8++8wFGB9ipE+fPm6KSB/zNHVVmdoaXYx9+BFNg1T0uTSFtH79ehcq9L34Q+FKUzD+PH048g5WTWQ535fqhnwAqS6Nhrzwwgvuc4lGQzTC5AODzl3TQennffHFF7tRFT/9U9LGjRvLnJ4rLUw9+uij9uCDD7ogptBU2iicQow/x2xgRKamNPry1VdBMZySqFJ9JSu6ASDJNDKgi5zCiv4yL7laKVOrkzK5yqnk51KI0VTR+PHjd3usQlB16OKeCSeddJIb7dK0jgKapnDuvvvuYueuUZmhQ4fu9tyywopGdDQKVlkTJ050tTAKRxs2bCg2JeWnu/SaZup7Lg0jMpmoh9E/kJrbqSCLEAMAji5gKmZVIWt5S67LomkfTUukF+Sq1kO1LRqZqSrVcqiGxVN9jj6Xvk5ZVA+zdOlSd/76XtIPXfT9eU6ZMqXY8959990yP6eKjXVh19RZafwo1XaVK5RDYWTo0KFuJOaf//ynK5jW+aafu77Hkueto6xpHhUYq2dMZZZ5q8/Mn//8Z/vXv/7lRnsuv/zy3R7zySefuM+ZTYzI1IQKmg46KDiqmcwBoNrKqMGI7dcpQaucNP2kKRTVoSiIaGXM4MGDbeDAgVX+fFr6rRqd++67zwUTXXjVtM3Xx5R1Dpom0mohrTJSIezixYvdKIj6o+g8VEyrFUV6+9BDD3XB4tNPP3U1KWUFkN/97neuVkWhRc9Zvny5e47qbNq0aeOCjgp3O3Xq5B5f1tLrs88+20488UT33P/4j/8o9rE//vGP7mMKkqeddpoLL5puUrhQHU9Zo2gaydHn69evX5mvi+p8zjnnHFcfo2lDnadGhTRKpK/laZToBz/4gWUTIzI1oamk444jxADILf3FrgZ1aoyn/i7ZPvR19PVyvPpSS321fFi1GEcccYQLFQoH//d//1etz6fVNAoQZ511lgsPGkWo6HPpHNQDR1//Zz/7mQsyqkNRUaxfZaTaH60+UjBRsas+puXm5dHjtQpIYUMjOvocKigWhSyFLRXTakpOK7fKcvTRR9uee+7pRl70faXT8nLVKb322msuZCi0aeqpvF4wqgVSQFMYK4/Cm0bctFJLFDj19s9//nP7SuUWpqqLr9yojV63bKqVykWbwBCtXbvWJdk1a9a49f8AECda+aLC0t16pChcpC1lzjqFmBgvYNCy4yuuuMJNJaF8H3/8sX3/+993xcyV7eJbGoXGVatWuZ43Vf75rsL1m6klAIgjhYoYBwtE14ABA1ztiwKGRlqqS1Nkw4YNs2wjyAAAgGJU81NTmjrLBWpkAAB5cWFmWimZCDIAACC2CDIAEAMJX5eBPJXKwM81QQYAIkxdUyV9s0UgKb7dsVWCevxUF8W+ABBh6imi/idqmKZf9tnaeA/I9UiMQox652irBx/Yq4MgAwARpoZs2utHS2HVaA1IkhYtWpS5w3dlEWQAIOLUxl778zC9hCSpV69ejUZiPIIMAMSAppTK2rEYyGdMtgIAgNgiyAAAgNgiyAAAgNiqmy/NdrSLJgAAiAd/3a6oaV7ig8y6devcbefOncM+FQAAUI3rePPmzcv8eK1UwvteFxUV2eLFi61p06auH0Mmk6LC0cKFC61Zs2YZ+7zYHa91bvA65wavc27wOsf/dVY8UYjp0KFDuY0gEz8io2++U6dOWfv8+ofjf5Lc4LXODV7n3OB1zg1e53i/zuWNxHgU+wIAgNgiyAAAgNgiyFRTgwYN7IYbbnC3yC5e69zgdc4NXufc4HXOn9c58cW+AAAguRiRAQAAsUWQAQAAsUWQAQAAsUWQAQAAsUWQKcf9999v3bp1s4YNG9qgQYPsvffeK/fxzz33nO2zzz7u8f3797fRo0fn7Fzz6bV+5JFH7PDDD7eWLVu649hjj63w3wbV+5n2nnnmGdcZ+5RTTsn6Oebj67x69Wq77LLLrH379m71R69evfj9kYXX+Z577rHevXtbo0aNXDfaK6+80jZt2pSz842jiRMn2kknneS66+p3wMiRIyt8zvjx4+173/ue+1nu2bOnPf7449k9Sa1awu6eeeaZVP369VN///vfU59++mnq4osvTrVo0SK1bNmyUh//zjvvpOrUqZO68847UzNmzEj9/ve/T9WrVy9VWFiY83NP+mt91llnpe6///7URx99lPrss89S559/fqp58+apRYsW5fzck/w6e/PmzUt17Ngxdfjhh6dOPvnknJ1vvrzOmzdvTg0cODB1wgknpN5++233eo8fPz41bdq0nJ97kl/np556KtWgQQN3q9f41VdfTbVv3z515ZVX5vzc42T06NGp66+/PjVixAitcE69+OKL5T7+iy++SDVu3Dg1bNgwdy3829/+5q6NY8aMydo5EmTKcOCBB6Yuu+yyne9v37491aFDh9Ttt99e6uN/8pOfpH74wx8Wu2/QoEGpn//851k/13x7rUvatm1bqmnTpqknnngii2eZn6+zXttDDjkkNXz48NR5551HkMnC6/zggw+m9tprr9SWLVtyeJb59zrrsUcffXSx+3SxPfTQQ7N+rklhlQgyV199dapv377F7jvjjDNSQ4YMydp5MbVUii1bttjUqVPdlEX6nk16f/LkyaU+R/enP16GDBlS5uNR/de6pG+//da2bt1qe+65ZxbPND9f55tvvtnatGljF154YY7ONP9e55dfftkOPvhgN7XUtm1b69evn9122222ffv2HJ558l/nQw45xD3HTz998cUXbvruhBNOyNl554PJIVwLE79pZHWsWLHC/RLRL5V0ev/zzz8v9TlLly4t9fG6H5l9rUv63e9+5+ZvS/7Pg5q9zm+//bY9+uijNm3atBydZX6+zrqgvvHGG3b22We7C+ucOXPs0ksvdeFcHVORmdf5rLPOcs877LDD3K7K27Zts1/84hd23XXX5eis88PSMq6F2iV748aNrj4p0xiRQazdcccdrhD1xRdfdAV/yIx169bZOeec4wqrCwoKwj6dRCsqKnKjXg8//LDtv//+dsYZZ9j1119vDz30UNinligqQNVI1wMPPGAffvihjRgxwl555RW75ZZbwj411BAjMqXQL+46derYsmXLit2v99u1a1fqc3R/VR6P6r/W3l133eWCzNixY23AgAFZPtP8ep3nzp1r8+fPd6sV0i+4UrduXZs5c6b16NEjB2ee/J9nrVSqV6+ee5637777ur9sNYVSv379rJ93PrzOf/jDH1w4v+iii9z7Wlm6YcMGu+SSS1xw1NQUaq6sa2GzZs2yMhoj/MuVQr849JfRuHHjiv0S1/uayy6N7k9/vLz++utlPh7Vf63lzjvvdH9JjRkzxgYOHJijs82f11ltBAoLC920kj9+9KMf2VFHHeXe1tJVZObn+dBDD3XTST4oyqxZs1zAIcRk7nVWLV3JsOLDI1sOZk4o18KslREnYGmfluo9/vjjbgnZJZdc4pb2LV261H38nHPOSV1zzTXFll/XrVs3ddddd7klwTfccAPLr7P0Wt9xxx1u2eXzzz+fWrJkyc5j3bp1IX4XyXudS2LVUnZe5wULFrhVd5dffnlq5syZqVGjRqXatGmTuvXWW0P8LpL3Out3sl7nf/7zn26J8GuvvZbq0aOHW3GKsun3qlpd6FBk+Otf/+re/vLLL93H9RrrtS65/Pqqq65y10K1ymD5dYi0/r1Lly7uoqmlfu++++7Ojw0ePNj9Yk/37LPPpnr16uUer+Vnr7zySghnnfzXumvXru5/qJKHflEhsz/T6Qgy2XudJ02a5No16MKspdh/+tOf3NJ3ZO513rp1a+rGG2904aVhw4apzp07py699NLUqlWrQjr7eHjzzTdL/X3rX1vd6rUu+Zz99tvP/bvo5/mxxx7L6jnW0n+yN94DAACQPdTIAACA2CLIAACA2CLIAACA2CLIAACA2CLIAACA2CLIAACA2CLIAACA2CLIAACA2CLIAACA2CLIAACA2CLIAACA2CLIAIiV5cuXW7t27ey2227bed+kSZOsfv36Nm7cuFDPDUDusWkkgNgZPXq0nXLKKS7A9O7d2/bbbz87+eST7a9//WvYpwYgxwgyAGLpsssus7Fjx9rAgQOtsLDQ3n//fWvQoEHYpwUgxwgyAGJp48aN1q9fP1u4cKFNnTrV+vfvH/YpAQgBNTIAYmnu3Lm2ePFiKyoqsvnz54d9OgBCwogMgNjZsmWLHXjgga42RjUy99xzj5teatOmTdinBiDHCDIAYueqq66y559/3qZPn2577LGHDR482Jo3b26jRo0K+9QA5BhTSwBiZfz48W4E5sknn7RmzZpZ7dq13dtvvfWWPfjgg2GfHoAcY0QGAADEFiMyAAAgtggyAAAgtggyAAAgtggyAAAgtggyAAAgtggyAAAgtggyAAAgtggyAAAgtggyAAAgtggyAAAgtggyAADA4ur/ARDt3clPAAb8AAAAAElFTkSuQmCC",
+ "text/plain": [
+ " Helper class that provides a standard way to create an ABC using
+inheritance. Helper class that provides a standard way to create an ABC using
+inheritance. Helper class that provides a standard way to create an ABC using
+inheritance. Helper class that provides a standard way to create an ABC using
+inheritance. Helper class that provides a standard way to create an ABC using
+inheritance. Helper class that provides a standard way to create an ABC using
+inheritance. Logpdf plus the log absolute determinant of the jacobian. Logpdf plus the log absolute determinant of the jacobian, evaluated at
+parameter on the transformed (real) space. Helper class that provides a standard way to create an ABC using
+inheritance. Helper class that provides a standard way to create an ABC using
+inheritance. Helper class that provides a standard way to create an ABC using
+inheritance. Logpdf plus the log absolute determinant of the jacobian. Logpdf plus the log absolute determinant of the jacobian, evaluated at
+parameter on the transformed (real) space. Helper class that provides a standard way to create an ABC using
+inheritance. Helper class that provides a standard way to create an ABC using
+inheritance. Helper class that provides a standard way to create an ABC using
+inheritance. Helper class that provides a standard way to create an ABC using
+inheritance. Helper class that provides a standard way to create an ABC using
+inheritance. Helper class that provides a standard way to create an ABC using
+inheritance. Helper class that provides a standard way to create an ABC using
+inheritance. Helper class that provides a standard way to create an ABC using
+inheritance. Helper class that provides a standard way to create an ABC using
+inheritance. Helper class that provides a standard way to create an ABC using
+inheritance. Helper class that provides a standard way to create an ABC using
+inheritance. Helper class that provides a standard way to create an ABC using
+inheritance. Helper class that provides a standard way to create an ABC using
+inheritance. Helper class that provides a standard way to create an ABC using
+inheritance. Helper class that provides a standard way to create an ABC using
+inheritance. Helper class that provides a standard way to create an ABC using
+inheritance. Helper class that provides a standard way to create an ABC using
+inheritance. Base class for protocol classes. Protocol classes are defined as:: Such classes are primarily used with static type checkers that recognize
+structural subtyping (static duck-typing), for example:: See PEP 544 for details. Protocol classes decorated with
+@typing.runtime_checkable act as simple-minded runtime protocols that check
+only the presence of given attributes, ignoring their type signatures.
+Protocol classes can be generic, they are defined as:: Base class for protocol classes. Protocol classes are defined as:: Such classes are primarily used with static type checkers that recognize
+structural subtyping (static duck-typing), for example:: See PEP 544 for details. Protocol classes decorated with
+@typing.runtime_checkable act as simple-minded runtime protocols that check
+only the presence of given attributes, ignoring their type signatures.
+Protocol classes can be generic, they are defined as:: Helper class that provides a standard way to create an ABC using
+inheritance. Helper class that provides a standard way to create an ABC using
+inheritance. Get (logprob, trace). Helper class that provides a standard way to create an ABC using
+inheritance. TODO. Returns (logprob, trace). A trace is the state in the native space and
+the cached values. Helper class that provides a standard way to create an ABC using
+inheritance. Handle cached values. Returns the value TODO. Calculates the transformed log probability for a given state (on the real
+space) and also returns the state in the native space. Get transformed predictive state. Get transformed predictive state (i.e. state predictive in the real
+space) via the Handle cached values. Returns the value Helper class that provides a standard way to create an ABC using
+inheritance. Kish Effective Sample Size. Kish's effective sample size. Used for weighted samples. (e.g. importance
+sampling, sequential monte carlo, particle filters.) https://en.wikipedia.org/wiki/Effective_sample_size If log is True, then the w are log weights. Chain MCMC samples. Get all MCMC samples for one variable or cached value by name. Bundle MCMC values into a dictionary. Return subset of the states. Abstract inference engine class. Abstract class for MCMC. Update model state in one MCMC iteration. Run MCMC. Compute log density. Markov Chain Monte Carlo. Update mcmc_state and return logprob and native_state_and_cache. Random walk Metropolis. proposal (dict[str, Any]):
+If None is received in the constructor, an empty dictionary is first
+created. In addition, any model parameters unnamed in the constructor
+will have a value of
+ then the value for sigma will be
+ Update mcmc_state and return native state and cached values. Affine Invariant MCMC. Number of model parameters. Compute log density. Update mcmc_state and return list of native_state_and_cache. Fit model with AIES. Sequential Affine Invariant Ensemble Sampler. This sampler is good for target distributions that are not multimodal and
+separated by large low density regions. You should use as many walkers as
+you can afford. Whereas this sampler employs walkers that are sequeutnailly
+updated. there is a parallel analog that updates walkers in parallel. Return 1. Update mcmc_state and return list of native_state_and_cache. Parallel Affine Invariant MCMC (or Parallel AIES). Update mcmc_state and return list of native_state_and_cache. Importance Sampling. Laplace Approximation of Posterior. Compute log density. Fit model with laplace approx. Bayesian Optimization. Adaptive Random Walk Metropolis. Shapes dict of numeric values into np.array and back. Construct a Shaper from a state. Convert a state dict into a np.ndarray. Convert a np.ndarray back to a state dict. Common base class for all non-exit exceptions. Common base class for all non-exit exceptions. Common base class for all non-exit exceptions.\n",
+ " \n",
+ "
\n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 1 \n",
+ " 2 \n",
+ " 3 \n",
+ " 4 \n",
+ " 5 \n",
+ " \n",
+ " \n",
+ " count \n",
+ " 1000.000000 \n",
+ " 1000.000000 \n",
+ " 1000.000000 \n",
+ " 1000.000000 \n",
+ " 1000.000000 \n",
+ " 1000.000000 \n",
+ " \n",
+ " \n",
+ " mean \n",
+ " 0.476337 \n",
+ " 0.511925 \n",
+ " 0.628071 \n",
+ " 0.480268 \n",
+ " 0.508379 \n",
+ " 0.476343 \n",
+ " \n",
+ " \n",
+ " std \n",
+ " 0.015061 \n",
+ " 0.302358 \n",
+ " 0.224486 \n",
+ " 0.307684 \n",
+ " 0.276695 \n",
+ " 0.290834 \n",
+ " \n",
+ " \n",
+ " min \n",
+ " 0.429019 \n",
+ " 0.000083 \n",
+ " 0.073538 \n",
+ " 0.001267 \n",
+ " 0.000639 \n",
+ " 0.000521 \n",
+ " \n",
+ " \n",
+ " 25% \n",
+ " 0.466306 \n",
+ " 0.255602 \n",
+ " 0.475081 \n",
+ " 0.211281 \n",
+ " 0.280679 \n",
+ " 0.206512 \n",
+ " \n",
+ " \n",
+ " 50% \n",
+ " 0.476847 \n",
+ " 0.532210 \n",
+ " 0.651781 \n",
+ " 0.468201 \n",
+ " 0.513734 \n",
+ " 0.473771 \n",
+ " \n",
+ " \n",
+ " 75% \n",
+ " 0.486208 \n",
+ " 0.776699 \n",
+ " 0.810819 \n",
+ " 0.763509 \n",
+ " 0.745267 \n",
+ " 0.731109 \n",
+ " \n",
+ " \n",
+ " \n",
+ "max \n",
+ " 0.525908 \n",
+ " 0.999089 \n",
+ " 0.994073 \n",
+ " 0.999914 \n",
+ " 0.999850 \n",
+ " 0.990766 \n",
+ "
+arianna
+
+
+
+
+
+
+arianna
+
+
+
+
+
+
+ 1from .distributions import * # noqa: D104, F403
+
+arianna
+
+
+
+
+
+
+ 1from abc import ABC, abstractmethod
+ 2from functools import cached_property
+ 3
+ 4import numpy as np
+ 5from numpy import ndarray
+ 6from numpy.random import Generator as RNG
+ 7from numpy.random import default_rng
+ 8from scipy.special import expit, logit
+ 9
+ 10from arianna.types import InvalidBoundsError, Numeric, Shape
+ 11
+ 12
+ 13class Distribution(ABC):
+ 14 @cached_property
+ 15 @abstractmethod
+ 16 def event_shape(self): ...
+ 17
+ 18 # TODO: Think about how to implement this.
+ 19 @cached_property
+ 20 @abstractmethod
+ 21 def batch_shape(self): ...
+ 22
+ 23 @abstractmethod
+ 24 def logpdf(self, x: Numeric) -> Numeric: ...
+ 25
+ 26 @abstractmethod
+ 27 def sample(
+ 28 self, sample_shape: Shape = (), rng: RNG = default_rng()
+ 29 ) -> ndarray: ...
+ 30
+ 31 def pdf(self, x: Numeric) -> Numeric:
+ 32 return np.exp(self.logpdf(x))
+ 33
+ 34 @cached_property
+ 35 @abstractmethod
+ 36 def mean(self) -> Numeric: ...
+ 37
+ 38 @cached_property
+ 39 def std(self) -> Numeric:
+ 40 return np.sqrt(self.var)
+ 41
+ 42 @cached_property
+ 43 @abstractmethod
+ 44 def var(self) -> Numeric: ...
+ 45
+ 46
+ 47class Continuous(Distribution):
+ 48 @abstractmethod
+ 49 def to_real(self, x: Numeric) -> Numeric: ...
+ 50
+ 51 @abstractmethod
+ 52 def to_native(self, z: Numeric) -> Numeric: ...
+ 53
+ 54 @abstractmethod
+ 55 def logdetjac(self, z: Numeric) -> Numeric: ...
+ 56
+ 57
+ 58class Discrete(Distribution): ...
+ 59
+ 60
+ 61class Multivariate(Distribution):
+ 62 @cached_property
+ 63 @abstractmethod
+ 64 def mean(self) -> ndarray: ...
+ 65
+ 66 @cached_property
+ 67 def std(self) -> ndarray:
+ 68 return np.sqrt(self.var)
+ 69
+ 70 @cached_property
+ 71 @abstractmethod
+ 72 def var(self) -> ndarray: ...
+ 73
+ 74
+ 75class Univariate(Distribution):
+ 76 @cached_property
+ 77 def event_shape(self) -> Shape:
+ 78 return ()
+ 79
+ 80 @cached_property
+ 81 @abstractmethod
+ 82 def batch_shape(self) -> Shape: ...
+ 83
+ 84 def _reshape(self, sample_shape: Shape) -> Shape:
+ 85 return sample_shape + self.batch_shape
+ 86
+ 87 @abstractmethod
+ 88 def _sample(self, size: Shape, rng: RNG) -> ndarray: ...
+ 89
+ 90 def sample(
+ 91 self, sample_shape: Shape = (), rng: RNG = default_rng()
+ 92 ) -> ndarray:
+ 93 shape = self._reshape(sample_shape)
+ 94 return self._sample(shape, rng)
+ 95
+ 96
+ 97class UnivariateContinuous(Univariate, Continuous):
+ 98 def logpdf_plus_logdetjac(self, z: Numeric) -> Numeric:
+ 99 """Logpdf plus the log absolute determinant of the jacobian.
+100
+101 Logpdf plus the log absolute determinant of the jacobian, evaluated at
+102 parameter on the transformed (real) space.
+103 """
+104 x = self.to_native(z)
+105 return self.logpdf(x) + self.logdetjac(z)
+106
+107 @abstractmethod
+108 def logcdf(self, x: Numeric) -> Numeric: ...
+109
+110 def cdf(self, x: Numeric) -> Numeric:
+111 with np.errstate(divide="ignore"):
+112 return np.exp(self.logcdf(x))
+113
+114 def survival(self, x: Numeric) -> Numeric:
+115 return 1 - self.cdf(x)
+116
+117 def logsurvival(self, x: Numeric) -> Numeric:
+118 return np.log1p(-self.cdf(x))
+119
+120
+121class Positive(UnivariateContinuous):
+122 @abstractmethod
+123 def _logpdf(self, x: Numeric) -> Numeric: ...
+124
+125 def to_real(self, x: Numeric) -> Numeric:
+126 return np.log(x)
+127
+128 def to_native(self, z: Numeric) -> Numeric:
+129 return np.exp(z)
+130
+131 def logdetjac(self, z: Numeric) -> Numeric:
+132 return z
+133
+134 def logpdf(self, x: Numeric) -> Numeric:
+135 # ignore divide by zero encountered in log.
+136 with np.errstate(divide="ignore"):
+137 return np.where(x > 0, self._logpdf(np.maximum(0, x)), -np.inf)
+138
+139
+140class LowerUpperBounded(UnivariateContinuous, ABC):
+141 @abstractmethod
+142 def _logpdf(self, x: Numeric) -> Numeric: ...
+143
+144 def __init__(self, lower: Numeric, upper: Numeric, check: bool = True):
+145 self.lower = lower
+146 self.upper = upper
+147 self.range = self.upper - self.lower
+148 if check and np.any(self.range <= 0):
+149 raise InvalidBoundsError(
+150 "In LowerUpperBounded, lower bound needs to be strictly less than upper bound!"
+151 )
+152
+153 def to_real(self, x: Numeric) -> Numeric:
+154 return logit((x - self.lower) / self.range)
+155
+156 def to_native(self, z: Numeric) -> Numeric:
+157 return expit(z) * self.range + self.lower
+158
+159 def logdetjac(self, z: Numeric) -> Numeric:
+160 return np.log(self.range) + z - 2 * np.logaddexp(0, z)
+161
+162 def logpdf(self, x: Numeric) -> Numeric:
+163 # ignore divide by zero encountered in log.
+164 with np.errstate(divide="ignore"):
+165 return np.where(
+166 (self.lower < x) & (x < self.upper),
+167 self._logpdf(np.clip(x, self.lower, self.upper)),
+168 -np.inf,
+169 )
+170
+171
+172class MultivariateContinuous(Multivariate, Continuous):
+173 def logpdf_plus_logdetjac(self, z: ndarray) -> Numeric:
+174 """Logpdf plus the log absolute determinant of the jacobian.
+175
+176 Logpdf plus the log absolute determinant of the jacobian, evaluated at
+177 parameter on the transformed (real) space.
+178 """
+179 x = self.to_native(z)
+180 return self.logpdf(x) + self.logdetjac(z)
+181
+182 @abstractmethod
+183 def cov(self) -> ndarray: ...
+184
+185 @abstractmethod
+186 def mean(self) -> ndarray: ...
+187
+188
+189class Real:
+190 def to_real(self, x: Numeric) -> Numeric:
+191 return x
+192
+193 def to_native(self, z: Numeric) -> Numeric:
+194 return z
+195
+196 def logdetjac(self, z: Numeric) -> Numeric:
+197 return 0
+198
+199
+200class UnivariateReal(Real, UnivariateContinuous): ...
+201
+202
+203class MultivariateReal(Real, MultivariateContinuous): ...
+
14class Distribution(ABC):
+15 @cached_property
+16 @abstractmethod
+17 def event_shape(self): ...
+18
+19 # TODO: Think about how to implement this.
+20 @cached_property
+21 @abstractmethod
+22 def batch_shape(self): ...
+23
+24 @abstractmethod
+25 def logpdf(self, x: Numeric) -> Numeric: ...
+26
+27 @abstractmethod
+28 def sample(
+29 self, sample_shape: Shape = (), rng: RNG = default_rng()
+30 ) -> ndarray: ...
+31
+32 def pdf(self, x: Numeric) -> Numeric:
+33 return np.exp(self.logpdf(x))
+34
+35 @cached_property
+36 @abstractmethod
+37 def mean(self) -> Numeric: ...
+38
+39 @cached_property
+40 def std(self) -> Numeric:
+41 return np.sqrt(self.var)
+42
+43 @cached_property
+44 @abstractmethod
+45 def var(self) -> Numeric: ...
+
48class Continuous(Distribution):
+49 @abstractmethod
+50 def to_real(self, x: Numeric) -> Numeric: ...
+51
+52 @abstractmethod
+53 def to_native(self, z: Numeric) -> Numeric: ...
+54
+55 @abstractmethod
+56 def logdetjac(self, z: Numeric) -> Numeric: ...
+
Inherited Members
+
+
+
+ 59class Discrete(Distribution): ...
+
Inherited Members
+
+
+
+ 62class Multivariate(Distribution):
+63 @cached_property
+64 @abstractmethod
+65 def mean(self) -> ndarray: ...
+66
+67 @cached_property
+68 def std(self) -> ndarray:
+69 return np.sqrt(self.var)
+70
+71 @cached_property
+72 @abstractmethod
+73 def var(self) -> ndarray: ...
+
Inherited Members
+
+
+
+ 76class Univariate(Distribution):
+77 @cached_property
+78 def event_shape(self) -> Shape:
+79 return ()
+80
+81 @cached_property
+82 @abstractmethod
+83 def batch_shape(self) -> Shape: ...
+84
+85 def _reshape(self, sample_shape: Shape) -> Shape:
+86 return sample_shape + self.batch_shape
+87
+88 @abstractmethod
+89 def _sample(self, size: Shape, rng: RNG) -> ndarray: ...
+90
+91 def sample(
+92 self, sample_shape: Shape = (), rng: RNG = default_rng()
+93 ) -> ndarray:
+94 shape = self._reshape(sample_shape)
+95 return self._sample(shape, rng)
+
98class UnivariateContinuous(Univariate, Continuous):
+ 99 def logpdf_plus_logdetjac(self, z: Numeric) -> Numeric:
+100 """Logpdf plus the log absolute determinant of the jacobian.
+101
+102 Logpdf plus the log absolute determinant of the jacobian, evaluated at
+103 parameter on the transformed (real) space.
+104 """
+105 x = self.to_native(z)
+106 return self.logpdf(x) + self.logdetjac(z)
+107
+108 @abstractmethod
+109 def logcdf(self, x: Numeric) -> Numeric: ...
+110
+111 def cdf(self, x: Numeric) -> Numeric:
+112 with np.errstate(divide="ignore"):
+113 return np.exp(self.logcdf(x))
+114
+115 def survival(self, x: Numeric) -> Numeric:
+116 return 1 - self.cdf(x)
+117
+118 def logsurvival(self, x: Numeric) -> Numeric:
+119 return np.log1p(-self.cdf(x))
+
99 def logpdf_plus_logdetjac(self, z: Numeric) -> Numeric:
+100 """Logpdf plus the log absolute determinant of the jacobian.
+101
+102 Logpdf plus the log absolute determinant of the jacobian, evaluated at
+103 parameter on the transformed (real) space.
+104 """
+105 x = self.to_native(z)
+106 return self.logpdf(x) + self.logdetjac(z)
+
Inherited Members
+
+
+
+
+
+ 122class Positive(UnivariateContinuous):
+123 @abstractmethod
+124 def _logpdf(self, x: Numeric) -> Numeric: ...
+125
+126 def to_real(self, x: Numeric) -> Numeric:
+127 return np.log(x)
+128
+129 def to_native(self, z: Numeric) -> Numeric:
+130 return np.exp(z)
+131
+132 def logdetjac(self, z: Numeric) -> Numeric:
+133 return z
+134
+135 def logpdf(self, x: Numeric) -> Numeric:
+136 # ignore divide by zero encountered in log.
+137 with np.errstate(divide="ignore"):
+138 return np.where(x > 0, self._logpdf(np.maximum(0, x)), -np.inf)
+
Inherited Members
+
+
+
+
+
+ 141class LowerUpperBounded(UnivariateContinuous, ABC):
+142 @abstractmethod
+143 def _logpdf(self, x: Numeric) -> Numeric: ...
+144
+145 def __init__(self, lower: Numeric, upper: Numeric, check: bool = True):
+146 self.lower = lower
+147 self.upper = upper
+148 self.range = self.upper - self.lower
+149 if check and np.any(self.range <= 0):
+150 raise InvalidBoundsError(
+151 "In LowerUpperBounded, lower bound needs to be strictly less than upper bound!"
+152 )
+153
+154 def to_real(self, x: Numeric) -> Numeric:
+155 return logit((x - self.lower) / self.range)
+156
+157 def to_native(self, z: Numeric) -> Numeric:
+158 return expit(z) * self.range + self.lower
+159
+160 def logdetjac(self, z: Numeric) -> Numeric:
+161 return np.log(self.range) + z - 2 * np.logaddexp(0, z)
+162
+163 def logpdf(self, x: Numeric) -> Numeric:
+164 # ignore divide by zero encountered in log.
+165 with np.errstate(divide="ignore"):
+166 return np.where(
+167 (self.lower < x) & (x < self.upper),
+168 self._logpdf(np.clip(x, self.lower, self.upper)),
+169 -np.inf,
+170 )
+
Inherited Members
+
+
+
+
+
+ 173class MultivariateContinuous(Multivariate, Continuous):
+174 def logpdf_plus_logdetjac(self, z: ndarray) -> Numeric:
+175 """Logpdf plus the log absolute determinant of the jacobian.
+176
+177 Logpdf plus the log absolute determinant of the jacobian, evaluated at
+178 parameter on the transformed (real) space.
+179 """
+180 x = self.to_native(z)
+181 return self.logpdf(x) + self.logdetjac(z)
+182
+183 @abstractmethod
+184 def cov(self) -> ndarray: ...
+185
+186 @abstractmethod
+187 def mean(self) -> ndarray: ...
+
174 def logpdf_plus_logdetjac(self, z: ndarray) -> Numeric:
+175 """Logpdf plus the log absolute determinant of the jacobian.
+176
+177 Logpdf plus the log absolute determinant of the jacobian, evaluated at
+178 parameter on the transformed (real) space.
+179 """
+180 x = self.to_native(z)
+181 return self.logpdf(x) + self.logdetjac(z)
+
Inherited Members
+
+
+
+
+
+ 190class Real:
+191 def to_real(self, x: Numeric) -> Numeric:
+192 return x
+193
+194 def to_native(self, z: Numeric) -> Numeric:
+195 return z
+196
+197 def logdetjac(self, z: Numeric) -> Numeric:
+198 return 0
+
201class UnivariateReal(Real, UnivariateContinuous): ...
+
Inherited Members
+
+
+
+
+
+
+ 204class MultivariateReal(Real, MultivariateContinuous): ...
+
Inherited Members
+
+
+
+
+
+
+
+arianna
+
+
+
+
+
+
+ 1from functools import cached_property
+ 2from typing import Optional
+ 3
+ 4import numpy as np
+ 5from numpy import ndarray
+ 6from numpy.random import Generator as RNG
+ 7from numpy.random import default_rng
+ 8from scipy.special import (
+ 9 betainc,
+ 10 betaln,
+ 11 gammaln,
+ 12 gdtr,
+ 13 gdtrc,
+ 14 log_ndtr,
+ 15 ndtr,
+ 16)
+ 17
+ 18from arianna.types import NegativeParameterError
+ 19
+ 20from .abstract import (
+ 21 Distribution,
+ 22 LowerUpperBounded,
+ 23 MultivariateContinuous,
+ 24 MultivariateReal,
+ 25 Numeric,
+ 26 Positive,
+ 27 Shape,
+ 28 UnivariateReal,
+ 29)
+ 30
+ 31
+ 32class IndependentRagged(Distribution): ...
+ 33
+ 34
+ 35class Independent(Distribution):
+ 36 def __init__(self, dists: list[Distribution]):
+ 37 assert self.is_same_family(dists)
+ 38 self.dists = dists
+ 39
+ 40 def is_same_family(self, dists: list[Distribution]) -> bool:
+ 41 first_type = type(dists[0])
+ 42 return all(type(d) is first_type for d in dists)
+ 43
+ 44 def logpdf(self, x: list[Numeric]) -> Numeric:
+ 45 return sum(di.logpdf(xi) for di, xi in zip(self.dists, x))
+ 46
+ 47 def sample(self, sample_shape=[]) -> ndarray:
+ 48 # TODO: Check the logic.
+ 49 return np.stack([di.sample(sample_shape) for di in self.dists])
+ 50
+ 51
+ 52class Uniform(LowerUpperBounded):
+ 53 @classmethod
+ 54 def from_mean_shift(cls, mean, shift):
+ 55 return cls(mean - shift, mean + shift)
+ 56
+ 57 @cached_property
+ 58 def batch_shape(self) -> Shape:
+ 59 return np.broadcast_shapes(np.shape(self.lower), np.shape(self.upper))
+ 60
+ 61 def _logpdf(self, x: Numeric) -> Numeric:
+ 62 return -np.log(self.range)
+ 63
+ 64 def logcdf(self, x: Numeric) -> Numeric:
+ 65 with np.errstate(divide="ignore"):
+ 66 return np.log(self.cdf(x))
+ 67
+ 68 def cdf(self, x: Numeric) -> Numeric:
+ 69 return np.clip((x - self.lower) / self.range, 0, 1)
+ 70
+ 71 def _sample(self, size: Shape, rng: RNG) -> ndarray:
+ 72 return rng.uniform(self.lower, self.upper, size=size)
+ 73
+ 74 @cached_property
+ 75 def mode(self) -> Numeric:
+ 76 # FIXME: Really, it should be anything in [lower, upper].
+ 77 return self.mean
+ 78
+ 79 @cached_property
+ 80 def median(self) -> Numeric:
+ 81 return self.mean
+ 82
+ 83 @cached_property
+ 84 def mean(self) -> Numeric:
+ 85 return (self.lower + self.upper) / 2
+ 86
+ 87 @cached_property
+ 88 def var(self) -> Numeric:
+ 89 return np.square(self.range) / 12
+ 90
+ 91
+ 92class Beta(LowerUpperBounded):
+ 93 def __init__(self, a: Numeric, b: Numeric, check: bool = True):
+ 94 super().__init__(lower=0, upper=1)
+ 95 if check and np.any(a < 0):
+ 96 raise NegativeParameterError(
+ 97 "In Beta(a,b), `a` must be strictly positive!"
+ 98 )
+ 99 if check and np.any(b < 0):
+100 raise NegativeParameterError(
+101 "In Beta(a,b), `b` must be strictly positive!"
+102 )
+103 self.a = a
+104 self.b = b
+105
+106 @cached_property
+107 def mode(self) -> Numeric:
+108 # https://en.wikipedia.org/wiki/Beta_distribution
+109 raise NotImplementedError
+110
+111 @cached_property
+112 def batch_shape(self) -> Shape:
+113 return np.broadcast(self.a, self.b).shape
+114
+115 def _logpdf(self, x: Numeric) -> Numeric:
+116 # Hide warnings if 0 * inf, which is nan. Should just return -inf.
+117 with np.errstate(invalid="ignore"):
+118 return (
+119 (self.a - 1) * np.log(x)
+120 + (self.b - 1) * np.log1p(-x)
+121 - betaln(self.a, self.b)
+122 )
+123
+124 def logcdf(self, x: Numeric) -> Numeric:
+125 with np.errstate(divide="ignore"):
+126 return np.log(self.cdf(x))
+127
+128 def cdf(self, x: Numeric) -> Numeric:
+129 return betainc(self.a, self.b, np.clip(x, 0, 1))
+130
+131 def _sample(self, size: Shape, rng: RNG) -> ndarray:
+132 return rng.beta(self.a, self.b, size=size)
+133
+134 @cached_property
+135 def mean(self) -> Numeric:
+136 return self.a / (self.a + self.b)
+137
+138 @cached_property
+139 def var(self):
+140 c = self.a + self.b
+141 return self.a * self.b / (np.square(c) * (c + 1))
+142
+143
+144# TODO (12/4/2024): Write tests for all methods in Scaled Beta.
+145class ScaledBeta(LowerUpperBounded):
+146 def __init__(
+147 self,
+148 a: Numeric,
+149 b: Numeric,
+150 lower: Numeric,
+151 upper: Numeric,
+152 check: bool = True,
+153 ):
+154 super().__init__(lower=lower, upper=upper)
+155 if check and np.any(a < 0):
+156 raise NegativeParameterError(
+157 "In ScaledBeta(a,b,lower,upper), `a` must be strictly positive!"
+158 )
+159 if check and np.any(b < 0):
+160 raise NegativeParameterError(
+161 "In ScaledBeta(a,b,lower,upper), `b` must be strictly positive!"
+162 )
+163
+164 self.a = a
+165 self.b = b
+166 self.base_dist = Beta(self.a, self.b, check=False)
+167
+168 @cached_property
+169 def batch_shape(self) -> Shape:
+170 return np.broadcast(self.a, self.b, self.lower, self.upper).shape
+171
+172 def _broadcast(self, x: Numeric) -> Numeric:
+173 shape = np.broadcast_shapes(np.shape(x), self.batch_shape)
+174 return np.broadcast_to(x, shape)
+175
+176 def _to_unit_interval(self, x: Numeric) -> Numeric:
+177 return self._broadcast((x - self.lower) / self.range)
+178
+179 def _from_unit_interval(self, y: Numeric) -> Numeric:
+180 return self._broadcast(y * self.range + self.lower)
+181
+182 def _sample(self, size: Shape, rng: RNG) -> Numeric:
+183 return self._from_unit_interval(
+184 self.base_dist._sample(size=size, rng=rng)
+185 )
+186
+187 def cdf(self, x: Numeric) -> Numeric:
+188 return self.base_dist.cdf(self._to_unit_interval(x))
+189
+190 def logcdf(self, x: Numeric) -> Numeric:
+191 with np.errstate(divide="ignore"):
+192 return np.log(self.cdf(x))
+193
+194 def _logpdf(self, x: Numeric) -> Numeric:
+195 return self.base_dist._logpdf(self._to_unit_interval(x)) - np.log(
+196 self.range
+197 )
+198
+199 @cached_property
+200 def mean(self) -> Numeric:
+201 return self._from_unit_interval(self.base_dist.mean)
+202
+203 @cached_property
+204 def var(self) -> Numeric:
+205 return self.base_dist.var * self.range**2
+206
+207
+208class Gamma(Positive):
+209 @classmethod
+210 def from_mean_std(cls, mean, std, check: bool = True):
+211 if check and np.any(mean < 0):
+212 raise NegativeParameterError(
+213 "In Gamma.from_mean_std(mean, std), `mean` must be strictly positive!"
+214 )
+215 if check and np.any(std < 0):
+216 raise NegativeParameterError(
+217 "In Gamma.from_mean_std(mean, std), `std` must be strictly positive!"
+218 )
+219
+220 var = std**2
+221 return cls(shape=mean**2 / var, scale=var / mean)
+222
+223 def __init__(self, shape: Numeric, scale: Numeric, check: bool = True):
+224 if check and np.any(shape < 0):
+225 raise NegativeParameterError(
+226 "In Gamma(shape, scale), `shape` must be strictly positive!"
+227 )
+228 if check and np.any(scale < 0):
+229 raise NegativeParameterError(
+230 "In Gamma(shape, scale), `scale` must be strictly positive!"
+231 )
+232
+233 self.shape = shape
+234 self.scale = scale
+235
+236 @cached_property
+237 def batch_shape(self) -> Shape:
+238 return np.broadcast(self.shape, self.scale).shape
+239
+240 def _logpdf(self, x: Numeric) -> Numeric:
+241 # Hide warnings if 0 * inf, which is nan. Should just return -inf.
+242 with np.errstate(invalid="ignore"):
+243 return (
+244 -gammaln(self.shape)
+245 - self.shape * np.log(self.scale)
+246 + (self.shape - 1) * np.log(x)
+247 - x / self.scale
+248 )
+249
+250 def logcdf(self, x: Numeric) -> Numeric:
+251 with np.errstate(divide="ignore"):
+252 return np.log(self.cdf(x))
+253
+254 def cdf(self, x: Numeric) -> Numeric:
+255 return gdtr(1 / self.scale, self.shape, np.maximum(0, x))
+256
+257 def survival(self, x: Numeric) -> Numeric:
+258 return gdtrc(1 / self.scale, self.shape, np.maximum(0, x))
+259
+260 def _sample(self, size: Shape, rng: RNG) -> ndarray:
+261 return rng.gamma(shape=self.shape, scale=self.scale, size=size)
+262
+263 @cached_property
+264 def mean(self) -> Numeric:
+265 return self.shape * self.scale
+266
+267 @cached_property
+268 def var(self) -> Numeric:
+269 return self.shape * np.square(self.scale)
+270
+271 @cached_property
+272 def mode(self) -> Numeric:
+273 return np.where(self.shape > 1, self.scale * (self.shape - 1), 0.0)
+274
+275
+276# https://en.wikipedia.org/wiki/Inverse-gamma_distribution
+277class InverseGamma(Positive):
+278 @classmethod
+279 def from_mean_std(cls, mean, std, check: bool = True):
+280 if check and np.any(mean < 0):
+281 raise NegativeParameterError(
+282 "In InverseGamma.from_mean_std(mean, mean), `mean` must be strictly positive!"
+283 )
+284 if check and np.any(std < 0):
+285 raise NegativeParameterError(
+286 "In InverseGamma.from_mean_std(mean, mean), `std` must be strictly positive!"
+287 )
+288
+289 shape = (mean / std) ** 2 + 2
+290 scale = mean * (shape - 1)
+291 return cls(shape, scale)
+292
+293 def __init__(self, shape: Numeric, scale: Numeric, check: bool = True):
+294 if check and np.any(shape < 0):
+295 raise NegativeParameterError(
+296 "In InverseGamma(shape, scale), `shape` must be strictly positive!"
+297 )
+298 if check and np.any(scale < 0):
+299 raise NegativeParameterError(
+300 "In InverseGamma(shape, scale), `scale` must be strictly positive!"
+301 )
+302
+303 self.shape = shape
+304 self.scale = scale
+305
+306 @cached_property
+307 def batch_shape(self) -> Shape:
+308 return np.broadcast(self.shape, self.scale).shape
+309
+310 @cached_property
+311 def mean(self) -> Numeric:
+312 return np.where(self.shape > 1, self.scale / (self.shape - 1), np.nan)
+313
+314 @cached_property
+315 def var(self) -> Numeric:
+316 return np.where(self.shape > 2, self.mean**2 / (self.shape - 2), np.nan)
+317
+318 @cached_property
+319 def mode(self) -> Numeric:
+320 return self.scale / (self.shape + 1)
+321
+322 def _logpdf(self, x: Numeric) -> Numeric:
+323 # Hide warnings if 0 * inf, which is nan. Should just return -inf.
+324 with np.errstate(invalid="ignore", divide="ignore"):
+325 return (
+326 self.shape * np.log(self.scale)
+327 - gammaln(self.shape)
+328 - (self.shape + 1) * np.log(x)
+329 - self.scale / x
+330 )
+331
+332 def logcdf(self, x: Numeric) -> Numeric:
+333 with np.errstate(divide="ignore"):
+334 return np.log(self.cdf(x))
+335
+336 def cdf(self, x: Numeric) -> Numeric:
+337 with np.errstate(divide="ignore"):
+338 x = np.maximum(0, x)
+339 return gdtrc(self.scale, self.shape, 1 / x)
+340
+341 def _sample(self, size: Shape, rng: RNG) -> ndarray:
+342 return 1 / rng.gamma(shape=self.shape, scale=1 / self.scale, size=size)
+343
+344
+345class LogNormal(Positive):
+346 @classmethod
+347 def from_mean_std(cls, mean, std, check: bool = True):
+348 if check and np.any(mean < 0):
+349 raise NegativeParameterError(
+350 "In LogNormal.from_mean_std(mean, std), `mean` must be strictly positive!"
+351 )
+352 if check and np.any(std < 0):
+353 raise NegativeParameterError(
+354 "In LogNormal.from_mean_std(mean, std), `std` must be strictly positive!"
+355 )
+356 var = std**2
+357 sigma_squared = np.log1p(var / mean**2)
+358 mu = np.log(mean) - sigma_squared / 2
+359 sigma = np.sqrt(sigma_squared)
+360 return cls(mu, sigma)
+361
+362 def __init__(self, mu: Numeric, sigma: Numeric, check: bool = True):
+363 if check and np.any(sigma < 0):
+364 raise NegativeParameterError(
+365 "In LogNormal(mu, sigma), `sigma` must be strictly positive!"
+366 )
+367
+368 self.mu = mu
+369 self.sigma = sigma
+370
+371 @cached_property
+372 def batch_shape(self) -> Shape:
+373 return np.broadcast(self.mu, self.sigma).shape
+374
+375 @cached_property
+376 def mean(self) -> Numeric:
+377 return np.exp(self.mu + self.sigma**2 / 2)
+378
+379 @cached_property
+380 def var(self) -> Numeric:
+381 return (np.exp(self.sigma**2) - 1) * np.exp(2 * self.mu + self.sigma**2)
+382
+383 @cached_property
+384 def mode(self) -> Numeric:
+385 return np.exp(self.mu - self.sigma**2)
+386
+387 @cached_property
+388 def median(self) -> Numeric:
+389 return np.exp(self.mu)
+390
+391 def _logpdf(self, x: Numeric) -> Numeric:
+392 # Hide warnings if 0 * inf, which is nan. Should just return -inf.
+393 with np.errstate(divide="ignore", invalid="ignore"):
+394 z = (np.log(x) - self.mu) / self.sigma
+395 return -np.log(x * self.sigma * np.sqrt(2 * np.pi)) - z**2 / 2
+396
+397 def logcdf(self, x: Numeric) -> Numeric:
+398 x = np.maximum(0, x)
+399 with np.errstate(divide="ignore"):
+400 z = (np.log(x) - self.mu) / self.sigma
+401 return log_ndtr(z)
+402
+403 def cdf(self, x: Numeric) -> Numeric:
+404 x = np.maximum(0, x)
+405 with np.errstate(divide="ignore"):
+406 z = (np.log(x) - self.mu) / self.sigma
+407 return ndtr(z)
+408
+409 def _sample(self, size: Shape, rng: RNG) -> ndarray:
+410 return rng.lognormal(self.mu, self.sigma, size=size)
+411
+412
+413class Weibull(Positive): ...
+414
+415
+416class Gumbel(UnivariateReal): ...
+417
+418
+419class Logistic(Positive): ...
+420
+421
+422class LogLogistic(UnivariateReal): ...
+423
+424
+425class Normal(UnivariateReal):
+426 def __init__(
+427 self, loc: Numeric = 0.0, scale: Numeric = 1.0, check: bool = True
+428 ):
+429 if check and np.any(scale < 0):
+430 raise NegativeParameterError(
+431 "In Normal(loc, scale), `scale` must be strictly positive!"
+432 )
+433 self.loc = loc
+434 self.scale = scale
+435
+436 @cached_property
+437 def batch_shape(self) -> Shape:
+438 return np.broadcast(self.loc, self.scale).shape
+439
+440 def logpdf(self, x: Numeric) -> Numeric:
+441 z = (x - self.loc) / self.scale
+442 return -np.square(z) / 2 - np.log(2 * np.pi) / 2 - np.log(self.scale)
+443
+444 def logcdf(self, x: Numeric) -> Numeric:
+445 return log_ndtr((x - self.mean) / self.scale)
+446
+447 def cdf(self, x: Numeric) -> Numeric:
+448 return ndtr((x - self.mean) / self.scale)
+449
+450 def survival(self, x: Numeric) -> Numeric:
+451 return 1 - self.cdf(x)
+452
+453 def _sample(self, size: Shape, rng: RNG) -> ndarray:
+454 return rng.normal(loc=self.loc, scale=self.scale, size=size)
+455
+456 @cached_property
+457 def mean(self) -> Numeric:
+458 return np.broadcast_to(self.loc, self.batch_shape)
+459
+460 @cached_property
+461 def std(self) -> Numeric:
+462 return np.broadcast_to(self.scale, self.batch_shape)
+463
+464 @cached_property
+465 def var(self) -> Numeric:
+466 return np.square(self.std)
+467
+468 @cached_property
+469 def mode(self) -> Numeric:
+470 return self.mean
+471
+472 @cached_property
+473 def median(self) -> Numeric:
+474 return self.mean
+475
+476
+477class MvNormal(MultivariateReal):
+478 def __init__(
+479 self,
+480 mean: Optional[ndarray] = None,
+481 cov: Optional[ndarray] = None,
+482 **kwargs,
+483 ):
+484 match mean, cov:
+485 case (None, None):
+486 raise ValueError("mean and cov cannot both be None!")
+487 case (None, _):
+488 mean = np.zeros(cov.shape[-1])
+489 case (_, None):
+490 cov = np.eye(mean.shape[-1])
+491
+492 super().__init__(**kwargs)
+493
+494 self._mean = mean
+495 self._cov = cov
+496
+497 @cached_property
+498 def mean(self) -> ndarray:
+499 return np.broadcast_to(self._mean, self.batch_plus_event_shape)
+500
+501 @cached_property
+502 def _icov(self) -> ndarray:
+503 return np.linalg.inv(self._cov)
+504
+505 @cached_property
+506 def cov(self) -> ndarray:
+507 return np.broadcast_to(
+508 self._cov, self.batch_plus_event_shape + self.event_shape
+509 )
+510
+511 @cached_property
+512 def cov_inv(self) -> ndarray:
+513 return np.broadcast_to(
+514 self._icov, self.batch_plus_event_shape + self.event_shape
+515 )
+516
+517 @cached_property
+518 def L(self) -> ndarray:
+519 return np.linalg.cholesky(self.cov)
+520
+521 @cached_property
+522 def event_shape(self) -> Shape:
+523 return self.mean.shape[-1:]
+524
+525 @cached_property
+526 def batch_shape(self) -> Shape:
+527 return self.batch_plus_event_shape[:-1]
+528
+529 @cached_property
+530 def batch_plus_event_shape(self) -> Shape:
+531 return np.broadcast_shapes(self._mean.shape, self._cov.shape[:-1])
+532
+533 @cached_property
+534 def log_det_cov(self) -> float | ndarray:
+535 _, ldc = np.linalg.slogdet(self.cov)
+536 return ldc
+537
+538 @cached_property
+539 def var(self) -> ndarray:
+540 return np.diagonal(self.cov, axis1=-2, axis2=-1)
+541
+542 def logpdf(self, x):
+543 d = x - self.mean
+544
+545 # Compute quadratic form
+546 quad_form = np.einsum("...i, ...ij, ...j -> ...", d, self.cov_inv, d) # type: ignore
+547
+548 return -0.5 * (
+549 self.event_shape[0] * np.log(2 * np.pi)
+550 + self.log_det_cov
+551 + quad_form
+552 )
+553
+554 def sample(
+555 self, sample_shape: Shape = (), rng: RNG = default_rng()
+556 ) -> ndarray:
+557 shape = sample_shape + self.batch_shape + self.event_shape
+558 standard_normals = rng.standard_normal(shape)
+559 b = np.einsum("...ij,...j->...i", self.L, standard_normals)
+560 samples = self.mean + b
+561 return samples
+562
+563
+564class Dirichlet(MultivariateContinuous):
+565 def __init__(self, concentration: ndarray, check: bool = True):
+566 if check and np.any(concentration < 0):
+567 raise NegativeParameterError(
+568 "In Dirichlet(concentration), `concentration` must be stricly positive!"
+569 )
+570 self.concentration = concentration
+571
+572 @cached_property
+573 def concentration_sum(self):
+574 return self.concentration.sum(-1, keepdims=True)
+575
+576 @cached_property
+577 def event_shape(self):
+578 return self.concentration.shape[-1]
+579
+580 @cached_property
+581 def batch_plus_event_shape(self):
+582 return self.concentration.shape
+583
+584 @cached_property
+585 def batch_shape(self):
+586 return self.batch_plus_event_shape[:-1]
+587
+588 def logpdf(self, x: ndarray) -> float | ndarray:
+589 # TODO: Test.
+590 return (
+591 np.sum((self.concentration - 1) * np.log(x), -1)
+592 + gammaln(self.concentration.sum(-1))
+593 - gammaln(self.concentration).sum(-1)
+594 )
+595
+596 def sample(
+597 self, sample_shape: Shape = (), rng: RNG = default_rng()
+598 ) -> ndarray:
+599 shape = sample_shape + self.batch_plus_event_shape
+600 alpha = rng.standard_gamma(shape)
+601 return alpha / alpha.sum(-1, keepdims=True)
+602
+603 def to_real(self, x: ndarray) -> float | ndarray:
+604 # https://mc-stan.org/docs/2_19/reference-manual/simplex-transform-section.html
+605 raise NotImplementedError
+606
+607 def to_native(self, z: ndarray) -> float | ndarray:
+608 # https://mc-stan.org/docs/2_19/reference-manual/simplex-transform-section.html
+609 raise NotImplementedError
+610
+611 def logdetjac(self, z: ndarray) -> float | ndarray:
+612 # https://mc-stan.org/docs/2_19/reference-manual/simplex-transform-section.html
+613 raise NotImplementedError
+614
+615 @cached_property
+616 def cov(self) -> ndarray:
+617 raise NotImplementedError
+618
+619 @cached_property
+620 def mean(self) -> ndarray:
+621 return self.concentration / self.concentration_sum
+622
+623 @cached_property
+624 def var(self) -> ndarray:
+625 m = self.mean
+626 return m * (1 - m) / (1 + self.concentration_sum)
+627
+628 @cached_property
+629 def std(self) -> ndarray:
+630 return np.sqrt(self.var)
+
33class IndependentRagged(Distribution): ...
+
Inherited Members
+
+
+ 36class Independent(Distribution):
+37 def __init__(self, dists: list[Distribution]):
+38 assert self.is_same_family(dists)
+39 self.dists = dists
+40
+41 def is_same_family(self, dists: list[Distribution]) -> bool:
+42 first_type = type(dists[0])
+43 return all(type(d) is first_type for d in dists)
+44
+45 def logpdf(self, x: list[Numeric]) -> Numeric:
+46 return sum(di.logpdf(xi) for di, xi in zip(self.dists, x))
+47
+48 def sample(self, sample_shape=[]) -> ndarray:
+49 # TODO: Check the logic.
+50 return np.stack([di.sample(sample_shape) for di in self.dists])
+
Inherited Members
+
+
+ 53class Uniform(LowerUpperBounded):
+54 @classmethod
+55 def from_mean_shift(cls, mean, shift):
+56 return cls(mean - shift, mean + shift)
+57
+58 @cached_property
+59 def batch_shape(self) -> Shape:
+60 return np.broadcast_shapes(np.shape(self.lower), np.shape(self.upper))
+61
+62 def _logpdf(self, x: Numeric) -> Numeric:
+63 return -np.log(self.range)
+64
+65 def logcdf(self, x: Numeric) -> Numeric:
+66 with np.errstate(divide="ignore"):
+67 return np.log(self.cdf(x))
+68
+69 def cdf(self, x: Numeric) -> Numeric:
+70 return np.clip((x - self.lower) / self.range, 0, 1)
+71
+72 def _sample(self, size: Shape, rng: RNG) -> ndarray:
+73 return rng.uniform(self.lower, self.upper, size=size)
+74
+75 @cached_property
+76 def mode(self) -> Numeric:
+77 # FIXME: Really, it should be anything in [lower, upper].
+78 return self.mean
+79
+80 @cached_property
+81 def median(self) -> Numeric:
+82 return self.mean
+83
+84 @cached_property
+85 def mean(self) -> Numeric:
+86 return (self.lower + self.upper) / 2
+87
+88 @cached_property
+89 def var(self) -> Numeric:
+90 return np.square(self.range) / 12
+
Inherited Members
+
+
+ 93class Beta(LowerUpperBounded):
+ 94 def __init__(self, a: Numeric, b: Numeric, check: bool = True):
+ 95 super().__init__(lower=0, upper=1)
+ 96 if check and np.any(a < 0):
+ 97 raise NegativeParameterError(
+ 98 "In Beta(a,b), `a` must be strictly positive!"
+ 99 )
+100 if check and np.any(b < 0):
+101 raise NegativeParameterError(
+102 "In Beta(a,b), `b` must be strictly positive!"
+103 )
+104 self.a = a
+105 self.b = b
+106
+107 @cached_property
+108 def mode(self) -> Numeric:
+109 # https://en.wikipedia.org/wiki/Beta_distribution
+110 raise NotImplementedError
+111
+112 @cached_property
+113 def batch_shape(self) -> Shape:
+114 return np.broadcast(self.a, self.b).shape
+115
+116 def _logpdf(self, x: Numeric) -> Numeric:
+117 # Hide warnings if 0 * inf, which is nan. Should just return -inf.
+118 with np.errstate(invalid="ignore"):
+119 return (
+120 (self.a - 1) * np.log(x)
+121 + (self.b - 1) * np.log1p(-x)
+122 - betaln(self.a, self.b)
+123 )
+124
+125 def logcdf(self, x: Numeric) -> Numeric:
+126 with np.errstate(divide="ignore"):
+127 return np.log(self.cdf(x))
+128
+129 def cdf(self, x: Numeric) -> Numeric:
+130 return betainc(self.a, self.b, np.clip(x, 0, 1))
+131
+132 def _sample(self, size: Shape, rng: RNG) -> ndarray:
+133 return rng.beta(self.a, self.b, size=size)
+134
+135 @cached_property
+136 def mean(self) -> Numeric:
+137 return self.a / (self.a + self.b)
+138
+139 @cached_property
+140 def var(self):
+141 c = self.a + self.b
+142 return self.a * self.b / (np.square(c) * (c + 1))
+
94 def __init__(self, a: Numeric, b: Numeric, check: bool = True):
+ 95 super().__init__(lower=0, upper=1)
+ 96 if check and np.any(a < 0):
+ 97 raise NegativeParameterError(
+ 98 "In Beta(a,b), `a` must be strictly positive!"
+ 99 )
+100 if check and np.any(b < 0):
+101 raise NegativeParameterError(
+102 "In Beta(a,b), `b` must be strictly positive!"
+103 )
+104 self.a = a
+105 self.b = b
+
Inherited Members
+
+ 146class ScaledBeta(LowerUpperBounded):
+147 def __init__(
+148 self,
+149 a: Numeric,
+150 b: Numeric,
+151 lower: Numeric,
+152 upper: Numeric,
+153 check: bool = True,
+154 ):
+155 super().__init__(lower=lower, upper=upper)
+156 if check and np.any(a < 0):
+157 raise NegativeParameterError(
+158 "In ScaledBeta(a,b,lower,upper), `a` must be strictly positive!"
+159 )
+160 if check and np.any(b < 0):
+161 raise NegativeParameterError(
+162 "In ScaledBeta(a,b,lower,upper), `b` must be strictly positive!"
+163 )
+164
+165 self.a = a
+166 self.b = b
+167 self.base_dist = Beta(self.a, self.b, check=False)
+168
+169 @cached_property
+170 def batch_shape(self) -> Shape:
+171 return np.broadcast(self.a, self.b, self.lower, self.upper).shape
+172
+173 def _broadcast(self, x: Numeric) -> Numeric:
+174 shape = np.broadcast_shapes(np.shape(x), self.batch_shape)
+175 return np.broadcast_to(x, shape)
+176
+177 def _to_unit_interval(self, x: Numeric) -> Numeric:
+178 return self._broadcast((x - self.lower) / self.range)
+179
+180 def _from_unit_interval(self, y: Numeric) -> Numeric:
+181 return self._broadcast(y * self.range + self.lower)
+182
+183 def _sample(self, size: Shape, rng: RNG) -> Numeric:
+184 return self._from_unit_interval(
+185 self.base_dist._sample(size=size, rng=rng)
+186 )
+187
+188 def cdf(self, x: Numeric) -> Numeric:
+189 return self.base_dist.cdf(self._to_unit_interval(x))
+190
+191 def logcdf(self, x: Numeric) -> Numeric:
+192 with np.errstate(divide="ignore"):
+193 return np.log(self.cdf(x))
+194
+195 def _logpdf(self, x: Numeric) -> Numeric:
+196 return self.base_dist._logpdf(self._to_unit_interval(x)) - np.log(
+197 self.range
+198 )
+199
+200 @cached_property
+201 def mean(self) -> Numeric:
+202 return self._from_unit_interval(self.base_dist.mean)
+203
+204 @cached_property
+205 def var(self) -> Numeric:
+206 return self.base_dist.var * self.range**2
+
147 def __init__(
+148 self,
+149 a: Numeric,
+150 b: Numeric,
+151 lower: Numeric,
+152 upper: Numeric,
+153 check: bool = True,
+154 ):
+155 super().__init__(lower=lower, upper=upper)
+156 if check and np.any(a < 0):
+157 raise NegativeParameterError(
+158 "In ScaledBeta(a,b,lower,upper), `a` must be strictly positive!"
+159 )
+160 if check and np.any(b < 0):
+161 raise NegativeParameterError(
+162 "In ScaledBeta(a,b,lower,upper), `b` must be strictly positive!"
+163 )
+164
+165 self.a = a
+166 self.b = b
+167 self.base_dist = Beta(self.a, self.b, check=False)
+
Inherited Members
+
+ 209class Gamma(Positive):
+210 @classmethod
+211 def from_mean_std(cls, mean, std, check: bool = True):
+212 if check and np.any(mean < 0):
+213 raise NegativeParameterError(
+214 "In Gamma.from_mean_std(mean, std), `mean` must be strictly positive!"
+215 )
+216 if check and np.any(std < 0):
+217 raise NegativeParameterError(
+218 "In Gamma.from_mean_std(mean, std), `std` must be strictly positive!"
+219 )
+220
+221 var = std**2
+222 return cls(shape=mean**2 / var, scale=var / mean)
+223
+224 def __init__(self, shape: Numeric, scale: Numeric, check: bool = True):
+225 if check and np.any(shape < 0):
+226 raise NegativeParameterError(
+227 "In Gamma(shape, scale), `shape` must be strictly positive!"
+228 )
+229 if check and np.any(scale < 0):
+230 raise NegativeParameterError(
+231 "In Gamma(shape, scale), `scale` must be strictly positive!"
+232 )
+233
+234 self.shape = shape
+235 self.scale = scale
+236
+237 @cached_property
+238 def batch_shape(self) -> Shape:
+239 return np.broadcast(self.shape, self.scale).shape
+240
+241 def _logpdf(self, x: Numeric) -> Numeric:
+242 # Hide warnings if 0 * inf, which is nan. Should just return -inf.
+243 with np.errstate(invalid="ignore"):
+244 return (
+245 -gammaln(self.shape)
+246 - self.shape * np.log(self.scale)
+247 + (self.shape - 1) * np.log(x)
+248 - x / self.scale
+249 )
+250
+251 def logcdf(self, x: Numeric) -> Numeric:
+252 with np.errstate(divide="ignore"):
+253 return np.log(self.cdf(x))
+254
+255 def cdf(self, x: Numeric) -> Numeric:
+256 return gdtr(1 / self.scale, self.shape, np.maximum(0, x))
+257
+258 def survival(self, x: Numeric) -> Numeric:
+259 return gdtrc(1 / self.scale, self.shape, np.maximum(0, x))
+260
+261 def _sample(self, size: Shape, rng: RNG) -> ndarray:
+262 return rng.gamma(shape=self.shape, scale=self.scale, size=size)
+263
+264 @cached_property
+265 def mean(self) -> Numeric:
+266 return self.shape * self.scale
+267
+268 @cached_property
+269 def var(self) -> Numeric:
+270 return self.shape * np.square(self.scale)
+271
+272 @cached_property
+273 def mode(self) -> Numeric:
+274 return np.where(self.shape > 1, self.scale * (self.shape - 1), 0.0)
+
224 def __init__(self, shape: Numeric, scale: Numeric, check: bool = True):
+225 if check and np.any(shape < 0):
+226 raise NegativeParameterError(
+227 "In Gamma(shape, scale), `shape` must be strictly positive!"
+228 )
+229 if check and np.any(scale < 0):
+230 raise NegativeParameterError(
+231 "In Gamma(shape, scale), `scale` must be strictly positive!"
+232 )
+233
+234 self.shape = shape
+235 self.scale = scale
+
210 @classmethod
+211 def from_mean_std(cls, mean, std, check: bool = True):
+212 if check and np.any(mean < 0):
+213 raise NegativeParameterError(
+214 "In Gamma.from_mean_std(mean, std), `mean` must be strictly positive!"
+215 )
+216 if check and np.any(std < 0):
+217 raise NegativeParameterError(
+218 "In Gamma.from_mean_std(mean, std), `std` must be strictly positive!"
+219 )
+220
+221 var = std**2
+222 return cls(shape=mean**2 / var, scale=var / mean)
+
Inherited Members
+
+
+
+
+
+
+ 278class InverseGamma(Positive):
+279 @classmethod
+280 def from_mean_std(cls, mean, std, check: bool = True):
+281 if check and np.any(mean < 0):
+282 raise NegativeParameterError(
+283 "In InverseGamma.from_mean_std(mean, mean), `mean` must be strictly positive!"
+284 )
+285 if check and np.any(std < 0):
+286 raise NegativeParameterError(
+287 "In InverseGamma.from_mean_std(mean, mean), `std` must be strictly positive!"
+288 )
+289
+290 shape = (mean / std) ** 2 + 2
+291 scale = mean * (shape - 1)
+292 return cls(shape, scale)
+293
+294 def __init__(self, shape: Numeric, scale: Numeric, check: bool = True):
+295 if check and np.any(shape < 0):
+296 raise NegativeParameterError(
+297 "In InverseGamma(shape, scale), `shape` must be strictly positive!"
+298 )
+299 if check and np.any(scale < 0):
+300 raise NegativeParameterError(
+301 "In InverseGamma(shape, scale), `scale` must be strictly positive!"
+302 )
+303
+304 self.shape = shape
+305 self.scale = scale
+306
+307 @cached_property
+308 def batch_shape(self) -> Shape:
+309 return np.broadcast(self.shape, self.scale).shape
+310
+311 @cached_property
+312 def mean(self) -> Numeric:
+313 return np.where(self.shape > 1, self.scale / (self.shape - 1), np.nan)
+314
+315 @cached_property
+316 def var(self) -> Numeric:
+317 return np.where(self.shape > 2, self.mean**2 / (self.shape - 2), np.nan)
+318
+319 @cached_property
+320 def mode(self) -> Numeric:
+321 return self.scale / (self.shape + 1)
+322
+323 def _logpdf(self, x: Numeric) -> Numeric:
+324 # Hide warnings if 0 * inf, which is nan. Should just return -inf.
+325 with np.errstate(invalid="ignore", divide="ignore"):
+326 return (
+327 self.shape * np.log(self.scale)
+328 - gammaln(self.shape)
+329 - (self.shape + 1) * np.log(x)
+330 - self.scale / x
+331 )
+332
+333 def logcdf(self, x: Numeric) -> Numeric:
+334 with np.errstate(divide="ignore"):
+335 return np.log(self.cdf(x))
+336
+337 def cdf(self, x: Numeric) -> Numeric:
+338 with np.errstate(divide="ignore"):
+339 x = np.maximum(0, x)
+340 return gdtrc(self.scale, self.shape, 1 / x)
+341
+342 def _sample(self, size: Shape, rng: RNG) -> ndarray:
+343 return 1 / rng.gamma(shape=self.shape, scale=1 / self.scale, size=size)
+
294 def __init__(self, shape: Numeric, scale: Numeric, check: bool = True):
+295 if check and np.any(shape < 0):
+296 raise NegativeParameterError(
+297 "In InverseGamma(shape, scale), `shape` must be strictly positive!"
+298 )
+299 if check and np.any(scale < 0):
+300 raise NegativeParameterError(
+301 "In InverseGamma(shape, scale), `scale` must be strictly positive!"
+302 )
+303
+304 self.shape = shape
+305 self.scale = scale
+
279 @classmethod
+280 def from_mean_std(cls, mean, std, check: bool = True):
+281 if check and np.any(mean < 0):
+282 raise NegativeParameterError(
+283 "In InverseGamma.from_mean_std(mean, mean), `mean` must be strictly positive!"
+284 )
+285 if check and np.any(std < 0):
+286 raise NegativeParameterError(
+287 "In InverseGamma.from_mean_std(mean, mean), `std` must be strictly positive!"
+288 )
+289
+290 shape = (mean / std) ** 2 + 2
+291 scale = mean * (shape - 1)
+292 return cls(shape, scale)
+
Inherited Members
+
+
+
+
+
+
+ 346class LogNormal(Positive):
+347 @classmethod
+348 def from_mean_std(cls, mean, std, check: bool = True):
+349 if check and np.any(mean < 0):
+350 raise NegativeParameterError(
+351 "In LogNormal.from_mean_std(mean, std), `mean` must be strictly positive!"
+352 )
+353 if check and np.any(std < 0):
+354 raise NegativeParameterError(
+355 "In LogNormal.from_mean_std(mean, std), `std` must be strictly positive!"
+356 )
+357 var = std**2
+358 sigma_squared = np.log1p(var / mean**2)
+359 mu = np.log(mean) - sigma_squared / 2
+360 sigma = np.sqrt(sigma_squared)
+361 return cls(mu, sigma)
+362
+363 def __init__(self, mu: Numeric, sigma: Numeric, check: bool = True):
+364 if check and np.any(sigma < 0):
+365 raise NegativeParameterError(
+366 "In LogNormal(mu, sigma), `sigma` must be strictly positive!"
+367 )
+368
+369 self.mu = mu
+370 self.sigma = sigma
+371
+372 @cached_property
+373 def batch_shape(self) -> Shape:
+374 return np.broadcast(self.mu, self.sigma).shape
+375
+376 @cached_property
+377 def mean(self) -> Numeric:
+378 return np.exp(self.mu + self.sigma**2 / 2)
+379
+380 @cached_property
+381 def var(self) -> Numeric:
+382 return (np.exp(self.sigma**2) - 1) * np.exp(2 * self.mu + self.sigma**2)
+383
+384 @cached_property
+385 def mode(self) -> Numeric:
+386 return np.exp(self.mu - self.sigma**2)
+387
+388 @cached_property
+389 def median(self) -> Numeric:
+390 return np.exp(self.mu)
+391
+392 def _logpdf(self, x: Numeric) -> Numeric:
+393 # Hide warnings if 0 * inf, which is nan. Should just return -inf.
+394 with np.errstate(divide="ignore", invalid="ignore"):
+395 z = (np.log(x) - self.mu) / self.sigma
+396 return -np.log(x * self.sigma * np.sqrt(2 * np.pi)) - z**2 / 2
+397
+398 def logcdf(self, x: Numeric) -> Numeric:
+399 x = np.maximum(0, x)
+400 with np.errstate(divide="ignore"):
+401 z = (np.log(x) - self.mu) / self.sigma
+402 return log_ndtr(z)
+403
+404 def cdf(self, x: Numeric) -> Numeric:
+405 x = np.maximum(0, x)
+406 with np.errstate(divide="ignore"):
+407 z = (np.log(x) - self.mu) / self.sigma
+408 return ndtr(z)
+409
+410 def _sample(self, size: Shape, rng: RNG) -> ndarray:
+411 return rng.lognormal(self.mu, self.sigma, size=size)
+
347 @classmethod
+348 def from_mean_std(cls, mean, std, check: bool = True):
+349 if check and np.any(mean < 0):
+350 raise NegativeParameterError(
+351 "In LogNormal.from_mean_std(mean, std), `mean` must be strictly positive!"
+352 )
+353 if check and np.any(std < 0):
+354 raise NegativeParameterError(
+355 "In LogNormal.from_mean_std(mean, std), `std` must be strictly positive!"
+356 )
+357 var = std**2
+358 sigma_squared = np.log1p(var / mean**2)
+359 mu = np.log(mean) - sigma_squared / 2
+360 sigma = np.sqrt(sigma_squared)
+361 return cls(mu, sigma)
+
Inherited Members
+
+
+
+
+
+
+ 414class Weibull(Positive): ...
+
Inherited Members
+
+
+
+
+
+
+ 417class Gumbel(UnivariateReal): ...
+
Inherited Members
+
+
+
+
+
+
+ 420class Logistic(Positive): ...
+
Inherited Members
+
+
+
+
+
+
+ 423class LogLogistic(UnivariateReal): ...
+
Inherited Members
+
+
+
+
+
+
+ 426class Normal(UnivariateReal):
+427 def __init__(
+428 self, loc: Numeric = 0.0, scale: Numeric = 1.0, check: bool = True
+429 ):
+430 if check and np.any(scale < 0):
+431 raise NegativeParameterError(
+432 "In Normal(loc, scale), `scale` must be strictly positive!"
+433 )
+434 self.loc = loc
+435 self.scale = scale
+436
+437 @cached_property
+438 def batch_shape(self) -> Shape:
+439 return np.broadcast(self.loc, self.scale).shape
+440
+441 def logpdf(self, x: Numeric) -> Numeric:
+442 z = (x - self.loc) / self.scale
+443 return -np.square(z) / 2 - np.log(2 * np.pi) / 2 - np.log(self.scale)
+444
+445 def logcdf(self, x: Numeric) -> Numeric:
+446 return log_ndtr((x - self.mean) / self.scale)
+447
+448 def cdf(self, x: Numeric) -> Numeric:
+449 return ndtr((x - self.mean) / self.scale)
+450
+451 def survival(self, x: Numeric) -> Numeric:
+452 return 1 - self.cdf(x)
+453
+454 def _sample(self, size: Shape, rng: RNG) -> ndarray:
+455 return rng.normal(loc=self.loc, scale=self.scale, size=size)
+456
+457 @cached_property
+458 def mean(self) -> Numeric:
+459 return np.broadcast_to(self.loc, self.batch_shape)
+460
+461 @cached_property
+462 def std(self) -> Numeric:
+463 return np.broadcast_to(self.scale, self.batch_shape)
+464
+465 @cached_property
+466 def var(self) -> Numeric:
+467 return np.square(self.std)
+468
+469 @cached_property
+470 def mode(self) -> Numeric:
+471 return self.mean
+472
+473 @cached_property
+474 def median(self) -> Numeric:
+475 return self.mean
+
Inherited Members
+
+
+
+
+
+
+ 478class MvNormal(MultivariateReal):
+479 def __init__(
+480 self,
+481 mean: Optional[ndarray] = None,
+482 cov: Optional[ndarray] = None,
+483 **kwargs,
+484 ):
+485 match mean, cov:
+486 case (None, None):
+487 raise ValueError("mean and cov cannot both be None!")
+488 case (None, _):
+489 mean = np.zeros(cov.shape[-1])
+490 case (_, None):
+491 cov = np.eye(mean.shape[-1])
+492
+493 super().__init__(**kwargs)
+494
+495 self._mean = mean
+496 self._cov = cov
+497
+498 @cached_property
+499 def mean(self) -> ndarray:
+500 return np.broadcast_to(self._mean, self.batch_plus_event_shape)
+501
+502 @cached_property
+503 def _icov(self) -> ndarray:
+504 return np.linalg.inv(self._cov)
+505
+506 @cached_property
+507 def cov(self) -> ndarray:
+508 return np.broadcast_to(
+509 self._cov, self.batch_plus_event_shape + self.event_shape
+510 )
+511
+512 @cached_property
+513 def cov_inv(self) -> ndarray:
+514 return np.broadcast_to(
+515 self._icov, self.batch_plus_event_shape + self.event_shape
+516 )
+517
+518 @cached_property
+519 def L(self) -> ndarray:
+520 return np.linalg.cholesky(self.cov)
+521
+522 @cached_property
+523 def event_shape(self) -> Shape:
+524 return self.mean.shape[-1:]
+525
+526 @cached_property
+527 def batch_shape(self) -> Shape:
+528 return self.batch_plus_event_shape[:-1]
+529
+530 @cached_property
+531 def batch_plus_event_shape(self) -> Shape:
+532 return np.broadcast_shapes(self._mean.shape, self._cov.shape[:-1])
+533
+534 @cached_property
+535 def log_det_cov(self) -> float | ndarray:
+536 _, ldc = np.linalg.slogdet(self.cov)
+537 return ldc
+538
+539 @cached_property
+540 def var(self) -> ndarray:
+541 return np.diagonal(self.cov, axis1=-2, axis2=-1)
+542
+543 def logpdf(self, x):
+544 d = x - self.mean
+545
+546 # Compute quadratic form
+547 quad_form = np.einsum("...i, ...ij, ...j -> ...", d, self.cov_inv, d) # type: ignore
+548
+549 return -0.5 * (
+550 self.event_shape[0] * np.log(2 * np.pi)
+551 + self.log_det_cov
+552 + quad_form
+553 )
+554
+555 def sample(
+556 self, sample_shape: Shape = (), rng: RNG = default_rng()
+557 ) -> ndarray:
+558 shape = sample_shape + self.batch_shape + self.event_shape
+559 standard_normals = rng.standard_normal(shape)
+560 b = np.einsum("...ij,...j->...i", self.L, standard_normals)
+561 samples = self.mean + b
+562 return samples
+
479 def __init__(
+480 self,
+481 mean: Optional[ndarray] = None,
+482 cov: Optional[ndarray] = None,
+483 **kwargs,
+484 ):
+485 match mean, cov:
+486 case (None, None):
+487 raise ValueError("mean and cov cannot both be None!")
+488 case (None, _):
+489 mean = np.zeros(cov.shape[-1])
+490 case (_, None):
+491 cov = np.eye(mean.shape[-1])
+492
+493 super().__init__(**kwargs)
+494
+495 self._mean = mean
+496 self._cov = cov
+
555 def sample(
+556 self, sample_shape: Shape = (), rng: RNG = default_rng()
+557 ) -> ndarray:
+558 shape = sample_shape + self.batch_shape + self.event_shape
+559 standard_normals = rng.standard_normal(shape)
+560 b = np.einsum("...ij,...j->...i", self.L, standard_normals)
+561 samples = self.mean + b
+562 return samples
+
Inherited Members
+
+
+
+
+
+
+ 565class Dirichlet(MultivariateContinuous):
+566 def __init__(self, concentration: ndarray, check: bool = True):
+567 if check and np.any(concentration < 0):
+568 raise NegativeParameterError(
+569 "In Dirichlet(concentration), `concentration` must be stricly positive!"
+570 )
+571 self.concentration = concentration
+572
+573 @cached_property
+574 def concentration_sum(self):
+575 return self.concentration.sum(-1, keepdims=True)
+576
+577 @cached_property
+578 def event_shape(self):
+579 return self.concentration.shape[-1]
+580
+581 @cached_property
+582 def batch_plus_event_shape(self):
+583 return self.concentration.shape
+584
+585 @cached_property
+586 def batch_shape(self):
+587 return self.batch_plus_event_shape[:-1]
+588
+589 def logpdf(self, x: ndarray) -> float | ndarray:
+590 # TODO: Test.
+591 return (
+592 np.sum((self.concentration - 1) * np.log(x), -1)
+593 + gammaln(self.concentration.sum(-1))
+594 - gammaln(self.concentration).sum(-1)
+595 )
+596
+597 def sample(
+598 self, sample_shape: Shape = (), rng: RNG = default_rng()
+599 ) -> ndarray:
+600 shape = sample_shape + self.batch_plus_event_shape
+601 alpha = rng.standard_gamma(shape)
+602 return alpha / alpha.sum(-1, keepdims=True)
+603
+604 def to_real(self, x: ndarray) -> float | ndarray:
+605 # https://mc-stan.org/docs/2_19/reference-manual/simplex-transform-section.html
+606 raise NotImplementedError
+607
+608 def to_native(self, z: ndarray) -> float | ndarray:
+609 # https://mc-stan.org/docs/2_19/reference-manual/simplex-transform-section.html
+610 raise NotImplementedError
+611
+612 def logdetjac(self, z: ndarray) -> float | ndarray:
+613 # https://mc-stan.org/docs/2_19/reference-manual/simplex-transform-section.html
+614 raise NotImplementedError
+615
+616 @cached_property
+617 def cov(self) -> ndarray:
+618 raise NotImplementedError
+619
+620 @cached_property
+621 def mean(self) -> ndarray:
+622 return self.concentration / self.concentration_sum
+623
+624 @cached_property
+625 def var(self) -> ndarray:
+626 m = self.mean
+627 return m * (1 - m) / (1 + self.concentration_sum)
+628
+629 @cached_property
+630 def std(self) -> ndarray:
+631 return np.sqrt(self.var)
+
Inherited Members
+
+
+
+
+
+arianna
+
+
+
+
+
+
+arianna
+
+
+
+
+
+
+ 1from abc import ABC, abstractmethod
+ 2from typing import Any, Optional, Protocol
+ 3
+ 4import numpy as np
+ 5from numpy import ndarray
+ 6from numpy.random import Generator as RNG
+ 7from numpy.random import default_rng
+ 8
+ 9from arianna.types import NegativeInfinityError, Numeric, Shape, State
+ 10
+ 11
+ 12class BasicDistribution(Protocol):
+ 13 def logpdf(self, x: Numeric) -> Numeric: ...
+ 14 def sample(
+ 15 self, sample_shape: Shape = (), rng: RNG = default_rng()
+ 16 ) -> ndarray: ...
+ 17
+ 18
+ 19class TransformableDistribution(BasicDistribution):
+ 20 def logdetjac(self, z: Numeric) -> Numeric: ...
+ 21
+ 22 def logpdf_plus_logdetjac(self, z: Numeric) -> Numeric: ...
+ 23
+ 24 def to_real(self, x: Numeric) -> Numeric:
+ 25 return np.log(x)
+ 26
+ 27 def to_native(self, z: Numeric) -> Numeric:
+ 28 return np.exp(z)
+ 29
+ 30 def logpdf(self, x: Numeric) -> Numeric: ...
+ 31
+ 32
+ 33# NOTE: Ideally, the name of a child Context class should be what its `run`
+ 34# method returns. For example, the LogprobAndTrace Context's `run` method
+ 35# returns the model log probability and trace. (Note that a trace is the state
+ 36# in the native space and also includes cached values.)
+ 37class Context(ABC):
+ 38 result: Any
+ 39 state: State
+ 40
+ 41 @classmethod
+ 42 @abstractmethod
+ 43 def run(cls): ...
+ 44
+ 45 @abstractmethod
+ 46 def rv(
+ 47 self, name: str, dist: BasicDistribution, obs: Optional[Numeric] = None
+ 48 ) -> Numeric: ...
+ 49
+ 50 @abstractmethod
+ 51 def cached(self, name: str, value: Numeric) -> Numeric: ...
+ 52
+ 53 def __call__(self):
+ 54 return self.result
+ 55
+ 56
+ 57class LogprobAndPriorSample(Context):
+ 58 @classmethod
+ 59 def run(
+ 60 cls, model, rng: Optional[RNG] = None, **data
+ 61 ) -> tuple[float, State]:
+ 62 """Get (logprob, trace)."""
+ 63 ctx = cls(rng=rng)
+ 64 model(ctx, **data)
+ 65 return ctx.result
+ 66
+ 67 def __init__(self, rng: Optional[RNG] = None):
+ 68 self.result = [0.0, {}]
+ 69 self.rng = rng or default_rng()
+ 70
+ 71 def rv(
+ 72 self, name: str, dist: BasicDistribution, obs: Optional[Numeric] = None
+ 73 ):
+ 74 if obs is None:
+ 75 value = dist.sample()
+ 76 self.result[1][name] = value
+ 77 else:
+ 78 value = obs
+ 79
+ 80 self.result[0] += np.sum(dist.logpdf(value))
+ 81
+ 82 return value
+ 83
+ 84 def cached(self, name: str, value: Numeric) -> Numeric:
+ 85 self.result[1][name] = value
+ 86 return value
+ 87
+ 88
+ 89class LogprobAndTrace(Context):
+ 90 @classmethod
+ 91 def run(cls, model, state: State, **data) -> tuple[float, State]:
+ 92 """TODO.
+ 93
+ 94 Returns (logprob, trace). A trace is the state in the native space and
+ 95 the cached values.
+ 96
+ 97 Parameters
+ 98 ----------
+ 99 model : Any
+100 _description_
+101
+102 state : State
+103 _description_
+104
+105 Returns
+106 -------
+107 tuple[float, State]
+108 _description_
+109 """
+110 ctx = cls(state)
+111
+112 try:
+113 # Accumulate logprob.
+114 model(ctx, **data)
+115 except NegativeInfinityError:
+116 # If -inf anywhere during the accumulation, just end early and
+117 # return -inf and an empty trace.
+118 return -np.inf, {}
+119
+120 return ctx.result
+121
+122 def __init__(self, state: State):
+123 self.state = state
+124 self.result = [0.0, {}]
+125
+126 def rv(
+127 self, name: str, dist: BasicDistribution, obs: Optional[Numeric] = None
+128 ):
+129 if obs is None:
+130 value = self.state[name]
+131 self.result[1][name] = value
+132 else:
+133 value = obs
+134
+135 self.result[0] += np.sum(dist.logpdf(value))
+136 if self.result[0] == -np.inf:
+137 raise NegativeInfinityError("Negative infinity in Logprob.")
+138
+139 return value
+140
+141 def cached(self, name: str, value: Numeric) -> Numeric:
+142 self.result[1][name] = value
+143 return value
+144
+145
+146class Predictive(Context):
+147 @classmethod
+148 def run(
+149 cls,
+150 model,
+151 state: Optional[State] = None,
+152 rng: Optional[RNG] = None,
+153 return_cached: bool = True,
+154 **data,
+155 ) -> State:
+156 ctx = cls(state=state, rng=rng, return_cached=return_cached)
+157 model(ctx, **data)
+158 return ctx.result
+159
+160 def __init__(
+161 self,
+162 state: Optional[State] = None,
+163 rng: Optional[RNG] = None,
+164 return_cached: bool = True,
+165 ):
+166 self.state = state or {}
+167 self.rng = rng or default_rng()
+168 self.return_cached = return_cached
+169 self.result = {}
+170
+171 def rv(
+172 self, name: str, dist: BasicDistribution, obs: Optional[Numeric] = None
+173 ) -> Numeric:
+174 match self.state.get(name), obs:
+175 case None, None:
+176 self.result[name] = dist.sample(rng=self.rng)
+177 return self.result[name]
+178 case _, None:
+179 self.result[name] = self.state[name]
+180 return self.result[name]
+181 case None, _:
+182 return obs
+183 case _:
+184 raise RuntimeError("state and obs cannot both be defined.")
+185
+186 def cached(self, name: str, value: Numeric) -> Numeric:
+187 """Handle cached values.
+188
+189 Returns the value `value` and additionally stores `value` in
+190 `self.result[name]` if the `return_cached` attribute is True.
+191
+192 Parameters
+193 ----------
+194 name : str
+195 Name of value to cache.
+196 value : Numeric
+197 Value of the thing to cache.
+198
+199 Returns
+200 -------
+201 Numeric
+202 `value`, which is the second argument in `cached`.
+203 """
+204 if self.return_cached:
+205 self.result[name] = value
+206 return value
+207
+208
+209class TransformedLogprobAndTrace(Context):
+210 """TODO.
+211
+212 Calculates the transformed log probability for a given state (on the real
+213 space) and also returns the state in the native space.
+214
+215 Returns
+216 -------
+217 tuple[float, State]
+218 (logprob_plus_logdetjac, native_state_with_cached_items)
+219 """
+220
+221 @classmethod
+222 def run(cls, model, state: State, **data) -> tuple[float, State]:
+223 ctx = cls(state)
+224
+225 try:
+226 model(ctx, **data)
+227 except NegativeInfinityError:
+228 # In case of -inf, just return -inf and an empty trace ({}) early.
+229 # The trace doesn't matter, just need to return something.
+230 return -np.inf, {}
+231
+232 return ctx.result
+233
+234 def __init__(self, state: State):
+235 self.state = state
+236 self.result = [0.0, {}] # logprob, native_state
+237
+238 def rv(
+239 self,
+240 name: str,
+241 dist: TransformableDistribution,
+242 obs: Optional[Numeric] = None,
+243 ):
+244 if obs is None:
+245 real_value = self.state[name]
+246 self.result[0] += np.sum(dist.logpdf_plus_logdetjac(real_value))
+247 value = dist.to_native(real_value)
+248 self.result[1][name] = value
+249 else:
+250 value = obs
+251 self.result[0] += np.sum(dist.logpdf(value))
+252
+253 if self.result[0] == -np.inf:
+254 raise NegativeInfinityError(
+255 "Negative infinity in TransformedLogprob."
+256 )
+257
+258 return value
+259
+260 def cached(self, name: str, value: Numeric) -> Numeric:
+261 self.result[1][name] = value
+262 return value
+263
+264
+265class TransformedPredictive(Context):
+266 """Get transformed predictive state.
+267
+268 Get transformed predictive state (i.e. state predictive in the real
+269 space) via the `run` method.
+270
+271 Parameters
+272 ----------
+273 state: Optional[State]
+274 Contains values on the native space. If a model parameter's
+275 value is not provided, it will be sampled from it's prior.
+276 Defaults to None.
+277 rng: Optional[RNG]
+278 Random number generator. Defaults to None.
+279 return_cached: bool
+280 Whether or not to return cached values. Defaults to True.
+281
+282 Attributes
+283 ----------
+284 state: State
+285 Contains values on the native space. If None was provided in the
+286 constructor, it's value will be an empty dictionary.
+287 rng: RNG
+288 Random number generator. If None was provided in the
+289 constructor, this will be `default_rng()`.
+290 return_cached: bool
+291 Whether or not to return cached values.
+292 """
+293
+294 @classmethod
+295 def run(
+296 cls,
+297 model,
+298 state: Optional[State] = None,
+299 rng: Optional[RNG] = None,
+300 return_cached: bool = True,
+301 **data,
+302 ):
+303 ctx = cls(state=state, rng=rng, return_cached=return_cached)
+304 model(ctx, **data)
+305 return ctx.result
+306
+307 def __init__(
+308 self,
+309 state: Optional[State] = None,
+310 rng: Optional[RNG] = None,
+311 return_cached: bool = True,
+312 ):
+313 self.state = state or {}
+314 self.rng = rng or default_rng()
+315 self.return_cached = return_cached
+316 self.result = {}
+317
+318 def rv(
+319 self,
+320 name: str,
+321 dist: TransformableDistribution,
+322 obs: Optional[Numeric] = None,
+323 ) -> Numeric:
+324 match self.state.get(name), obs:
+325 case None, None:
+326 # Sample from prior.
+327 native_value = dist.sample(rng=self.rng)
+328 self.result[name] = dist.to_real(native_value)
+329 return native_value
+330 case _, None:
+331 # provided state is in native space, so needs to be converted
+332 # to real space.
+333 self.result[name] = dist.to_real(self.state[name])
+334 return self.result[name]
+335 case None, _:
+336 # Observed values need no transformation.
+337 return obs
+338 case _:
+339 raise RuntimeError("state and obs cannot both be defined.")
+340
+341 def cached(self, name: str, value: Numeric) -> Numeric:
+342 """Handle cached values.
+343
+344 Returns the value `value` and additionally stores `value` in
+345 `self.result[name]` if the `return_cached` attribute is True.
+346
+347 Parameters
+348 ----------
+349 name : str
+350 Name of value to cache.
+351 value : Numeric
+352 Value of the thing to cache.
+353
+354 Returns
+355 -------
+356 Numeric
+357 `value`, which is the second argument in `cached`.
+358 """
+359 if self.return_cached:
+360 self.result[name] = value
+361 return value
+362
+363
+364class LogprobAndLogjacobianAndTrace(Context):
+365 @classmethod
+366 def run(cls, model, state: State, **data) -> tuple[float, float, State]:
+367 ctx = cls(state)
+368
+369 try:
+370 model(ctx, **data)
+371 except NegativeInfinityError:
+372 # In case of -inf, just return -inf and an empty trace ({}) early.
+373 # The trace doesn't matter, just need to return something.
+374 return -np.inf, -np.inf, {}
+375
+376 return ctx.result
+377
+378 def __init__(self, state: State):
+379 self.state = state
+380 self.result = [0.0, 0.0, {}] # logprob, logdetjac, native_state
+381
+382 def rv(
+383 self,
+384 name: str,
+385 dist: TransformableDistribution,
+386 obs: Optional[Numeric] = None,
+387 ):
+388 if obs is None:
+389 real_value = self.state[name]
+390 value = dist.to_native(real_value)
+391 self.result[0] += np.sum(dist.logpdf(value))
+392 self.result[1] += np.sum(dist.logdetjac(real_value))
+393 self.result[2][name] = value
+394 else:
+395 value = obs
+396 self.result[0] += np.sum(dist.logpdf(value))
+397
+398 if self.result[0] == -np.inf:
+399 raise NegativeInfinityError(
+400 "Negative infinity in LogprobAndLogjacobianAndTrace."
+401 )
+402
+403 if self.result[1] == -np.inf:
+404 raise NegativeInfinityError(
+405 "Negative infinity in LogprobAndLogjacobianAndTrace."
+406 )
+407
+408 return value
+409
+410 def cached(self, name: str, value: Numeric) -> Numeric:
+411 self.result[2][name] = value
+412 return value
+
13class BasicDistribution(Protocol):
+14 def logpdf(self, x: Numeric) -> Numeric: ...
+15 def sample(
+16 self, sample_shape: Shape = (), rng: RNG = default_rng()
+17 ) -> ndarray: ...
+
+
+class Proto(Protocol):
+ def meth(self) -> int:
+ ...
+
+
+class C:
+ def meth(self) -> int:
+ return 0
+
+def func(x: Proto) -> int:
+ return x.meth()
+
+func(C()) # Passes static type check
+
+class GenProto(Protocol[T]):
+ def meth(self) -> T:
+ ...
+
1431def _no_init_or_replace_init(self, *args, **kwargs):
+1432 cls = type(self)
+1433
+1434 if cls._is_protocol:
+1435 raise TypeError('Protocols cannot be instantiated')
+1436
+1437 # Already using a custom `__init__`. No need to calculate correct
+1438 # `__init__` to call. This can lead to RecursionError. See bpo-45121.
+1439 if cls.__init__ is not _no_init_or_replace_init:
+1440 return
+1441
+1442 # Initially, `__init__` of a protocol subclass is set to `_no_init_or_replace_init`.
+1443 # The first instantiation of the subclass will call `_no_init_or_replace_init` which
+1444 # searches for a proper new `__init__` in the MRO. The new `__init__`
+1445 # replaces the subclass' old `__init__` (ie `_no_init_or_replace_init`). Subsequent
+1446 # instantiation of the protocol subclass will thus use the new
+1447 # `__init__` and no longer call `_no_init_or_replace_init`.
+1448 for base in cls.__mro__:
+1449 init = base.__dict__.get('__init__', _no_init_or_replace_init)
+1450 if init is not _no_init_or_replace_init:
+1451 cls.__init__ = init
+1452 break
+1453 else:
+1454 # should not happen
+1455 cls.__init__ = object.__init__
+1456
+1457 cls.__init__(self, *args, **kwargs)
+
14 def logpdf(self, x: Numeric) -> Numeric: ...
+
20class TransformableDistribution(BasicDistribution):
+21 def logdetjac(self, z: Numeric) -> Numeric: ...
+22
+23 def logpdf_plus_logdetjac(self, z: Numeric) -> Numeric: ...
+24
+25 def to_real(self, x: Numeric) -> Numeric:
+26 return np.log(x)
+27
+28 def to_native(self, z: Numeric) -> Numeric:
+29 return np.exp(z)
+30
+31 def logpdf(self, x: Numeric) -> Numeric: ...
+
+
+class Proto(Protocol):
+ def meth(self) -> int:
+ ...
+
+
+class C:
+ def meth(self) -> int:
+ return 0
+
+def func(x: Proto) -> int:
+ return x.meth()
+
+func(C()) # Passes static type check
+
+class GenProto(Protocol[T]):
+ def meth(self) -> T:
+ ...
+
21 def logdetjac(self, z: Numeric) -> Numeric: ...
+
23 def logpdf_plus_logdetjac(self, z: Numeric) -> Numeric: ...
+
31 def logpdf(self, x: Numeric) -> Numeric: ...
+
Inherited Members
+
+
+
+ 38class Context(ABC):
+39 result: Any
+40 state: State
+41
+42 @classmethod
+43 @abstractmethod
+44 def run(cls): ...
+45
+46 @abstractmethod
+47 def rv(
+48 self, name: str, dist: BasicDistribution, obs: Optional[Numeric] = None
+49 ) -> Numeric: ...
+50
+51 @abstractmethod
+52 def cached(self, name: str, value: Numeric) -> Numeric: ...
+53
+54 def __call__(self):
+55 return self.result
+
58class LogprobAndPriorSample(Context):
+59 @classmethod
+60 def run(
+61 cls, model, rng: Optional[RNG] = None, **data
+62 ) -> tuple[float, State]:
+63 """Get (logprob, trace)."""
+64 ctx = cls(rng=rng)
+65 model(ctx, **data)
+66 return ctx.result
+67
+68 def __init__(self, rng: Optional[RNG] = None):
+69 self.result = [0.0, {}]
+70 self.rng = rng or default_rng()
+71
+72 def rv(
+73 self, name: str, dist: BasicDistribution, obs: Optional[Numeric] = None
+74 ):
+75 if obs is None:
+76 value = dist.sample()
+77 self.result[1][name] = value
+78 else:
+79 value = obs
+80
+81 self.result[0] += np.sum(dist.logpdf(value))
+82
+83 return value
+84
+85 def cached(self, name: str, value: Numeric) -> Numeric:
+86 self.result[1][name] = value
+87 return value
+
59 @classmethod
+60 def run(
+61 cls, model, rng: Optional[RNG] = None, **data
+62 ) -> tuple[float, State]:
+63 """Get (logprob, trace)."""
+64 ctx = cls(rng=rng)
+65 model(ctx, **data)
+66 return ctx.result
+
90class LogprobAndTrace(Context):
+ 91 @classmethod
+ 92 def run(cls, model, state: State, **data) -> tuple[float, State]:
+ 93 """TODO.
+ 94
+ 95 Returns (logprob, trace). A trace is the state in the native space and
+ 96 the cached values.
+ 97
+ 98 Parameters
+ 99 ----------
+100 model : Any
+101 _description_
+102
+103 state : State
+104 _description_
+105
+106 Returns
+107 -------
+108 tuple[float, State]
+109 _description_
+110 """
+111 ctx = cls(state)
+112
+113 try:
+114 # Accumulate logprob.
+115 model(ctx, **data)
+116 except NegativeInfinityError:
+117 # If -inf anywhere during the accumulation, just end early and
+118 # return -inf and an empty trace.
+119 return -np.inf, {}
+120
+121 return ctx.result
+122
+123 def __init__(self, state: State):
+124 self.state = state
+125 self.result = [0.0, {}]
+126
+127 def rv(
+128 self, name: str, dist: BasicDistribution, obs: Optional[Numeric] = None
+129 ):
+130 if obs is None:
+131 value = self.state[name]
+132 self.result[1][name] = value
+133 else:
+134 value = obs
+135
+136 self.result[0] += np.sum(dist.logpdf(value))
+137 if self.result[0] == -np.inf:
+138 raise NegativeInfinityError("Negative infinity in Logprob.")
+139
+140 return value
+141
+142 def cached(self, name: str, value: Numeric) -> Numeric:
+143 self.result[1][name] = value
+144 return value
+
91 @classmethod
+ 92 def run(cls, model, state: State, **data) -> tuple[float, State]:
+ 93 """TODO.
+ 94
+ 95 Returns (logprob, trace). A trace is the state in the native space and
+ 96 the cached values.
+ 97
+ 98 Parameters
+ 99 ----------
+100 model : Any
+101 _description_
+102
+103 state : State
+104 _description_
+105
+106 Returns
+107 -------
+108 tuple[float, State]
+109 _description_
+110 """
+111 ctx = cls(state)
+112
+113 try:
+114 # Accumulate logprob.
+115 model(ctx, **data)
+116 except NegativeInfinityError:
+117 # If -inf anywhere during the accumulation, just end early and
+118 # return -inf and an empty trace.
+119 return -np.inf, {}
+120
+121 return ctx.result
+
Parameters
+
+
+
+
+Returns
+
+
+
+127 def rv(
+128 self, name: str, dist: BasicDistribution, obs: Optional[Numeric] = None
+129 ):
+130 if obs is None:
+131 value = self.state[name]
+132 self.result[1][name] = value
+133 else:
+134 value = obs
+135
+136 self.result[0] += np.sum(dist.logpdf(value))
+137 if self.result[0] == -np.inf:
+138 raise NegativeInfinityError("Negative infinity in Logprob.")
+139
+140 return value
+
147class Predictive(Context):
+148 @classmethod
+149 def run(
+150 cls,
+151 model,
+152 state: Optional[State] = None,
+153 rng: Optional[RNG] = None,
+154 return_cached: bool = True,
+155 **data,
+156 ) -> State:
+157 ctx = cls(state=state, rng=rng, return_cached=return_cached)
+158 model(ctx, **data)
+159 return ctx.result
+160
+161 def __init__(
+162 self,
+163 state: Optional[State] = None,
+164 rng: Optional[RNG] = None,
+165 return_cached: bool = True,
+166 ):
+167 self.state = state or {}
+168 self.rng = rng or default_rng()
+169 self.return_cached = return_cached
+170 self.result = {}
+171
+172 def rv(
+173 self, name: str, dist: BasicDistribution, obs: Optional[Numeric] = None
+174 ) -> Numeric:
+175 match self.state.get(name), obs:
+176 case None, None:
+177 self.result[name] = dist.sample(rng=self.rng)
+178 return self.result[name]
+179 case _, None:
+180 self.result[name] = self.state[name]
+181 return self.result[name]
+182 case None, _:
+183 return obs
+184 case _:
+185 raise RuntimeError("state and obs cannot both be defined.")
+186
+187 def cached(self, name: str, value: Numeric) -> Numeric:
+188 """Handle cached values.
+189
+190 Returns the value `value` and additionally stores `value` in
+191 `self.result[name]` if the `return_cached` attribute is True.
+192
+193 Parameters
+194 ----------
+195 name : str
+196 Name of value to cache.
+197 value : Numeric
+198 Value of the thing to cache.
+199
+200 Returns
+201 -------
+202 Numeric
+203 `value`, which is the second argument in `cached`.
+204 """
+205 if self.return_cached:
+206 self.result[name] = value
+207 return value
+
172 def rv(
+173 self, name: str, dist: BasicDistribution, obs: Optional[Numeric] = None
+174 ) -> Numeric:
+175 match self.state.get(name), obs:
+176 case None, None:
+177 self.result[name] = dist.sample(rng=self.rng)
+178 return self.result[name]
+179 case _, None:
+180 self.result[name] = self.state[name]
+181 return self.result[name]
+182 case None, _:
+183 return obs
+184 case _:
+185 raise RuntimeError("state and obs cannot both be defined.")
+
187 def cached(self, name: str, value: Numeric) -> Numeric:
+188 """Handle cached values.
+189
+190 Returns the value `value` and additionally stores `value` in
+191 `self.result[name]` if the `return_cached` attribute is True.
+192
+193 Parameters
+194 ----------
+195 name : str
+196 Name of value to cache.
+197 value : Numeric
+198 Value of the thing to cache.
+199
+200 Returns
+201 -------
+202 Numeric
+203 `value`, which is the second argument in `cached`.
+204 """
+205 if self.return_cached:
+206 self.result[name] = value
+207 return value
+
value
and additionally stores value
in
+self.result[name]
if the return_cached
attribute is True.Parameters
+
+
+
+
+Returns
+
+
+
+value
, which is the second argument in cached
.210class TransformedLogprobAndTrace(Context):
+211 """TODO.
+212
+213 Calculates the transformed log probability for a given state (on the real
+214 space) and also returns the state in the native space.
+215
+216 Returns
+217 -------
+218 tuple[float, State]
+219 (logprob_plus_logdetjac, native_state_with_cached_items)
+220 """
+221
+222 @classmethod
+223 def run(cls, model, state: State, **data) -> tuple[float, State]:
+224 ctx = cls(state)
+225
+226 try:
+227 model(ctx, **data)
+228 except NegativeInfinityError:
+229 # In case of -inf, just return -inf and an empty trace ({}) early.
+230 # The trace doesn't matter, just need to return something.
+231 return -np.inf, {}
+232
+233 return ctx.result
+234
+235 def __init__(self, state: State):
+236 self.state = state
+237 self.result = [0.0, {}] # logprob, native_state
+238
+239 def rv(
+240 self,
+241 name: str,
+242 dist: TransformableDistribution,
+243 obs: Optional[Numeric] = None,
+244 ):
+245 if obs is None:
+246 real_value = self.state[name]
+247 self.result[0] += np.sum(dist.logpdf_plus_logdetjac(real_value))
+248 value = dist.to_native(real_value)
+249 self.result[1][name] = value
+250 else:
+251 value = obs
+252 self.result[0] += np.sum(dist.logpdf(value))
+253
+254 if self.result[0] == -np.inf:
+255 raise NegativeInfinityError(
+256 "Negative infinity in TransformedLogprob."
+257 )
+258
+259 return value
+260
+261 def cached(self, name: str, value: Numeric) -> Numeric:
+262 self.result[1][name] = value
+263 return value
+
Returns
+
+
+
+222 @classmethod
+223 def run(cls, model, state: State, **data) -> tuple[float, State]:
+224 ctx = cls(state)
+225
+226 try:
+227 model(ctx, **data)
+228 except NegativeInfinityError:
+229 # In case of -inf, just return -inf and an empty trace ({}) early.
+230 # The trace doesn't matter, just need to return something.
+231 return -np.inf, {}
+232
+233 return ctx.result
+
239 def rv(
+240 self,
+241 name: str,
+242 dist: TransformableDistribution,
+243 obs: Optional[Numeric] = None,
+244 ):
+245 if obs is None:
+246 real_value = self.state[name]
+247 self.result[0] += np.sum(dist.logpdf_plus_logdetjac(real_value))
+248 value = dist.to_native(real_value)
+249 self.result[1][name] = value
+250 else:
+251 value = obs
+252 self.result[0] += np.sum(dist.logpdf(value))
+253
+254 if self.result[0] == -np.inf:
+255 raise NegativeInfinityError(
+256 "Negative infinity in TransformedLogprob."
+257 )
+258
+259 return value
+
266class TransformedPredictive(Context):
+267 """Get transformed predictive state.
+268
+269 Get transformed predictive state (i.e. state predictive in the real
+270 space) via the `run` method.
+271
+272 Parameters
+273 ----------
+274 state: Optional[State]
+275 Contains values on the native space. If a model parameter's
+276 value is not provided, it will be sampled from it's prior.
+277 Defaults to None.
+278 rng: Optional[RNG]
+279 Random number generator. Defaults to None.
+280 return_cached: bool
+281 Whether or not to return cached values. Defaults to True.
+282
+283 Attributes
+284 ----------
+285 state: State
+286 Contains values on the native space. If None was provided in the
+287 constructor, it's value will be an empty dictionary.
+288 rng: RNG
+289 Random number generator. If None was provided in the
+290 constructor, this will be `default_rng()`.
+291 return_cached: bool
+292 Whether or not to return cached values.
+293 """
+294
+295 @classmethod
+296 def run(
+297 cls,
+298 model,
+299 state: Optional[State] = None,
+300 rng: Optional[RNG] = None,
+301 return_cached: bool = True,
+302 **data,
+303 ):
+304 ctx = cls(state=state, rng=rng, return_cached=return_cached)
+305 model(ctx, **data)
+306 return ctx.result
+307
+308 def __init__(
+309 self,
+310 state: Optional[State] = None,
+311 rng: Optional[RNG] = None,
+312 return_cached: bool = True,
+313 ):
+314 self.state = state or {}
+315 self.rng = rng or default_rng()
+316 self.return_cached = return_cached
+317 self.result = {}
+318
+319 def rv(
+320 self,
+321 name: str,
+322 dist: TransformableDistribution,
+323 obs: Optional[Numeric] = None,
+324 ) -> Numeric:
+325 match self.state.get(name), obs:
+326 case None, None:
+327 # Sample from prior.
+328 native_value = dist.sample(rng=self.rng)
+329 self.result[name] = dist.to_real(native_value)
+330 return native_value
+331 case _, None:
+332 # provided state is in native space, so needs to be converted
+333 # to real space.
+334 self.result[name] = dist.to_real(self.state[name])
+335 return self.result[name]
+336 case None, _:
+337 # Observed values need no transformation.
+338 return obs
+339 case _:
+340 raise RuntimeError("state and obs cannot both be defined.")
+341
+342 def cached(self, name: str, value: Numeric) -> Numeric:
+343 """Handle cached values.
+344
+345 Returns the value `value` and additionally stores `value` in
+346 `self.result[name]` if the `return_cached` attribute is True.
+347
+348 Parameters
+349 ----------
+350 name : str
+351 Name of value to cache.
+352 value : Numeric
+353 Value of the thing to cache.
+354
+355 Returns
+356 -------
+357 Numeric
+358 `value`, which is the second argument in `cached`.
+359 """
+360 if self.return_cached:
+361 self.result[name] = value
+362 return value
+
run
method.Parameters
+
+
+
+
+Attributes
+
+
+
+default_rng()
.319 def rv(
+320 self,
+321 name: str,
+322 dist: TransformableDistribution,
+323 obs: Optional[Numeric] = None,
+324 ) -> Numeric:
+325 match self.state.get(name), obs:
+326 case None, None:
+327 # Sample from prior.
+328 native_value = dist.sample(rng=self.rng)
+329 self.result[name] = dist.to_real(native_value)
+330 return native_value
+331 case _, None:
+332 # provided state is in native space, so needs to be converted
+333 # to real space.
+334 self.result[name] = dist.to_real(self.state[name])
+335 return self.result[name]
+336 case None, _:
+337 # Observed values need no transformation.
+338 return obs
+339 case _:
+340 raise RuntimeError("state and obs cannot both be defined.")
+
342 def cached(self, name: str, value: Numeric) -> Numeric:
+343 """Handle cached values.
+344
+345 Returns the value `value` and additionally stores `value` in
+346 `self.result[name]` if the `return_cached` attribute is True.
+347
+348 Parameters
+349 ----------
+350 name : str
+351 Name of value to cache.
+352 value : Numeric
+353 Value of the thing to cache.
+354
+355 Returns
+356 -------
+357 Numeric
+358 `value`, which is the second argument in `cached`.
+359 """
+360 if self.return_cached:
+361 self.result[name] = value
+362 return value
+
value
and additionally stores value
in
+self.result[name]
if the return_cached
attribute is True.Parameters
+
+
+
+
+Returns
+
+
+
+value
, which is the second argument in cached
.365class LogprobAndLogjacobianAndTrace(Context):
+366 @classmethod
+367 def run(cls, model, state: State, **data) -> tuple[float, float, State]:
+368 ctx = cls(state)
+369
+370 try:
+371 model(ctx, **data)
+372 except NegativeInfinityError:
+373 # In case of -inf, just return -inf and an empty trace ({}) early.
+374 # The trace doesn't matter, just need to return something.
+375 return -np.inf, -np.inf, {}
+376
+377 return ctx.result
+378
+379 def __init__(self, state: State):
+380 self.state = state
+381 self.result = [0.0, 0.0, {}] # logprob, logdetjac, native_state
+382
+383 def rv(
+384 self,
+385 name: str,
+386 dist: TransformableDistribution,
+387 obs: Optional[Numeric] = None,
+388 ):
+389 if obs is None:
+390 real_value = self.state[name]
+391 value = dist.to_native(real_value)
+392 self.result[0] += np.sum(dist.logpdf(value))
+393 self.result[1] += np.sum(dist.logdetjac(real_value))
+394 self.result[2][name] = value
+395 else:
+396 value = obs
+397 self.result[0] += np.sum(dist.logpdf(value))
+398
+399 if self.result[0] == -np.inf:
+400 raise NegativeInfinityError(
+401 "Negative infinity in LogprobAndLogjacobianAndTrace."
+402 )
+403
+404 if self.result[1] == -np.inf:
+405 raise NegativeInfinityError(
+406 "Negative infinity in LogprobAndLogjacobianAndTrace."
+407 )
+408
+409 return value
+410
+411 def cached(self, name: str, value: Numeric) -> Numeric:
+412 self.result[2][name] = value
+413 return value
+
366 @classmethod
+367 def run(cls, model, state: State, **data) -> tuple[float, float, State]:
+368 ctx = cls(state)
+369
+370 try:
+371 model(ctx, **data)
+372 except NegativeInfinityError:
+373 # In case of -inf, just return -inf and an empty trace ({}) early.
+374 # The trace doesn't matter, just need to return something.
+375 return -np.inf, -np.inf, {}
+376
+377 return ctx.result
+
383 def rv(
+384 self,
+385 name: str,
+386 dist: TransformableDistribution,
+387 obs: Optional[Numeric] = None,
+388 ):
+389 if obs is None:
+390 real_value = self.state[name]
+391 value = dist.to_native(real_value)
+392 self.result[0] += np.sum(dist.logpdf(value))
+393 self.result[1] += np.sum(dist.logdetjac(real_value))
+394 self.result[2][name] = value
+395 else:
+396 value = obs
+397 self.result[0] += np.sum(dist.logpdf(value))
+398
+399 if self.result[0] == -np.inf:
+400 raise NegativeInfinityError(
+401 "Negative infinity in LogprobAndLogjacobianAndTrace."
+402 )
+403
+404 if self.result[1] == -np.inf:
+405 raise NegativeInfinityError(
+406 "Negative infinity in LogprobAndLogjacobianAndTrace."
+407 )
+408
+409 return value
+
+arianna
+
+
+
+
+
+
+ 1import numpy as np
+ 2
+ 3
+ 4def ess_kish(w: np.ndarray, log: bool = True) -> float:
+ 5 """Kish Effective Sample Size.
+ 6
+ 7 Kish's effective sample size. Used for weighted samples. (e.g. importance
+ 8 sampling, sequential monte carlo, particle filters.)
+ 9
+10 https://en.wikipedia.org/wiki/Effective_sample_size
+11
+12 If log is True, then the w are log weights.
+13 """
+14 if log:
+15 return ess_kish(np.exp(w - np.max(w)), log=False)
+16 else:
+17 return sum(w) ** 2 / sum(w**2)
+
5def ess_kish(w: np.ndarray, log: bool = True) -> float:
+ 6 """Kish Effective Sample Size.
+ 7
+ 8 Kish's effective sample size. Used for weighted samples. (e.g. importance
+ 9 sampling, sequential monte carlo, particle filters.)
+10
+11 https://en.wikipedia.org/wiki/Effective_sample_size
+12
+13 If log is True, then the w are log weights.
+14 """
+15 if log:
+16 return ess_kish(np.exp(w - np.max(w)), log=False)
+17 else:
+18 return sum(w) ** 2 / sum(w**2)
+
+arianna
+
+
+
+
+
+
+ 1from abc import ABC, abstractmethod
+ 2from concurrent.futures import Executor
+ 3from copy import deepcopy
+ 4from functools import cached_property
+ 5from typing import (
+ 6 Any,
+ 7 Callable,
+ 8 Concatenate,
+ 9 Generator,
+ 10 Iterable,
+ 11 Optional,
+ 12 ParamSpec,
+ 13)
+ 14
+ 15import numpy as np
+ 16from numpy import ndarray
+ 17from numpy.random import Generator as RNG
+ 18from numpy.random import default_rng
+ 19from scipy.optimize import minimize
+ 20from scipy.special import log_softmax, softmax
+ 21from tqdm import tqdm, trange
+ 22
+ 23from arianna.distributions import MvNormal
+ 24from arianna.ppl.context import (
+ 25 Context,
+ 26 LogprobAndLogjacobianAndTrace,
+ 27 LogprobAndPriorSample,
+ 28 LogprobAndTrace,
+ 29 Predictive,
+ 30 State,
+ 31 TransformedLogprobAndTrace,
+ 32 TransformedPredictive,
+ 33)
+ 34from arianna.ppl.shaper import Shaper
+ 35
+ 36P = ParamSpec("P")
+ 37Model = Callable[Concatenate[Context, P], None]
+ 38Logprob = Callable[[State], tuple[float, State]]
+ 39
+ 40
+ 41class Chain:
+ 42 """Chain MCMC samples.
+ 43
+ 44 Parameters
+ 45 ----------
+ 46 states : Iterable[State]
+ 47 MCMC states.
+ 48
+ 49 Attributes
+ 50 ----------
+ 51 chain : list[State]
+ 52 MCMC states in list format.
+ 53 """
+ 54
+ 55 def __init__(self, states: Iterable[State]):
+ 56 self.states = list(states)
+ 57 self.names = list(self.states[0].keys())
+ 58
+ 59 def __iter__(self):
+ 60 """Iterate over states.
+ 61
+ 62 Yields
+ 63 ------
+ 64 State
+ 65 MCMC state within chain.
+ 66 """
+ 67 for state in self.states:
+ 68 yield state
+ 69
+ 70 def __len__(self) -> int:
+ 71 """Return the number of states."""
+ 72 return len(self.states)
+ 73
+ 74 def get(self, name: str) -> ndarray:
+ 75 """Get all MCMC samples for one variable or cached value by name.
+ 76
+ 77 Parameters
+ 78 ----------
+ 79 name : str
+ 80 Name of model parameter or cached value.
+ 81
+ 82 Returns
+ 83 -------
+ 84 ndarray
+ 85 MCMC samples for the variable or cached value named.
+ 86 """
+ 87 return np.stack([c[name] for c in self.states])
+ 88
+ 89 @cached_property
+ 90 def bundle(self) -> dict[str, ndarray]:
+ 91 """Bundle MCMC values into a dictionary.
+ 92
+ 93 Returns
+ 94 -------
+ 95 dict[str, ndarray]
+ 96 Dictionary bundle of MCMC samples.
+ 97 """
+ 98 return {name: self.get(name) for name in self.names}
+ 99
+100 def subset(self, burn: int = 0, thin: int = 1):
+101 """Return subset of the states.
+102
+103 Parameters
+104 ----------
+105 burn : int, optional
+106 Number of initial samples to discard, by default 0.
+107 thin : int, optional
+108 Take only every `thin`-th sample, by default 1.
+109
+110 Returns
+111 -------
+112 Chain
+113 A whole new chain, with the first `burn` removed, and taking only
+114 every `thin`-th sample.
+115 """
+116 return Chain(self.states[burn::thin])
+117
+118
+119class InferenceEngine(ABC):
+120 """Abstract inference engine class."""
+121
+122 rng: RNG
+123
+124 @abstractmethod
+125 def fit(self):
+126 """Fit model."""
+127 pass
+128
+129
+130class MCMC(InferenceEngine):
+131 """Abstract class for MCMC."""
+132
+133 model: Model
+134 model_data: dict[str, Any]
+135 nsamples: int
+136 burn: int
+137 thin: int
+138 mcmc_iteration: int
+139 transform: bool
+140 logprob_history: list[float]
+141
+142 @abstractmethod
+143 def _fit(self, *args, **kwargs) -> Generator[State, None, None]:
+144 pass
+145
+146 @abstractmethod
+147 def step(self):
+148 """Update model state in one MCMC iteration."""
+149 pass
+150
+151 def fit(self, *args, **kwargs) -> Chain:
+152 """Run MCMC.
+153
+154 Returns
+155 -------
+156 Chain
+157 Chain of MCMC samples.
+158 """
+159 return Chain(self._fit(*args, **kwargs))
+160
+161 def logprob(self, state: State) -> tuple[float, State]:
+162 """Compute log density.
+163
+164 Parameters
+165 ----------
+166 state : State
+167 Dictionary containing random variables to model.
+168
+169 Returns
+170 -------
+171 tuple[float, State]
+172 (Log density (float), native state and cached values (dict))
+173 """
+174 if self.transform:
+175 # state is real.
+176 # Returns logprob + log_det_jacobian, native_state.
+177 return TransformedLogprobAndTrace.run(
+178 self.model, state, **self.model_data
+179 )
+180 else:
+181 # state is native.
+182 # Returns logprob, state (which is already native).
+183 return LogprobAndTrace.run(self.model, state, **self.model_data)
+184
+185
+186class SingleWalkerMCMC(MCMC):
+187 """Markov Chain Monte Carlo."""
+188
+189 init_state: State
+190 mcmc_state: State
+191 transform: bool
+192
+193 @abstractmethod
+194 def step(self) -> tuple[float, State]:
+195 """Update mcmc_state and return logprob and native_state_and_cache.
+196
+197 Returns
+198 -------
+199 float, State
+200 Logprob and native state and cache dictionary.
+201 """
+202 pass
+203
+204 def _fit(
+205 self, nsamples: int, burn: int = 0, thin: int = 1
+206 ) -> Generator[State, None, None]:
+207 self.nsamples = nsamples
+208 self.burn = burn
+209 self.thin = thin
+210 self.mcmc_state = deepcopy(self.init_state)
+211 self.logprob_history = []
+212
+213 for i in trange(nsamples * thin + burn):
+214 self.mcmc_iteration = i
+215 # NOTE: mcmc_state may not be the returned state, but the state
+216 # that is used in the MCMC (e.g., for computational efficiency).
+217 # trace is the state in its native space appended with any cached
+218 # values.
+219 logprob, trace = self.step()
+220 if i >= burn and (i + 1) % thin == 0:
+221 self.logprob_history.append(logprob)
+222 yield trace
+223
+224
+225class RandomWalkMetropolis(SingleWalkerMCMC):
+226 """Random walk Metropolis.
+227
+228 Parameters
+229 ----------
+230 model: Model
+231 model function.
+232 init_state: Optional[State]
+233 Initial state for MCMC. If `transform=True` then `init_state` should
+234 contain values in the real space; if `transform=False`, then
+235 `init_state` should contain values in the native space. If not
+236 provided, `init_state` is sampled from the prior predictive.
+237 Defaults to None.
+238 proposal: Optional[dict[str, Any]]
+239 Dictionary containing proposal functions, dependent on the current
+240 value. Defaults to None.
+241 transform: bool
+242 Whether or not to sample parameters into the real space. If False,
+243 samples parameters in the native space. Regardless, returned samples
+244 are in the native space and will include cached values. Defaults to
+245 True.
+246 rng: Optional[RNG]
+247 Numpy random number generator. Defaults to None.
+248
+249 Attributes
+250 ----------
+251 model: Model
+252 See Parameters.
+253 init_state: State
+254 If the constructor received None, `init_state` will be an empty
+255 dictionary.
+256 proposal: dict[str, Any]
+257 If None is received in the constructor, an empty dictionary is first
+258 created. In addition, any model parameters unnamed in the constructor
+259 will have a value of
+260 `lambda value, rng, mcmc_iteration: rng.normal(value, 0.1)`.
+261 Thus, if you supplied in the constructor
+262 `dict(mu=lambda value, rng, mcmc_iteration: rng.normal(value, 1))`
+263 and your model is
+264 ```python
+265 def model(ctx, y=None):
+266 mu = ctx.rv("mu", Normal(0, 10))
+267 sigma = ctx.rv("sigma", Gamma(1, 1))
+268 ctx.rv("y", Normal(mu, sigma), obs=y)
+269 ```
+270 then the value for sigma will be
+271 `lambda value, rng, _: rng.normal(value, 0.1)`.
+272 transform: bool
+273 See Parameters.
+274 rng: RNG
+275 If `None` was supplied in the constructor, then rng will be set to
+276 `np.random.default_rng()`.
+277 """
+278
+279 mcmc_state: State
+280 init_state: State
+281
+282 def __init__(
+283 self,
+284 model: Model,
+285 init_state: Optional[State] = None,
+286 proposal: Optional[dict[str, Any]] = None,
+287 transform: bool = True,
+288 rng: Optional[RNG] = None,
+289 **model_data,
+290 ):
+291 self.model = model
+292 self.model_data = model_data
+293 self.transform = transform
+294 self.rng = rng or default_rng()
+295
+296 match init_state, transform:
+297 case None, True:
+298 self.init_state = TransformedPredictive.run(
+299 model, rng=rng, return_cached=False, **model_data
+300 )
+301 case None, False:
+302 self.init_state = Predictive.run(
+303 model, rng=rng, return_cached=False, **model_data
+304 )
+305 case _: # init_state is provided.
+306 self.init_state = init_state
+307
+308 self.proposal = proposal or {}
+309 for name in self.init_state: # should not have cached values.
+310 self.proposal.setdefault(
+311 name, lambda value, rng, _: rng.normal(value, 0.1)
+312 )
+313
+314 def step(self) -> tuple[float, State]:
+315 """Update mcmc_state and return native state and cached values.
+316
+317 Returns
+318 -------
+319 State
+320 Native state and cached values.
+321 """
+322 proposed_state = {
+323 name: propose(self.mcmc_state[name], self.rng, self.mcmc_iteration)
+324 for name, propose in self.proposal.items()
+325 }
+326 # NOTE: A trace contains the state (i.e., result of rv) in the native
+327 # space AND cached values (i.e., result of cached).
+328 logprob_proposed, proposed_trace = self.logprob(proposed_state)
+329 logprob_current, current_trace = self.logprob(self.mcmc_state)
+330 if logprob_proposed - logprob_current > np.log(self.rng.uniform()):
+331 self.mcmc_state = proposed_state
+332 return logprob_proposed, proposed_trace
+333 else:
+334 return logprob_current, current_trace
+335
+336
+337class AffineInvariantMCMC(MCMC):
+338 """Affine Invariant MCMC."""
+339
+340 nsteps: int
+341 init_state: list[State]
+342 mcmc_state: list[State]
+343 accept_rate: ndarray
+344 accept: list[int]
+345 nwalkers: int
+346 rng: RNG
+347 a: float
+348
+349 @cached_property
+350 def dim(self) -> int:
+351 """Number of model parameters."""
+352 return int(
+353 sum(
+354 np.prod(np.shape(value))
+355 for value in self.init_state[0].values()
+356 )
+357 )
+358
+359 def logprob(self, state: State) -> tuple[float, float, State]:
+360 """Compute log density.
+361
+362 Parameters
+363 ----------
+364 state : State
+365 Dictionary containing random variables to model.
+366
+367 Returns
+368 -------
+369 tuple[float, float, State]
+370 (
+371 Log density in native space,
+372 Log determinant of jacobian,
+373 native state and cached values (dict)
+374 )
+375 """
+376 if self.transform:
+377 # state is real.
+378 # Returns logprob, log_det_jacobian, native_state.
+379 return LogprobAndLogjacobianAndTrace.run(
+380 self.model, state, **self.model_data
+381 )
+382 else:
+383 # state is native.
+384 # Returns logprob, logprob, state (which is already native).
+385 lp, trace = LogprobAndTrace.run(
+386 self.model, state, **self.model_data
+387 )
+388 return lp, 0, trace
+389
+390 @abstractmethod
+391 def step(self) -> tuple[list[float], list[State]]:
+392 """Update mcmc_state and return list of native_state_and_cache.
+393
+394 Returns
+395 -------
+396 list[State]
+397 List of native state and cache dictionary.
+398 """
+399 pass
+400
+401 def _update_walker(self, i: int) -> tuple[float, State]:
+402 this_walker = self.mcmc_state[i]
+403 z = self._draw_z(i)
+404 other_walker = self._draw_walker(i)
+405
+406 candidate = {
+407 name: value + (this_walker[name] - value) * z
+408 for name, value in other_walker.items()
+409 }
+410
+411 cand_logprob, cand_ldj, cand_trace = self.logprob(candidate)
+412 this_logprob, this_ldj, this_trace = self.logprob(this_walker)
+413 log_accept_prob = cand_logprob + cand_ldj - this_logprob - this_ldj
+414 log_accept_prob += (self.dim - 1) * np.log(z)
+415 if log_accept_prob > np.log(self._draw_u(i)):
+416 if self.mcmc_iteration >= self.burn:
+417 self.accept[i] += 1
+418 for key, value in candidate.items():
+419 this_walker[key] = value
+420 trace = cand_trace
+421 lp = cand_logprob
+422 else:
+423 trace = this_trace
+424 lp = this_logprob
+425
+426 return lp, trace
+427
+428 def fit(
+429 self, *args, rebalanced_samples: Optional[int] = None, **kwargs
+430 ) -> Chain:
+431 """Fit model with AIES."""
+432 chain = Chain(self._fit(*args, **kwargs))
+433
+434 if rebalanced_samples is None:
+435 rebalanced_samples = self.nsteps
+436
+437 if rebalanced_samples > 0:
+438 # Reweight with importance sampling.
+439 weights = softmax(self.logprob_history)
+440 index = self.rng.choice(
+441 len(weights), rebalanced_samples, replace=True, p=weights
+442 )
+443 self.resampled_logprob_history = np.array(
+444 [self.logprob_history[i] for i in index]
+445 )
+446 chain = Chain(chain.states[i] for i in index)
+447
+448 return chain
+449
+450 def _fit(
+451 self, nsteps: int, burn: int = 0, thin: int = 1
+452 ) -> Generator[State, None, None]:
+453 self.nsteps = nsteps
+454 self.nsamples = nsteps * self.nwalkers
+455 self.burn = burn
+456 self.thin = thin
+457 self.mcmc_state = deepcopy(self.init_state)
+458 self.logprob_history = []
+459
+460 for i in trange(nsteps * thin + burn):
+461 self.mcmc_iteration = i
+462 # NOTE: mcmc_state may not be the returned state, but the state
+463 # that is used in the MCMC (e.g., for computational efficiency).
+464 # trace is the state in its native space appended with any cached
+465 # values.
+466 logprob, trace = self.step()
+467 if i >= burn and (i + 1) % thin == 0:
+468 self.logprob_history.extend(logprob)
+469 yield from trace
+470
+471 self.accept_rate = np.array(self.accept) / (self.nsteps * self.thin)
+472
+473 @cached_property
+474 def _root_a(self) -> float:
+475 return np.sqrt(self.a)
+476
+477 @cached_property
+478 def _invroot_a(self) -> float:
+479 return 1 / self._root_a
+480
+481 @abstractmethod
+482 def _draw_walker(self, i: int) -> State: ...
+483
+484 @abstractmethod
+485 def _draw_u(self, i: int) -> float: ...
+486
+487 def _compute_z_given_u(self, u: float) -> float:
+488 return (u * (self._root_a - self._invroot_a) + self._invroot_a) ** 2
+489
+490 def _draw_z(self, i: int) -> float:
+491 u = self._draw_u(i)
+492 return self._compute_z_given_u(u)
+493
+494
+495# https://arxiv.org/abs/1202.3665
+496class AIES(AffineInvariantMCMC):
+497 """Sequential Affine Invariant Ensemble Sampler.
+498
+499 This sampler is good for target distributions that are not multimodal and
+500 separated by large low density regions. You should use as many walkers as
+501 you can afford. Whereas this sampler employs walkers that are sequeutnailly
+502 updated. there is a parallel analog that updates walkers in parallel.
+503
+504 Parameters
+505 ----------
+506 model : Model
+507 A model function of the form `def model(ctx: Context, **data)`.
+508 num_walkers : int, optional
+509 Number of walkers. Defaults to 10.
+510 transform : bool, optional
+511 Whether or not to transform parameters into the real space, by default
+512 True.
+513 rng : RNG, optional
+514 Random number generator, by default default_rng()
+515 a : float, optional
+516 Tuning parameter that is set, by default, to 2.0, which is good for many
+517 cases.
+518 temperature_fn : Optional[Callable[[int], float]], optional
+519 A temperature function for annealing, by default None.
+520
+521 References
+522 ----------
+523 - [emcee: The MCMC Hammer](https://arxiv.org/pdf/1202.3665)
+524 - [Ensemble Samplers with Affine Invariance](https://msp.org/camcos/2010/5-1/camcos-v5-n1-p04-s.pdf)
+525 """
+526
+527 @staticmethod
+528 def default_temperature_fn(iter: int) -> float:
+529 """Return 1."""
+530 return 1.0
+531
+532 def __init__(
+533 self,
+534 model: Model,
+535 nwalkers: int = 10,
+536 transform: bool = True,
+537 rng: RNG = default_rng(),
+538 a: float = 2.0,
+539 temperature_fn: Optional[Callable[[int], float]] = None,
+540 init_state: Optional[list[State]] = None,
+541 **model_data,
+542 ):
+543 self.model: Model = model
+544 self.nwalkers: int = nwalkers
+545 self.transform: bool = transform
+546 self.rng = rng
+547 self.accept = [0] * nwalkers
+548 if a <= 1:
+549 raise ValueError("Tuning parameter `a` must be larger than 1.")
+550
+551 self.a: float = a
+552 self.model_data = model_data
+553 self.temperature_fn: Callable[[int], float] = (
+554 temperature_fn or self.default_temperature_fn
+555 )
+556 predictive = TransformedPredictive if transform else Predictive
+557 if init_state is None:
+558 init_state = [
+559 predictive.run(
+560 model, rng=rng, return_cached=False, **model_data
+561 )
+562 for _ in range(self.nwalkers)
+563 ]
+564 self.init_state = init_state
+565
+566 def step(self) -> tuple[list[float], list[State]]:
+567 """Update mcmc_state and return list of native_state_and_cache.
+568
+569 Returns
+570 -------
+571 list[float], list[State]
+572 List of logprobs and list of native state and cache dictionary.
+573 """
+574 trace = []
+575 lp = []
+576 for i, _ in enumerate(self.mcmc_state):
+577 lp_i, trace_i = self._update_walker(i)
+578 lp.append(lp_i)
+579 trace.append(trace_i)
+580
+581 return lp, trace
+582
+583 def _draw_u(self, _: int) -> float:
+584 return self.rng.uniform()
+585
+586 def _draw_walker(self, i: int) -> State:
+587 # Draw anything but the current walker (i).
+588 if (j := self.rng.integers(self.nwalkers)) == i:
+589 return self._draw_walker(i)
+590 else:
+591 return self.mcmc_state[j]
+592
+593
+594class ParallelAIES(AffineInvariantMCMC):
+595 """Parallel Affine Invariant MCMC (or Parallel AIES).
+596
+597 References
+598 ----------
+599 - [emcee: The MCMC Hammer](https://arxiv.org/pdf/1202.3665)
+600 - [Ensemble Samplers with Affine Invariance](https://msp.org/camcos/2010/5-1/camcos-v5-n1-p04-s.pdf)
+601 """
+602
+603 def __init__(
+604 self,
+605 model: Model,
+606 executor: Executor,
+607 nwalkers: int = 10,
+608 transform: bool = True,
+609 rng: RNG = default_rng(),
+610 a: float = 2.0,
+611 init_state: Optional[list[State]] = None,
+612 **model_data,
+613 ):
+614 if nwalkers < 4 or nwalkers % 2 == 1:
+615 raise ValueError(
+616 "num_walkers needs to be an even integer greater than 3, "
+617 f"but got {nwalkers}!"
+618 )
+619
+620 self.executor = executor
+621 self.model: Model = model
+622 self.nwalkers: int = nwalkers
+623 self.transform: bool = transform
+624 self.rng = rng
+625 self.rngs = self.rng.spawn(self.nwalkers)
+626 self.accept = [0] * nwalkers
+627 if a <= 1:
+628 raise ValueError("Tuning parameter `a` must be larger than 1.")
+629
+630 self.a: float = a
+631 self.model_data = model_data
+632 predictive = TransformedPredictive if transform else Predictive
+633 if init_state is None:
+634 init_state = [
+635 predictive.run(
+636 model, rng=self.rng, return_cached=False, **model_data
+637 )
+638 for _ in range(self.nwalkers)
+639 ]
+640 self.init_state = init_state
+641
+642 def _draw_u(self, i: int) -> float:
+643 return self.rngs[i].uniform()
+644
+645 def step(self) -> tuple[list[float], list[State]]:
+646 """Update mcmc_state and return list of native_state_and_cache.
+647
+648 Returns
+649 -------
+650 list[float], list[State]
+651 Tuple in which the first element is a list of logprobs, and the
+652 second element is a list of traces (i.e., native state and cache
+653 dictionary).
+654 """
+655 mid = self.nwalkers // 2
+656 out_first_half = list(
+657 self.executor.map(self._update_walker, range(mid))
+658 )
+659 out_second_half = list(
+660 self.executor.map(self._update_walker, range(mid, self.nwalkers))
+661 )
+662 logprob_first_half, trace_first_half = zip(*out_first_half)
+663 logprob_second_half, trace_second_half = zip(*out_second_half)
+664
+665 logprob = logprob_first_half + logprob_second_half
+666 trace = trace_first_half + trace_second_half
+667 return logprob, trace
+668
+669 def _draw_walker(self, i: int) -> State:
+670 other_walkers = self._get_other_walkers(i)
+671 j = self.rngs[i].integers(len(other_walkers))
+672 return other_walkers[j]
+673
+674 def _get_other_walkers(self, i: int) -> list[State]:
+675 mid = self.nwalkers // 2
+676 if i < mid:
+677 return self.mcmc_state[mid:]
+678 else:
+679 return self.mcmc_state[:mid]
+680
+681
+682class ImportanceSampling(InferenceEngine):
+683 """Importance Sampling."""
+684
+685 particles: list[State]
+686
+687 def __init__(
+688 self,
+689 model: Model,
+690 rng: Optional[RNG] = None,
+691 particles: Optional[list[State]] = None,
+692 nparticles: Optional[int] = None,
+693 temperature: float = 1.0,
+694 **model_data,
+695 ):
+696 self.model = model
+697 self.model_data = model_data
+698 self.temperature = temperature
+699 self.rng = rng or default_rng()
+700 match nparticles, particles:
+701 case None, None:
+702 raise ValueError(
+703 "nparticles and particles cannot both be None!"
+704 )
+705 case _, None:
+706 self.nparticles = nparticles
+707 logprobs_and_samples = [
+708 LogprobAndPriorSample.run(
+709 model=self.model, rng=self.rng, **self.model_data
+710 )
+711 for _ in trange(self.nparticles)
+712 ]
+713 self.logprobs, self.particles = zip(*logprobs_and_samples)
+714 case None, _:
+715 self.particles = particles
+716 self.nparticles = len(particles)
+717 self.logprobs = [
+718 LogprobAndTrace.run(
+719 model=self.model, state=particle, **self.model_data
+720 )[0]
+721 for particle in tqdm(self.particles)
+722 ]
+723 case _:
+724 raise ValueError(
+725 "nparticles and particles cannot both be specified!"
+726 )
+727
+728 self.log_weights = log_softmax(self.logprobs)
+729 self.weights = softmax(self.logprobs)
+730 # self.ess = ess_kish(self.weights)
+731
+732 def fit(self, nsamples: int) -> Chain:
+733 """Sample."""
+734 indices = self.rng.choice(self.nparticles, nsamples, p=self.weights)
+735 return Chain(self.particles[i] for i in indices)
+736
+737
+738class LaplaceApproximation(InferenceEngine):
+739 """Laplace Approximation of Posterior."""
+740
+741 rng: RNG
+742
+743 def __init__(
+744 self,
+745 model: Model,
+746 transform: bool = True,
+747 rng: Optional[RNG] = None,
+748 **model_data,
+749 ):
+750 self.model = model
+751 self.model_data = model_data
+752 self.rng = rng or default_rng()
+753 self.transform = transform
+754
+755 if self.transform:
+756 self.init_state = TransformedPredictive.run(
+757 model, rng=rng, return_cached=False, **self.model_data
+758 )
+759 else:
+760 self.init_state = Predictive.run(
+761 model, rng=rng, return_cached=False, **self.model_data
+762 )
+763
+764 self.shaper = Shaper.from_state(self.init_state)
+765 self.init_vec_state = self.shaper.vec(self.init_state)
+766
+767 def logprob(self, vec_state: np.ndarray) -> float:
+768 """Compute log density.
+769
+770 Parameters
+771 ----------
+772 state : State
+773 Dictionary containing random variables to model.
+774
+775 Returns
+776 -------
+777 tuple[float, State]
+778 (Log density (float), native state and cached values (dict))
+779 """
+780 state = self.shaper.unvec(vec_state)
+781 if self.transform:
+782 # state is real.
+783 # Returns logprob + log_det_jacobian, native_state.
+784 return TransformedLogprobAndTrace.run(
+785 self.model, state, **self.model_data
+786 )[0]
+787 else:
+788 # state is native.
+789 # Returns logprob, state (which is already native).
+790 return LogprobAndTrace.run(self.model, state, **self.model_data)[0]
+791
+792 def _negative_logprob(self, vec_state) -> float:
+793 return -self.logprob(vec_state)
+794
+795 def fit(self, nsamples: int, **minimize_kwargs):
+796 """Fit model with laplace approx."""
+797 self.result = minimize(
+798 self._negative_logprob, x0=self.init_vec_state, **minimize_kwargs
+799 )
+800 mean = self.result.x
+801 cov = self.result.hess_inv
+802 samples = MvNormal(mean, cov).sample((nsamples,), rng=self.rng)
+803
+804 # Return native state and cache.
+805 if self.transform:
+806 return Chain(
+807 TransformedLogprobAndTrace.run(
+808 self.model,
+809 self.shaper.unvec(vec_state),
+810 **self.model_data,
+811 )[1]
+812 for vec_state in samples
+813 )
+814 else:
+815 return Chain(
+816 Predictive.run(
+817 self.model,
+818 self.shaper.unvec(vec_state),
+819 return_cached=True,
+820 **self.model_data,
+821 )
+822 for vec_state in samples
+823 )
+824
+825
+826class BayesianOptimization(InferenceEngine):
+827 """Bayesian Optimization."""
+828
+829 ...
+830
+831
+832class AdaptiveRandomWalkMetropolis(SingleWalkerMCMC):
+833 """Adaptive Random Walk Metropolis.
+834
+835 Resources
+836 ---------
+837 - https://probability.ca/jeff/ftpdir/adaptex.pdf
+838 """
+839
+840 ...
+
42class Chain:
+ 43 """Chain MCMC samples.
+ 44
+ 45 Parameters
+ 46 ----------
+ 47 states : Iterable[State]
+ 48 MCMC states.
+ 49
+ 50 Attributes
+ 51 ----------
+ 52 chain : list[State]
+ 53 MCMC states in list format.
+ 54 """
+ 55
+ 56 def __init__(self, states: Iterable[State]):
+ 57 self.states = list(states)
+ 58 self.names = list(self.states[0].keys())
+ 59
+ 60 def __iter__(self):
+ 61 """Iterate over states.
+ 62
+ 63 Yields
+ 64 ------
+ 65 State
+ 66 MCMC state within chain.
+ 67 """
+ 68 for state in self.states:
+ 69 yield state
+ 70
+ 71 def __len__(self) -> int:
+ 72 """Return the number of states."""
+ 73 return len(self.states)
+ 74
+ 75 def get(self, name: str) -> ndarray:
+ 76 """Get all MCMC samples for one variable or cached value by name.
+ 77
+ 78 Parameters
+ 79 ----------
+ 80 name : str
+ 81 Name of model parameter or cached value.
+ 82
+ 83 Returns
+ 84 -------
+ 85 ndarray
+ 86 MCMC samples for the variable or cached value named.
+ 87 """
+ 88 return np.stack([c[name] for c in self.states])
+ 89
+ 90 @cached_property
+ 91 def bundle(self) -> dict[str, ndarray]:
+ 92 """Bundle MCMC values into a dictionary.
+ 93
+ 94 Returns
+ 95 -------
+ 96 dict[str, ndarray]
+ 97 Dictionary bundle of MCMC samples.
+ 98 """
+ 99 return {name: self.get(name) for name in self.names}
+100
+101 def subset(self, burn: int = 0, thin: int = 1):
+102 """Return subset of the states.
+103
+104 Parameters
+105 ----------
+106 burn : int, optional
+107 Number of initial samples to discard, by default 0.
+108 thin : int, optional
+109 Take only every `thin`-th sample, by default 1.
+110
+111 Returns
+112 -------
+113 Chain
+114 A whole new chain, with the first `burn` removed, and taking only
+115 every `thin`-th sample.
+116 """
+117 return Chain(self.states[burn::thin])
+
Parameters
+
+
+
+
+Attributes
+
+
+
+75 def get(self, name: str) -> ndarray:
+76 """Get all MCMC samples for one variable or cached value by name.
+77
+78 Parameters
+79 ----------
+80 name : str
+81 Name of model parameter or cached value.
+82
+83 Returns
+84 -------
+85 ndarray
+86 MCMC samples for the variable or cached value named.
+87 """
+88 return np.stack([c[name] for c in self.states])
+
Parameters
+
+
+
+
+Returns
+
+
+
+90 @cached_property
+91 def bundle(self) -> dict[str, ndarray]:
+92 """Bundle MCMC values into a dictionary.
+93
+94 Returns
+95 -------
+96 dict[str, ndarray]
+97 Dictionary bundle of MCMC samples.
+98 """
+99 return {name: self.get(name) for name in self.names}
+
Returns
+
+
+
+101 def subset(self, burn: int = 0, thin: int = 1):
+102 """Return subset of the states.
+103
+104 Parameters
+105 ----------
+106 burn : int, optional
+107 Number of initial samples to discard, by default 0.
+108 thin : int, optional
+109 Take only every `thin`-th sample, by default 1.
+110
+111 Returns
+112 -------
+113 Chain
+114 A whole new chain, with the first `burn` removed, and taking only
+115 every `thin`-th sample.
+116 """
+117 return Chain(self.states[burn::thin])
+
Parameters
+
+
+
+
+thin
-th sample, by default 1.Returns
+
+
+
+burn
removed, and taking only
+every thin
-th sample.120class InferenceEngine(ABC):
+121 """Abstract inference engine class."""
+122
+123 rng: RNG
+124
+125 @abstractmethod
+126 def fit(self):
+127 """Fit model."""
+128 pass
+
131class MCMC(InferenceEngine):
+132 """Abstract class for MCMC."""
+133
+134 model: Model
+135 model_data: dict[str, Any]
+136 nsamples: int
+137 burn: int
+138 thin: int
+139 mcmc_iteration: int
+140 transform: bool
+141 logprob_history: list[float]
+142
+143 @abstractmethod
+144 def _fit(self, *args, **kwargs) -> Generator[State, None, None]:
+145 pass
+146
+147 @abstractmethod
+148 def step(self):
+149 """Update model state in one MCMC iteration."""
+150 pass
+151
+152 def fit(self, *args, **kwargs) -> Chain:
+153 """Run MCMC.
+154
+155 Returns
+156 -------
+157 Chain
+158 Chain of MCMC samples.
+159 """
+160 return Chain(self._fit(*args, **kwargs))
+161
+162 def logprob(self, state: State) -> tuple[float, State]:
+163 """Compute log density.
+164
+165 Parameters
+166 ----------
+167 state : State
+168 Dictionary containing random variables to model.
+169
+170 Returns
+171 -------
+172 tuple[float, State]
+173 (Log density (float), native state and cached values (dict))
+174 """
+175 if self.transform:
+176 # state is real.
+177 # Returns logprob + log_det_jacobian, native_state.
+178 return TransformedLogprobAndTrace.run(
+179 self.model, state, **self.model_data
+180 )
+181 else:
+182 # state is native.
+183 # Returns logprob, state (which is already native).
+184 return LogprobAndTrace.run(self.model, state, **self.model_data)
+
147 @abstractmethod
+148 def step(self):
+149 """Update model state in one MCMC iteration."""
+150 pass
+
152 def fit(self, *args, **kwargs) -> Chain:
+153 """Run MCMC.
+154
+155 Returns
+156 -------
+157 Chain
+158 Chain of MCMC samples.
+159 """
+160 return Chain(self._fit(*args, **kwargs))
+
Returns
+
+
+
+162 def logprob(self, state: State) -> tuple[float, State]:
+163 """Compute log density.
+164
+165 Parameters
+166 ----------
+167 state : State
+168 Dictionary containing random variables to model.
+169
+170 Returns
+171 -------
+172 tuple[float, State]
+173 (Log density (float), native state and cached values (dict))
+174 """
+175 if self.transform:
+176 # state is real.
+177 # Returns logprob + log_det_jacobian, native_state.
+178 return TransformedLogprobAndTrace.run(
+179 self.model, state, **self.model_data
+180 )
+181 else:
+182 # state is native.
+183 # Returns logprob, state (which is already native).
+184 return LogprobAndTrace.run(self.model, state, **self.model_data)
+
Parameters
+
+
+
+
+Returns
+
+
+
+Inherited Members
+
+
+ 187class SingleWalkerMCMC(MCMC):
+188 """Markov Chain Monte Carlo."""
+189
+190 init_state: State
+191 mcmc_state: State
+192 transform: bool
+193
+194 @abstractmethod
+195 def step(self) -> tuple[float, State]:
+196 """Update mcmc_state and return logprob and native_state_and_cache.
+197
+198 Returns
+199 -------
+200 float, State
+201 Logprob and native state and cache dictionary.
+202 """
+203 pass
+204
+205 def _fit(
+206 self, nsamples: int, burn: int = 0, thin: int = 1
+207 ) -> Generator[State, None, None]:
+208 self.nsamples = nsamples
+209 self.burn = burn
+210 self.thin = thin
+211 self.mcmc_state = deepcopy(self.init_state)
+212 self.logprob_history = []
+213
+214 for i in trange(nsamples * thin + burn):
+215 self.mcmc_iteration = i
+216 # NOTE: mcmc_state may not be the returned state, but the state
+217 # that is used in the MCMC (e.g., for computational efficiency).
+218 # trace is the state in its native space appended with any cached
+219 # values.
+220 logprob, trace = self.step()
+221 if i >= burn and (i + 1) % thin == 0:
+222 self.logprob_history.append(logprob)
+223 yield trace
+
194 @abstractmethod
+195 def step(self) -> tuple[float, State]:
+196 """Update mcmc_state and return logprob and native_state_and_cache.
+197
+198 Returns
+199 -------
+200 float, State
+201 Logprob and native state and cache dictionary.
+202 """
+203 pass
+
Returns
+
+
+
+Inherited Members
+
+
+ 226class RandomWalkMetropolis(SingleWalkerMCMC):
+227 """Random walk Metropolis.
+228
+229 Parameters
+230 ----------
+231 model: Model
+232 model function.
+233 init_state: Optional[State]
+234 Initial state for MCMC. If `transform=True` then `init_state` should
+235 contain values in the real space; if `transform=False`, then
+236 `init_state` should contain values in the native space. If not
+237 provided, `init_state` is sampled from the prior predictive.
+238 Defaults to None.
+239 proposal: Optional[dict[str, Any]]
+240 Dictionary containing proposal functions, dependent on the current
+241 value. Defaults to None.
+242 transform: bool
+243 Whether or not to sample parameters into the real space. If False,
+244 samples parameters in the native space. Regardless, returned samples
+245 are in the native space and will include cached values. Defaults to
+246 True.
+247 rng: Optional[RNG]
+248 Numpy random number generator. Defaults to None.
+249
+250 Attributes
+251 ----------
+252 model: Model
+253 See Parameters.
+254 init_state: State
+255 If the constructor received None, `init_state` will be an empty
+256 dictionary.
+257 proposal: dict[str, Any]
+258 If None is received in the constructor, an empty dictionary is first
+259 created. In addition, any model parameters unnamed in the constructor
+260 will have a value of
+261 `lambda value, rng, mcmc_iteration: rng.normal(value, 0.1)`.
+262 Thus, if you supplied in the constructor
+263 `dict(mu=lambda value, rng, mcmc_iteration: rng.normal(value, 1))`
+264 and your model is
+265 ```python
+266 def model(ctx, y=None):
+267 mu = ctx.rv("mu", Normal(0, 10))
+268 sigma = ctx.rv("sigma", Gamma(1, 1))
+269 ctx.rv("y", Normal(mu, sigma), obs=y)
+270 ```
+271 then the value for sigma will be
+272 `lambda value, rng, _: rng.normal(value, 0.1)`.
+273 transform: bool
+274 See Parameters.
+275 rng: RNG
+276 If `None` was supplied in the constructor, then rng will be set to
+277 `np.random.default_rng()`.
+278 """
+279
+280 mcmc_state: State
+281 init_state: State
+282
+283 def __init__(
+284 self,
+285 model: Model,
+286 init_state: Optional[State] = None,
+287 proposal: Optional[dict[str, Any]] = None,
+288 transform: bool = True,
+289 rng: Optional[RNG] = None,
+290 **model_data,
+291 ):
+292 self.model = model
+293 self.model_data = model_data
+294 self.transform = transform
+295 self.rng = rng or default_rng()
+296
+297 match init_state, transform:
+298 case None, True:
+299 self.init_state = TransformedPredictive.run(
+300 model, rng=rng, return_cached=False, **model_data
+301 )
+302 case None, False:
+303 self.init_state = Predictive.run(
+304 model, rng=rng, return_cached=False, **model_data
+305 )
+306 case _: # init_state is provided.
+307 self.init_state = init_state
+308
+309 self.proposal = proposal or {}
+310 for name in self.init_state: # should not have cached values.
+311 self.proposal.setdefault(
+312 name, lambda value, rng, _: rng.normal(value, 0.1)
+313 )
+314
+315 def step(self) -> tuple[float, State]:
+316 """Update mcmc_state and return native state and cached values.
+317
+318 Returns
+319 -------
+320 State
+321 Native state and cached values.
+322 """
+323 proposed_state = {
+324 name: propose(self.mcmc_state[name], self.rng, self.mcmc_iteration)
+325 for name, propose in self.proposal.items()
+326 }
+327 # NOTE: A trace contains the state (i.e., result of rv) in the native
+328 # space AND cached values (i.e., result of cached).
+329 logprob_proposed, proposed_trace = self.logprob(proposed_state)
+330 logprob_current, current_trace = self.logprob(self.mcmc_state)
+331 if logprob_proposed - logprob_current > np.log(self.rng.uniform()):
+332 self.mcmc_state = proposed_state
+333 return logprob_proposed, proposed_trace
+334 else:
+335 return logprob_current, current_trace
+
Parameters
+
+
+
+
+transform=True
then init_state
should
+contain values in the real space; if transform=False
, then
+init_state
should contain values in the native space. If not
+provided, init_state
is sampled from the prior predictive.
+Defaults to None.Attributes
+
+
+
+init_state
will be an empty
+dictionary.lambda value, rng, mcmc_iteration: rng.normal(value, 0.1)
.
+Thus, if you supplied in the constructor
+dict(mu=lambda value, rng, mcmc_iteration: rng.normal(value, 1))
+and your model is
+def model(ctx, y=None):
+ mu = ctx.rv("mu", Normal(0, 10))
+ sigma = ctx.rv("sigma", Gamma(1, 1))
+ ctx.rv("y", Normal(mu, sigma), obs=y)
+
lambda value, rng, _: rng.normal(value, 0.1)
.None
was supplied in the constructor, then rng will be set to
+np.random.default_rng()
.283 def __init__(
+284 self,
+285 model: Model,
+286 init_state: Optional[State] = None,
+287 proposal: Optional[dict[str, Any]] = None,
+288 transform: bool = True,
+289 rng: Optional[RNG] = None,
+290 **model_data,
+291 ):
+292 self.model = model
+293 self.model_data = model_data
+294 self.transform = transform
+295 self.rng = rng or default_rng()
+296
+297 match init_state, transform:
+298 case None, True:
+299 self.init_state = TransformedPredictive.run(
+300 model, rng=rng, return_cached=False, **model_data
+301 )
+302 case None, False:
+303 self.init_state = Predictive.run(
+304 model, rng=rng, return_cached=False, **model_data
+305 )
+306 case _: # init_state is provided.
+307 self.init_state = init_state
+308
+309 self.proposal = proposal or {}
+310 for name in self.init_state: # should not have cached values.
+311 self.proposal.setdefault(
+312 name, lambda value, rng, _: rng.normal(value, 0.1)
+313 )
+
315 def step(self) -> tuple[float, State]:
+316 """Update mcmc_state and return native state and cached values.
+317
+318 Returns
+319 -------
+320 State
+321 Native state and cached values.
+322 """
+323 proposed_state = {
+324 name: propose(self.mcmc_state[name], self.rng, self.mcmc_iteration)
+325 for name, propose in self.proposal.items()
+326 }
+327 # NOTE: A trace contains the state (i.e., result of rv) in the native
+328 # space AND cached values (i.e., result of cached).
+329 logprob_proposed, proposed_trace = self.logprob(proposed_state)
+330 logprob_current, current_trace = self.logprob(self.mcmc_state)
+331 if logprob_proposed - logprob_current > np.log(self.rng.uniform()):
+332 self.mcmc_state = proposed_state
+333 return logprob_proposed, proposed_trace
+334 else:
+335 return logprob_current, current_trace
+
Returns
+
+
+
+Inherited Members
+
+
+
+ 338class AffineInvariantMCMC(MCMC):
+339 """Affine Invariant MCMC."""
+340
+341 nsteps: int
+342 init_state: list[State]
+343 mcmc_state: list[State]
+344 accept_rate: ndarray
+345 accept: list[int]
+346 nwalkers: int
+347 rng: RNG
+348 a: float
+349
+350 @cached_property
+351 def dim(self) -> int:
+352 """Number of model parameters."""
+353 return int(
+354 sum(
+355 np.prod(np.shape(value))
+356 for value in self.init_state[0].values()
+357 )
+358 )
+359
+360 def logprob(self, state: State) -> tuple[float, float, State]:
+361 """Compute log density.
+362
+363 Parameters
+364 ----------
+365 state : State
+366 Dictionary containing random variables to model.
+367
+368 Returns
+369 -------
+370 tuple[float, float, State]
+371 (
+372 Log density in native space,
+373 Log determinant of jacobian,
+374 native state and cached values (dict)
+375 )
+376 """
+377 if self.transform:
+378 # state is real.
+379 # Returns logprob, log_det_jacobian, native_state.
+380 return LogprobAndLogjacobianAndTrace.run(
+381 self.model, state, **self.model_data
+382 )
+383 else:
+384 # state is native.
+385 # Returns logprob, logprob, state (which is already native).
+386 lp, trace = LogprobAndTrace.run(
+387 self.model, state, **self.model_data
+388 )
+389 return lp, 0, trace
+390
+391 @abstractmethod
+392 def step(self) -> tuple[list[float], list[State]]:
+393 """Update mcmc_state and return list of native_state_and_cache.
+394
+395 Returns
+396 -------
+397 list[State]
+398 List of native state and cache dictionary.
+399 """
+400 pass
+401
+402 def _update_walker(self, i: int) -> tuple[float, State]:
+403 this_walker = self.mcmc_state[i]
+404 z = self._draw_z(i)
+405 other_walker = self._draw_walker(i)
+406
+407 candidate = {
+408 name: value + (this_walker[name] - value) * z
+409 for name, value in other_walker.items()
+410 }
+411
+412 cand_logprob, cand_ldj, cand_trace = self.logprob(candidate)
+413 this_logprob, this_ldj, this_trace = self.logprob(this_walker)
+414 log_accept_prob = cand_logprob + cand_ldj - this_logprob - this_ldj
+415 log_accept_prob += (self.dim - 1) * np.log(z)
+416 if log_accept_prob > np.log(self._draw_u(i)):
+417 if self.mcmc_iteration >= self.burn:
+418 self.accept[i] += 1
+419 for key, value in candidate.items():
+420 this_walker[key] = value
+421 trace = cand_trace
+422 lp = cand_logprob
+423 else:
+424 trace = this_trace
+425 lp = this_logprob
+426
+427 return lp, trace
+428
+429 def fit(
+430 self, *args, rebalanced_samples: Optional[int] = None, **kwargs
+431 ) -> Chain:
+432 """Fit model with AIES."""
+433 chain = Chain(self._fit(*args, **kwargs))
+434
+435 if rebalanced_samples is None:
+436 rebalanced_samples = self.nsteps
+437
+438 if rebalanced_samples > 0:
+439 # Reweight with importance sampling.
+440 weights = softmax(self.logprob_history)
+441 index = self.rng.choice(
+442 len(weights), rebalanced_samples, replace=True, p=weights
+443 )
+444 self.resampled_logprob_history = np.array(
+445 [self.logprob_history[i] for i in index]
+446 )
+447 chain = Chain(chain.states[i] for i in index)
+448
+449 return chain
+450
+451 def _fit(
+452 self, nsteps: int, burn: int = 0, thin: int = 1
+453 ) -> Generator[State, None, None]:
+454 self.nsteps = nsteps
+455 self.nsamples = nsteps * self.nwalkers
+456 self.burn = burn
+457 self.thin = thin
+458 self.mcmc_state = deepcopy(self.init_state)
+459 self.logprob_history = []
+460
+461 for i in trange(nsteps * thin + burn):
+462 self.mcmc_iteration = i
+463 # NOTE: mcmc_state may not be the returned state, but the state
+464 # that is used in the MCMC (e.g., for computational efficiency).
+465 # trace is the state in its native space appended with any cached
+466 # values.
+467 logprob, trace = self.step()
+468 if i >= burn and (i + 1) % thin == 0:
+469 self.logprob_history.extend(logprob)
+470 yield from trace
+471
+472 self.accept_rate = np.array(self.accept) / (self.nsteps * self.thin)
+473
+474 @cached_property
+475 def _root_a(self) -> float:
+476 return np.sqrt(self.a)
+477
+478 @cached_property
+479 def _invroot_a(self) -> float:
+480 return 1 / self._root_a
+481
+482 @abstractmethod
+483 def _draw_walker(self, i: int) -> State: ...
+484
+485 @abstractmethod
+486 def _draw_u(self, i: int) -> float: ...
+487
+488 def _compute_z_given_u(self, u: float) -> float:
+489 return (u * (self._root_a - self._invroot_a) + self._invroot_a) ** 2
+490
+491 def _draw_z(self, i: int) -> float:
+492 u = self._draw_u(i)
+493 return self._compute_z_given_u(u)
+
350 @cached_property
+351 def dim(self) -> int:
+352 """Number of model parameters."""
+353 return int(
+354 sum(
+355 np.prod(np.shape(value))
+356 for value in self.init_state[0].values()
+357 )
+358 )
+
360 def logprob(self, state: State) -> tuple[float, float, State]:
+361 """Compute log density.
+362
+363 Parameters
+364 ----------
+365 state : State
+366 Dictionary containing random variables to model.
+367
+368 Returns
+369 -------
+370 tuple[float, float, State]
+371 (
+372 Log density in native space,
+373 Log determinant of jacobian,
+374 native state and cached values (dict)
+375 )
+376 """
+377 if self.transform:
+378 # state is real.
+379 # Returns logprob, log_det_jacobian, native_state.
+380 return LogprobAndLogjacobianAndTrace.run(
+381 self.model, state, **self.model_data
+382 )
+383 else:
+384 # state is native.
+385 # Returns logprob, logprob, state (which is already native).
+386 lp, trace = LogprobAndTrace.run(
+387 self.model, state, **self.model_data
+388 )
+389 return lp, 0, trace
+
Parameters
+
+
+
+
+Returns
+
+
+
+391 @abstractmethod
+392 def step(self) -> tuple[list[float], list[State]]:
+393 """Update mcmc_state and return list of native_state_and_cache.
+394
+395 Returns
+396 -------
+397 list[State]
+398 List of native state and cache dictionary.
+399 """
+400 pass
+
Returns
+
+
+
+429 def fit(
+430 self, *args, rebalanced_samples: Optional[int] = None, **kwargs
+431 ) -> Chain:
+432 """Fit model with AIES."""
+433 chain = Chain(self._fit(*args, **kwargs))
+434
+435 if rebalanced_samples is None:
+436 rebalanced_samples = self.nsteps
+437
+438 if rebalanced_samples > 0:
+439 # Reweight with importance sampling.
+440 weights = softmax(self.logprob_history)
+441 index = self.rng.choice(
+442 len(weights), rebalanced_samples, replace=True, p=weights
+443 )
+444 self.resampled_logprob_history = np.array(
+445 [self.logprob_history[i] for i in index]
+446 )
+447 chain = Chain(chain.states[i] for i in index)
+448
+449 return chain
+
Inherited Members
+
+
+ 497class AIES(AffineInvariantMCMC):
+498 """Sequential Affine Invariant Ensemble Sampler.
+499
+500 This sampler is good for target distributions that are not multimodal and
+501 separated by large low density regions. You should use as many walkers as
+502 you can afford. Whereas this sampler employs walkers that are sequeutnailly
+503 updated. there is a parallel analog that updates walkers in parallel.
+504
+505 Parameters
+506 ----------
+507 model : Model
+508 A model function of the form `def model(ctx: Context, **data)`.
+509 num_walkers : int, optional
+510 Number of walkers. Defaults to 10.
+511 transform : bool, optional
+512 Whether or not to transform parameters into the real space, by default
+513 True.
+514 rng : RNG, optional
+515 Random number generator, by default default_rng()
+516 a : float, optional
+517 Tuning parameter that is set, by default, to 2.0, which is good for many
+518 cases.
+519 temperature_fn : Optional[Callable[[int], float]], optional
+520 A temperature function for annealing, by default None.
+521
+522 References
+523 ----------
+524 - [emcee: The MCMC Hammer](https://arxiv.org/pdf/1202.3665)
+525 - [Ensemble Samplers with Affine Invariance](https://msp.org/camcos/2010/5-1/camcos-v5-n1-p04-s.pdf)
+526 """
+527
+528 @staticmethod
+529 def default_temperature_fn(iter: int) -> float:
+530 """Return 1."""
+531 return 1.0
+532
+533 def __init__(
+534 self,
+535 model: Model,
+536 nwalkers: int = 10,
+537 transform: bool = True,
+538 rng: RNG = default_rng(),
+539 a: float = 2.0,
+540 temperature_fn: Optional[Callable[[int], float]] = None,
+541 init_state: Optional[list[State]] = None,
+542 **model_data,
+543 ):
+544 self.model: Model = model
+545 self.nwalkers: int = nwalkers
+546 self.transform: bool = transform
+547 self.rng = rng
+548 self.accept = [0] * nwalkers
+549 if a <= 1:
+550 raise ValueError("Tuning parameter `a` must be larger than 1.")
+551
+552 self.a: float = a
+553 self.model_data = model_data
+554 self.temperature_fn: Callable[[int], float] = (
+555 temperature_fn or self.default_temperature_fn
+556 )
+557 predictive = TransformedPredictive if transform else Predictive
+558 if init_state is None:
+559 init_state = [
+560 predictive.run(
+561 model, rng=rng, return_cached=False, **model_data
+562 )
+563 for _ in range(self.nwalkers)
+564 ]
+565 self.init_state = init_state
+566
+567 def step(self) -> tuple[list[float], list[State]]:
+568 """Update mcmc_state and return list of native_state_and_cache.
+569
+570 Returns
+571 -------
+572 list[float], list[State]
+573 List of logprobs and list of native state and cache dictionary.
+574 """
+575 trace = []
+576 lp = []
+577 for i, _ in enumerate(self.mcmc_state):
+578 lp_i, trace_i = self._update_walker(i)
+579 lp.append(lp_i)
+580 trace.append(trace_i)
+581
+582 return lp, trace
+583
+584 def _draw_u(self, _: int) -> float:
+585 return self.rng.uniform()
+586
+587 def _draw_walker(self, i: int) -> State:
+588 # Draw anything but the current walker (i).
+589 if (j := self.rng.integers(self.nwalkers)) == i:
+590 return self._draw_walker(i)
+591 else:
+592 return self.mcmc_state[j]
+
Parameters
+
+
+
+
+def model(ctx: Context, **data)
.References
+
+
+533 def __init__(
+534 self,
+535 model: Model,
+536 nwalkers: int = 10,
+537 transform: bool = True,
+538 rng: RNG = default_rng(),
+539 a: float = 2.0,
+540 temperature_fn: Optional[Callable[[int], float]] = None,
+541 init_state: Optional[list[State]] = None,
+542 **model_data,
+543 ):
+544 self.model: Model = model
+545 self.nwalkers: int = nwalkers
+546 self.transform: bool = transform
+547 self.rng = rng
+548 self.accept = [0] * nwalkers
+549 if a <= 1:
+550 raise ValueError("Tuning parameter `a` must be larger than 1.")
+551
+552 self.a: float = a
+553 self.model_data = model_data
+554 self.temperature_fn: Callable[[int], float] = (
+555 temperature_fn or self.default_temperature_fn
+556 )
+557 predictive = TransformedPredictive if transform else Predictive
+558 if init_state is None:
+559 init_state = [
+560 predictive.run(
+561 model, rng=rng, return_cached=False, **model_data
+562 )
+563 for _ in range(self.nwalkers)
+564 ]
+565 self.init_state = init_state
+
528 @staticmethod
+529 def default_temperature_fn(iter: int) -> float:
+530 """Return 1."""
+531 return 1.0
+
567 def step(self) -> tuple[list[float], list[State]]:
+568 """Update mcmc_state and return list of native_state_and_cache.
+569
+570 Returns
+571 -------
+572 list[float], list[State]
+573 List of logprobs and list of native state and cache dictionary.
+574 """
+575 trace = []
+576 lp = []
+577 for i, _ in enumerate(self.mcmc_state):
+578 lp_i, trace_i = self._update_walker(i)
+579 lp.append(lp_i)
+580 trace.append(trace_i)
+581
+582 return lp, trace
+
Returns
+
+
+
+Inherited Members
+
+
+
+
+ 595class ParallelAIES(AffineInvariantMCMC):
+596 """Parallel Affine Invariant MCMC (or Parallel AIES).
+597
+598 References
+599 ----------
+600 - [emcee: The MCMC Hammer](https://arxiv.org/pdf/1202.3665)
+601 - [Ensemble Samplers with Affine Invariance](https://msp.org/camcos/2010/5-1/camcos-v5-n1-p04-s.pdf)
+602 """
+603
+604 def __init__(
+605 self,
+606 model: Model,
+607 executor: Executor,
+608 nwalkers: int = 10,
+609 transform: bool = True,
+610 rng: RNG = default_rng(),
+611 a: float = 2.0,
+612 init_state: Optional[list[State]] = None,
+613 **model_data,
+614 ):
+615 if nwalkers < 4 or nwalkers % 2 == 1:
+616 raise ValueError(
+617 "num_walkers needs to be an even integer greater than 3, "
+618 f"but got {nwalkers}!"
+619 )
+620
+621 self.executor = executor
+622 self.model: Model = model
+623 self.nwalkers: int = nwalkers
+624 self.transform: bool = transform
+625 self.rng = rng
+626 self.rngs = self.rng.spawn(self.nwalkers)
+627 self.accept = [0] * nwalkers
+628 if a <= 1:
+629 raise ValueError("Tuning parameter `a` must be larger than 1.")
+630
+631 self.a: float = a
+632 self.model_data = model_data
+633 predictive = TransformedPredictive if transform else Predictive
+634 if init_state is None:
+635 init_state = [
+636 predictive.run(
+637 model, rng=self.rng, return_cached=False, **model_data
+638 )
+639 for _ in range(self.nwalkers)
+640 ]
+641 self.init_state = init_state
+642
+643 def _draw_u(self, i: int) -> float:
+644 return self.rngs[i].uniform()
+645
+646 def step(self) -> tuple[list[float], list[State]]:
+647 """Update mcmc_state and return list of native_state_and_cache.
+648
+649 Returns
+650 -------
+651 list[float], list[State]
+652 Tuple in which the first element is a list of logprobs, and the
+653 second element is a list of traces (i.e., native state and cache
+654 dictionary).
+655 """
+656 mid = self.nwalkers // 2
+657 out_first_half = list(
+658 self.executor.map(self._update_walker, range(mid))
+659 )
+660 out_second_half = list(
+661 self.executor.map(self._update_walker, range(mid, self.nwalkers))
+662 )
+663 logprob_first_half, trace_first_half = zip(*out_first_half)
+664 logprob_second_half, trace_second_half = zip(*out_second_half)
+665
+666 logprob = logprob_first_half + logprob_second_half
+667 trace = trace_first_half + trace_second_half
+668 return logprob, trace
+669
+670 def _draw_walker(self, i: int) -> State:
+671 other_walkers = self._get_other_walkers(i)
+672 j = self.rngs[i].integers(len(other_walkers))
+673 return other_walkers[j]
+674
+675 def _get_other_walkers(self, i: int) -> list[State]:
+676 mid = self.nwalkers // 2
+677 if i < mid:
+678 return self.mcmc_state[mid:]
+679 else:
+680 return self.mcmc_state[:mid]
+
References
+
+
+604 def __init__(
+605 self,
+606 model: Model,
+607 executor: Executor,
+608 nwalkers: int = 10,
+609 transform: bool = True,
+610 rng: RNG = default_rng(),
+611 a: float = 2.0,
+612 init_state: Optional[list[State]] = None,
+613 **model_data,
+614 ):
+615 if nwalkers < 4 or nwalkers % 2 == 1:
+616 raise ValueError(
+617 "num_walkers needs to be an even integer greater than 3, "
+618 f"but got {nwalkers}!"
+619 )
+620
+621 self.executor = executor
+622 self.model: Model = model
+623 self.nwalkers: int = nwalkers
+624 self.transform: bool = transform
+625 self.rng = rng
+626 self.rngs = self.rng.spawn(self.nwalkers)
+627 self.accept = [0] * nwalkers
+628 if a <= 1:
+629 raise ValueError("Tuning parameter `a` must be larger than 1.")
+630
+631 self.a: float = a
+632 self.model_data = model_data
+633 predictive = TransformedPredictive if transform else Predictive
+634 if init_state is None:
+635 init_state = [
+636 predictive.run(
+637 model, rng=self.rng, return_cached=False, **model_data
+638 )
+639 for _ in range(self.nwalkers)
+640 ]
+641 self.init_state = init_state
+
646 def step(self) -> tuple[list[float], list[State]]:
+647 """Update mcmc_state and return list of native_state_and_cache.
+648
+649 Returns
+650 -------
+651 list[float], list[State]
+652 Tuple in which the first element is a list of logprobs, and the
+653 second element is a list of traces (i.e., native state and cache
+654 dictionary).
+655 """
+656 mid = self.nwalkers // 2
+657 out_first_half = list(
+658 self.executor.map(self._update_walker, range(mid))
+659 )
+660 out_second_half = list(
+661 self.executor.map(self._update_walker, range(mid, self.nwalkers))
+662 )
+663 logprob_first_half, trace_first_half = zip(*out_first_half)
+664 logprob_second_half, trace_second_half = zip(*out_second_half)
+665
+666 logprob = logprob_first_half + logprob_second_half
+667 trace = trace_first_half + trace_second_half
+668 return logprob, trace
+
Returns
+
+
+
+Inherited Members
+
+
+
+
+ 683class ImportanceSampling(InferenceEngine):
+684 """Importance Sampling."""
+685
+686 particles: list[State]
+687
+688 def __init__(
+689 self,
+690 model: Model,
+691 rng: Optional[RNG] = None,
+692 particles: Optional[list[State]] = None,
+693 nparticles: Optional[int] = None,
+694 temperature: float = 1.0,
+695 **model_data,
+696 ):
+697 self.model = model
+698 self.model_data = model_data
+699 self.temperature = temperature
+700 self.rng = rng or default_rng()
+701 match nparticles, particles:
+702 case None, None:
+703 raise ValueError(
+704 "nparticles and particles cannot both be None!"
+705 )
+706 case _, None:
+707 self.nparticles = nparticles
+708 logprobs_and_samples = [
+709 LogprobAndPriorSample.run(
+710 model=self.model, rng=self.rng, **self.model_data
+711 )
+712 for _ in trange(self.nparticles)
+713 ]
+714 self.logprobs, self.particles = zip(*logprobs_and_samples)
+715 case None, _:
+716 self.particles = particles
+717 self.nparticles = len(particles)
+718 self.logprobs = [
+719 LogprobAndTrace.run(
+720 model=self.model, state=particle, **self.model_data
+721 )[0]
+722 for particle in tqdm(self.particles)
+723 ]
+724 case _:
+725 raise ValueError(
+726 "nparticles and particles cannot both be specified!"
+727 )
+728
+729 self.log_weights = log_softmax(self.logprobs)
+730 self.weights = softmax(self.logprobs)
+731 # self.ess = ess_kish(self.weights)
+732
+733 def fit(self, nsamples: int) -> Chain:
+734 """Sample."""
+735 indices = self.rng.choice(self.nparticles, nsamples, p=self.weights)
+736 return Chain(self.particles[i] for i in indices)
+
688 def __init__(
+689 self,
+690 model: Model,
+691 rng: Optional[RNG] = None,
+692 particles: Optional[list[State]] = None,
+693 nparticles: Optional[int] = None,
+694 temperature: float = 1.0,
+695 **model_data,
+696 ):
+697 self.model = model
+698 self.model_data = model_data
+699 self.temperature = temperature
+700 self.rng = rng or default_rng()
+701 match nparticles, particles:
+702 case None, None:
+703 raise ValueError(
+704 "nparticles and particles cannot both be None!"
+705 )
+706 case _, None:
+707 self.nparticles = nparticles
+708 logprobs_and_samples = [
+709 LogprobAndPriorSample.run(
+710 model=self.model, rng=self.rng, **self.model_data
+711 )
+712 for _ in trange(self.nparticles)
+713 ]
+714 self.logprobs, self.particles = zip(*logprobs_and_samples)
+715 case None, _:
+716 self.particles = particles
+717 self.nparticles = len(particles)
+718 self.logprobs = [
+719 LogprobAndTrace.run(
+720 model=self.model, state=particle, **self.model_data
+721 )[0]
+722 for particle in tqdm(self.particles)
+723 ]
+724 case _:
+725 raise ValueError(
+726 "nparticles and particles cannot both be specified!"
+727 )
+728
+729 self.log_weights = log_softmax(self.logprobs)
+730 self.weights = softmax(self.logprobs)
+731 # self.ess = ess_kish(self.weights)
+
739class LaplaceApproximation(InferenceEngine):
+740 """Laplace Approximation of Posterior."""
+741
+742 rng: RNG
+743
+744 def __init__(
+745 self,
+746 model: Model,
+747 transform: bool = True,
+748 rng: Optional[RNG] = None,
+749 **model_data,
+750 ):
+751 self.model = model
+752 self.model_data = model_data
+753 self.rng = rng or default_rng()
+754 self.transform = transform
+755
+756 if self.transform:
+757 self.init_state = TransformedPredictive.run(
+758 model, rng=rng, return_cached=False, **self.model_data
+759 )
+760 else:
+761 self.init_state = Predictive.run(
+762 model, rng=rng, return_cached=False, **self.model_data
+763 )
+764
+765 self.shaper = Shaper.from_state(self.init_state)
+766 self.init_vec_state = self.shaper.vec(self.init_state)
+767
+768 def logprob(self, vec_state: np.ndarray) -> float:
+769 """Compute log density.
+770
+771 Parameters
+772 ----------
+773 state : State
+774 Dictionary containing random variables to model.
+775
+776 Returns
+777 -------
+778 tuple[float, State]
+779 (Log density (float), native state and cached values (dict))
+780 """
+781 state = self.shaper.unvec(vec_state)
+782 if self.transform:
+783 # state is real.
+784 # Returns logprob + log_det_jacobian, native_state.
+785 return TransformedLogprobAndTrace.run(
+786 self.model, state, **self.model_data
+787 )[0]
+788 else:
+789 # state is native.
+790 # Returns logprob, state (which is already native).
+791 return LogprobAndTrace.run(self.model, state, **self.model_data)[0]
+792
+793 def _negative_logprob(self, vec_state) -> float:
+794 return -self.logprob(vec_state)
+795
+796 def fit(self, nsamples: int, **minimize_kwargs):
+797 """Fit model with laplace approx."""
+798 self.result = minimize(
+799 self._negative_logprob, x0=self.init_vec_state, **minimize_kwargs
+800 )
+801 mean = self.result.x
+802 cov = self.result.hess_inv
+803 samples = MvNormal(mean, cov).sample((nsamples,), rng=self.rng)
+804
+805 # Return native state and cache.
+806 if self.transform:
+807 return Chain(
+808 TransformedLogprobAndTrace.run(
+809 self.model,
+810 self.shaper.unvec(vec_state),
+811 **self.model_data,
+812 )[1]
+813 for vec_state in samples
+814 )
+815 else:
+816 return Chain(
+817 Predictive.run(
+818 self.model,
+819 self.shaper.unvec(vec_state),
+820 return_cached=True,
+821 **self.model_data,
+822 )
+823 for vec_state in samples
+824 )
+
744 def __init__(
+745 self,
+746 model: Model,
+747 transform: bool = True,
+748 rng: Optional[RNG] = None,
+749 **model_data,
+750 ):
+751 self.model = model
+752 self.model_data = model_data
+753 self.rng = rng or default_rng()
+754 self.transform = transform
+755
+756 if self.transform:
+757 self.init_state = TransformedPredictive.run(
+758 model, rng=rng, return_cached=False, **self.model_data
+759 )
+760 else:
+761 self.init_state = Predictive.run(
+762 model, rng=rng, return_cached=False, **self.model_data
+763 )
+764
+765 self.shaper = Shaper.from_state(self.init_state)
+766 self.init_vec_state = self.shaper.vec(self.init_state)
+
768 def logprob(self, vec_state: np.ndarray) -> float:
+769 """Compute log density.
+770
+771 Parameters
+772 ----------
+773 state : State
+774 Dictionary containing random variables to model.
+775
+776 Returns
+777 -------
+778 tuple[float, State]
+779 (Log density (float), native state and cached values (dict))
+780 """
+781 state = self.shaper.unvec(vec_state)
+782 if self.transform:
+783 # state is real.
+784 # Returns logprob + log_det_jacobian, native_state.
+785 return TransformedLogprobAndTrace.run(
+786 self.model, state, **self.model_data
+787 )[0]
+788 else:
+789 # state is native.
+790 # Returns logprob, state (which is already native).
+791 return LogprobAndTrace.run(self.model, state, **self.model_data)[0]
+
Parameters
+
+
+
+
+Returns
+
+
+
+796 def fit(self, nsamples: int, **minimize_kwargs):
+797 """Fit model with laplace approx."""
+798 self.result = minimize(
+799 self._negative_logprob, x0=self.init_vec_state, **minimize_kwargs
+800 )
+801 mean = self.result.x
+802 cov = self.result.hess_inv
+803 samples = MvNormal(mean, cov).sample((nsamples,), rng=self.rng)
+804
+805 # Return native state and cache.
+806 if self.transform:
+807 return Chain(
+808 TransformedLogprobAndTrace.run(
+809 self.model,
+810 self.shaper.unvec(vec_state),
+811 **self.model_data,
+812 )[1]
+813 for vec_state in samples
+814 )
+815 else:
+816 return Chain(
+817 Predictive.run(
+818 self.model,
+819 self.shaper.unvec(vec_state),
+820 return_cached=True,
+821 **self.model_data,
+822 )
+823 for vec_state in samples
+824 )
+
Inherited Members
+
+
+
+ 833class AdaptiveRandomWalkMetropolis(SingleWalkerMCMC):
+834 """Adaptive Random Walk Metropolis.
+835
+836 Resources
+837 ---------
+838 - https://probability.ca/jeff/ftpdir/adaptex.pdf
+839 """
+840
+841 ...
+
Resources
+
+
+Inherited Members
+
+
+
+
+arianna
+
+
+
+
+
+
+ 1import numpy as np
+ 2
+ 3from arianna.types import State
+ 4
+ 5
+ 6class Shaper:
+ 7 """Shapes dict of numeric values into np.array and back."""
+ 8
+ 9 @classmethod
+10 def from_state(cls, state: State):
+11 """Construct a Shaper from a state."""
+12 return cls({name: np.shape(value) for name, value in state.items()})
+13
+14 def __init__(self, shape: dict[str, tuple[int, ...]]):
+15 self.shape = shape
+16 self.dim = int(sum(np.prod(s) for s in self.shape.values()))
+17
+18 def vec(self, state: State) -> np.ndarray:
+19 """Convert a state dict into a np.ndarray."""
+20 flat_state = []
+21 for _, value in state.items():
+22 value = np.array(value)
+23 flat_state.extend(value.flatten())
+24 return np.array(flat_state)
+25
+26 def unvec(self, flat_state: np.ndarray) -> State:
+27 """Convert a np.ndarray back to a state dict."""
+28 state = {}
+29 start = 0
+30 for name, shapes in self.shape.items():
+31 num_elems = int(np.prod(shapes))
+32 value = np.reshape(flat_state[start : start + num_elems], shapes)
+33 state[name] = value
+34 start += num_elems
+35 return state
+
7class Shaper:
+ 8 """Shapes dict of numeric values into np.array and back."""
+ 9
+10 @classmethod
+11 def from_state(cls, state: State):
+12 """Construct a Shaper from a state."""
+13 return cls({name: np.shape(value) for name, value in state.items()})
+14
+15 def __init__(self, shape: dict[str, tuple[int, ...]]):
+16 self.shape = shape
+17 self.dim = int(sum(np.prod(s) for s in self.shape.values()))
+18
+19 def vec(self, state: State) -> np.ndarray:
+20 """Convert a state dict into a np.ndarray."""
+21 flat_state = []
+22 for _, value in state.items():
+23 value = np.array(value)
+24 flat_state.extend(value.flatten())
+25 return np.array(flat_state)
+26
+27 def unvec(self, flat_state: np.ndarray) -> State:
+28 """Convert a np.ndarray back to a state dict."""
+29 state = {}
+30 start = 0
+31 for name, shapes in self.shape.items():
+32 num_elems = int(np.prod(shapes))
+33 value = np.reshape(flat_state[start : start + num_elems], shapes)
+34 state[name] = value
+35 start += num_elems
+36 return state
+
10 @classmethod
+11 def from_state(cls, state: State):
+12 """Construct a Shaper from a state."""
+13 return cls({name: np.shape(value) for name, value in state.items()})
+
19 def vec(self, state: State) -> np.ndarray:
+20 """Convert a state dict into a np.ndarray."""
+21 flat_state = []
+22 for _, value in state.items():
+23 value = np.array(value)
+24 flat_state.extend(value.flatten())
+25 return np.array(flat_state)
+
27 def unvec(self, flat_state: np.ndarray) -> State:
+28 """Convert a np.ndarray back to a state dict."""
+29 state = {}
+30 start = 0
+31 for name, shapes in self.shape.items():
+32 num_elems = int(np.prod(shapes))
+33 value = np.reshape(flat_state[start : start + num_elems], shapes)
+34 state[name] = value
+35 start += num_elems
+36 return state
+
+arianna
+
+
+
+
+
+
+
+
+
+ 13class NegativeParameterError(Exception): ...
+
16class InvalidBoundsError(Exception): ...
+
Helper class that provides a standard way to create an ABC using\ninheritance.
\n", "bases": "abc.ABC"}, "arianna.distributions.abstract.Distribution.event_shape": {"fullname": "arianna.distributions.abstract.Distribution.event_shape", "modulename": "arianna.distributions.abstract", "qualname": "Distribution.event_shape", "kind": "variable", "doc": "\n"}, "arianna.distributions.abstract.Distribution.batch_shape": {"fullname": "arianna.distributions.abstract.Distribution.batch_shape", "modulename": "arianna.distributions.abstract", "qualname": "Distribution.batch_shape", "kind": "variable", "doc": "\n"}, "arianna.distributions.abstract.Distribution.logpdf": {"fullname": "arianna.distributions.abstract.Distribution.logpdf", "modulename": "arianna.distributions.abstract", "qualname": "Distribution.logpdf", "kind": "function", "doc": "\n", "signature": "(self, x: float | numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.abstract.Distribution.sample": {"fullname": "arianna.distributions.abstract.Distribution.sample", "modulename": "arianna.distributions.abstract", "qualname": "Distribution.sample", "kind": "function", "doc": "\n", "signature": "(\tself,\tsample_shape: tuple[int, ...] = (),\trng: numpy.random._generator.Generator = Generator(PCG64) at 0x103F8E960) -> numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.abstract.Distribution.pdf": {"fullname": "arianna.distributions.abstract.Distribution.pdf", "modulename": "arianna.distributions.abstract", "qualname": "Distribution.pdf", "kind": "function", "doc": "\n", "signature": "(self, x: float | numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.abstract.Distribution.mean": {"fullname": "arianna.distributions.abstract.Distribution.mean", "modulename": "arianna.distributions.abstract", "qualname": "Distribution.mean", "kind": "variable", "doc": "\n", "annotation": ": float | numpy.ndarray"}, "arianna.distributions.abstract.Distribution.std": {"fullname": "arianna.distributions.abstract.Distribution.std", "modulename": "arianna.distributions.abstract", "qualname": "Distribution.std", "kind": "variable", "doc": "\n", "annotation": ": float | numpy.ndarray"}, "arianna.distributions.abstract.Distribution.var": {"fullname": "arianna.distributions.abstract.Distribution.var", "modulename": "arianna.distributions.abstract", "qualname": "Distribution.var", "kind": "variable", "doc": "\n", "annotation": ": float | numpy.ndarray"}, "arianna.distributions.abstract.Continuous": {"fullname": "arianna.distributions.abstract.Continuous", "modulename": "arianna.distributions.abstract", "qualname": "Continuous", "kind": "class", "doc": "Helper class that provides a standard way to create an ABC using\ninheritance.
\n", "bases": "Distribution"}, "arianna.distributions.abstract.Continuous.to_real": {"fullname": "arianna.distributions.abstract.Continuous.to_real", "modulename": "arianna.distributions.abstract", "qualname": "Continuous.to_real", "kind": "function", "doc": "\n", "signature": "(self, x: float | numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.abstract.Continuous.to_native": {"fullname": "arianna.distributions.abstract.Continuous.to_native", "modulename": "arianna.distributions.abstract", "qualname": "Continuous.to_native", "kind": "function", "doc": "\n", "signature": "(self, z: float | numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.abstract.Continuous.logdetjac": {"fullname": "arianna.distributions.abstract.Continuous.logdetjac", "modulename": "arianna.distributions.abstract", "qualname": "Continuous.logdetjac", "kind": "function", "doc": "\n", "signature": "(self, z: float | numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.abstract.Discrete": {"fullname": "arianna.distributions.abstract.Discrete", "modulename": "arianna.distributions.abstract", "qualname": "Discrete", "kind": "class", "doc": "Helper class that provides a standard way to create an ABC using\ninheritance.
\n", "bases": "Distribution"}, "arianna.distributions.abstract.Multivariate": {"fullname": "arianna.distributions.abstract.Multivariate", "modulename": "arianna.distributions.abstract", "qualname": "Multivariate", "kind": "class", "doc": "Helper class that provides a standard way to create an ABC using\ninheritance.
\n", "bases": "Distribution"}, "arianna.distributions.abstract.Multivariate.mean": {"fullname": "arianna.distributions.abstract.Multivariate.mean", "modulename": "arianna.distributions.abstract", "qualname": "Multivariate.mean", "kind": "variable", "doc": "\n", "annotation": ": numpy.ndarray"}, "arianna.distributions.abstract.Multivariate.std": {"fullname": "arianna.distributions.abstract.Multivariate.std", "modulename": "arianna.distributions.abstract", "qualname": "Multivariate.std", "kind": "variable", "doc": "\n", "annotation": ": numpy.ndarray"}, "arianna.distributions.abstract.Multivariate.var": {"fullname": "arianna.distributions.abstract.Multivariate.var", "modulename": "arianna.distributions.abstract", "qualname": "Multivariate.var", "kind": "variable", "doc": "\n", "annotation": ": numpy.ndarray"}, "arianna.distributions.abstract.Univariate": {"fullname": "arianna.distributions.abstract.Univariate", "modulename": "arianna.distributions.abstract", "qualname": "Univariate", "kind": "class", "doc": "Helper class that provides a standard way to create an ABC using\ninheritance.
\n", "bases": "Distribution"}, "arianna.distributions.abstract.Univariate.event_shape": {"fullname": "arianna.distributions.abstract.Univariate.event_shape", "modulename": "arianna.distributions.abstract", "qualname": "Univariate.event_shape", "kind": "variable", "doc": "\n", "annotation": ": tuple[int, ...]"}, "arianna.distributions.abstract.Univariate.batch_shape": {"fullname": "arianna.distributions.abstract.Univariate.batch_shape", "modulename": "arianna.distributions.abstract", "qualname": "Univariate.batch_shape", "kind": "variable", "doc": "\n", "annotation": ": tuple[int, ...]"}, "arianna.distributions.abstract.Univariate.sample": {"fullname": "arianna.distributions.abstract.Univariate.sample", "modulename": "arianna.distributions.abstract", "qualname": "Univariate.sample", "kind": "function", "doc": "\n", "signature": "(\tself,\tsample_shape: tuple[int, ...] = (),\trng: numpy.random._generator.Generator = Generator(PCG64) at 0x103F8EDC0) -> numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.abstract.UnivariateContinuous": {"fullname": "arianna.distributions.abstract.UnivariateContinuous", "modulename": "arianna.distributions.abstract", "qualname": "UnivariateContinuous", "kind": "class", "doc": "Helper class that provides a standard way to create an ABC using\ninheritance.
\n", "bases": "Univariate, Continuous"}, "arianna.distributions.abstract.UnivariateContinuous.logpdf_plus_logdetjac": {"fullname": "arianna.distributions.abstract.UnivariateContinuous.logpdf_plus_logdetjac", "modulename": "arianna.distributions.abstract", "qualname": "UnivariateContinuous.logpdf_plus_logdetjac", "kind": "function", "doc": "Logpdf plus the log absolute determinant of the jacobian.
\n\nLogpdf plus the log absolute determinant of the jacobian, evaluated at\nparameter on the transformed (real) space.
\n", "signature": "(self, z: float | numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.abstract.UnivariateContinuous.logcdf": {"fullname": "arianna.distributions.abstract.UnivariateContinuous.logcdf", "modulename": "arianna.distributions.abstract", "qualname": "UnivariateContinuous.logcdf", "kind": "function", "doc": "\n", "signature": "(self, x: float | numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.abstract.UnivariateContinuous.cdf": {"fullname": "arianna.distributions.abstract.UnivariateContinuous.cdf", "modulename": "arianna.distributions.abstract", "qualname": "UnivariateContinuous.cdf", "kind": "function", "doc": "\n", "signature": "(self, x: float | numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.abstract.UnivariateContinuous.survival": {"fullname": "arianna.distributions.abstract.UnivariateContinuous.survival", "modulename": "arianna.distributions.abstract", "qualname": "UnivariateContinuous.survival", "kind": "function", "doc": "\n", "signature": "(self, x: float | numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.abstract.UnivariateContinuous.logsurvival": {"fullname": "arianna.distributions.abstract.UnivariateContinuous.logsurvival", "modulename": "arianna.distributions.abstract", "qualname": "UnivariateContinuous.logsurvival", "kind": "function", "doc": "\n", "signature": "(self, x: float | numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.abstract.Positive": {"fullname": "arianna.distributions.abstract.Positive", "modulename": "arianna.distributions.abstract", "qualname": "Positive", "kind": "class", "doc": "Helper class that provides a standard way to create an ABC using\ninheritance.
\n", "bases": "UnivariateContinuous"}, "arianna.distributions.abstract.Positive.to_real": {"fullname": "arianna.distributions.abstract.Positive.to_real", "modulename": "arianna.distributions.abstract", "qualname": "Positive.to_real", "kind": "function", "doc": "\n", "signature": "(self, x: float | numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.abstract.Positive.to_native": {"fullname": "arianna.distributions.abstract.Positive.to_native", "modulename": "arianna.distributions.abstract", "qualname": "Positive.to_native", "kind": "function", "doc": "\n", "signature": "(self, z: float | numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.abstract.Positive.logdetjac": {"fullname": "arianna.distributions.abstract.Positive.logdetjac", "modulename": "arianna.distributions.abstract", "qualname": "Positive.logdetjac", "kind": "function", "doc": "\n", "signature": "(self, z: float | numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.abstract.Positive.logpdf": {"fullname": "arianna.distributions.abstract.Positive.logpdf", "modulename": "arianna.distributions.abstract", "qualname": "Positive.logpdf", "kind": "function", "doc": "\n", "signature": "(self, x: float | numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.abstract.LowerUpperBounded": {"fullname": "arianna.distributions.abstract.LowerUpperBounded", "modulename": "arianna.distributions.abstract", "qualname": "LowerUpperBounded", "kind": "class", "doc": "Helper class that provides a standard way to create an ABC using\ninheritance.
\n", "bases": "UnivariateContinuous, abc.ABC"}, "arianna.distributions.abstract.LowerUpperBounded.lower": {"fullname": "arianna.distributions.abstract.LowerUpperBounded.lower", "modulename": "arianna.distributions.abstract", "qualname": "LowerUpperBounded.lower", "kind": "variable", "doc": "\n"}, "arianna.distributions.abstract.LowerUpperBounded.upper": {"fullname": "arianna.distributions.abstract.LowerUpperBounded.upper", "modulename": "arianna.distributions.abstract", "qualname": "LowerUpperBounded.upper", "kind": "variable", "doc": "\n"}, "arianna.distributions.abstract.LowerUpperBounded.range": {"fullname": "arianna.distributions.abstract.LowerUpperBounded.range", "modulename": "arianna.distributions.abstract", "qualname": "LowerUpperBounded.range", "kind": "variable", "doc": "\n"}, "arianna.distributions.abstract.LowerUpperBounded.to_real": {"fullname": "arianna.distributions.abstract.LowerUpperBounded.to_real", "modulename": "arianna.distributions.abstract", "qualname": "LowerUpperBounded.to_real", "kind": "function", "doc": "\n", "signature": "(self, x: float | numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.abstract.LowerUpperBounded.to_native": {"fullname": "arianna.distributions.abstract.LowerUpperBounded.to_native", "modulename": "arianna.distributions.abstract", "qualname": "LowerUpperBounded.to_native", "kind": "function", "doc": "\n", "signature": "(self, z: float | numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.abstract.LowerUpperBounded.logdetjac": {"fullname": "arianna.distributions.abstract.LowerUpperBounded.logdetjac", "modulename": "arianna.distributions.abstract", "qualname": "LowerUpperBounded.logdetjac", "kind": "function", "doc": "\n", "signature": "(self, z: float | numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.abstract.LowerUpperBounded.logpdf": {"fullname": "arianna.distributions.abstract.LowerUpperBounded.logpdf", "modulename": "arianna.distributions.abstract", "qualname": "LowerUpperBounded.logpdf", "kind": "function", "doc": "\n", "signature": "(self, x: float | numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.abstract.MultivariateContinuous": {"fullname": "arianna.distributions.abstract.MultivariateContinuous", "modulename": "arianna.distributions.abstract", "qualname": "MultivariateContinuous", "kind": "class", "doc": "Helper class that provides a standard way to create an ABC using\ninheritance.
\n", "bases": "Multivariate, Continuous"}, "arianna.distributions.abstract.MultivariateContinuous.logpdf_plus_logdetjac": {"fullname": "arianna.distributions.abstract.MultivariateContinuous.logpdf_plus_logdetjac", "modulename": "arianna.distributions.abstract", "qualname": "MultivariateContinuous.logpdf_plus_logdetjac", "kind": "function", "doc": "Logpdf plus the log absolute determinant of the jacobian.
\n\nLogpdf plus the log absolute determinant of the jacobian, evaluated at\nparameter on the transformed (real) space.
\n", "signature": "(self, z: numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.abstract.MultivariateContinuous.cov": {"fullname": "arianna.distributions.abstract.MultivariateContinuous.cov", "modulename": "arianna.distributions.abstract", "qualname": "MultivariateContinuous.cov", "kind": "function", "doc": "\n", "signature": "(self) -> numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.abstract.MultivariateContinuous.mean": {"fullname": "arianna.distributions.abstract.MultivariateContinuous.mean", "modulename": "arianna.distributions.abstract", "qualname": "MultivariateContinuous.mean", "kind": "function", "doc": "\n", "signature": "(self) -> numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.abstract.Real": {"fullname": "arianna.distributions.abstract.Real", "modulename": "arianna.distributions.abstract", "qualname": "Real", "kind": "class", "doc": "\n"}, "arianna.distributions.abstract.Real.to_real": {"fullname": "arianna.distributions.abstract.Real.to_real", "modulename": "arianna.distributions.abstract", "qualname": "Real.to_real", "kind": "function", "doc": "\n", "signature": "(self, x: float | numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.abstract.Real.to_native": {"fullname": "arianna.distributions.abstract.Real.to_native", "modulename": "arianna.distributions.abstract", "qualname": "Real.to_native", "kind": "function", "doc": "\n", "signature": "(self, z: float | numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.abstract.Real.logdetjac": {"fullname": "arianna.distributions.abstract.Real.logdetjac", "modulename": "arianna.distributions.abstract", "qualname": "Real.logdetjac", "kind": "function", "doc": "\n", "signature": "(self, z: float | numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.abstract.UnivariateReal": {"fullname": "arianna.distributions.abstract.UnivariateReal", "modulename": "arianna.distributions.abstract", "qualname": "UnivariateReal", "kind": "class", "doc": "Helper class that provides a standard way to create an ABC using\ninheritance.
\n", "bases": "Real, UnivariateContinuous"}, "arianna.distributions.abstract.MultivariateReal": {"fullname": "arianna.distributions.abstract.MultivariateReal", "modulename": "arianna.distributions.abstract", "qualname": "MultivariateReal", "kind": "class", "doc": "Helper class that provides a standard way to create an ABC using\ninheritance.
\n", "bases": "Real, MultivariateContinuous"}, "arianna.distributions.distributions": {"fullname": "arianna.distributions.distributions", "modulename": "arianna.distributions.distributions", "kind": "module", "doc": "\n"}, "arianna.distributions.distributions.IndependentRagged": {"fullname": "arianna.distributions.distributions.IndependentRagged", "modulename": "arianna.distributions.distributions", "qualname": "IndependentRagged", "kind": "class", "doc": "Helper class that provides a standard way to create an ABC using\ninheritance.
\n", "bases": "arianna.distributions.abstract.Distribution"}, "arianna.distributions.distributions.Independent": {"fullname": "arianna.distributions.distributions.Independent", "modulename": "arianna.distributions.distributions", "qualname": "Independent", "kind": "class", "doc": "Helper class that provides a standard way to create an ABC using\ninheritance.
\n", "bases": "arianna.distributions.abstract.Distribution"}, "arianna.distributions.distributions.Independent.__init__": {"fullname": "arianna.distributions.distributions.Independent.__init__", "modulename": "arianna.distributions.distributions", "qualname": "Independent.__init__", "kind": "function", "doc": "\n", "signature": "(dists: list[arianna.distributions.abstract.Distribution])"}, "arianna.distributions.distributions.Independent.dists": {"fullname": "arianna.distributions.distributions.Independent.dists", "modulename": "arianna.distributions.distributions", "qualname": "Independent.dists", "kind": "variable", "doc": "\n"}, "arianna.distributions.distributions.Independent.is_same_family": {"fullname": "arianna.distributions.distributions.Independent.is_same_family", "modulename": "arianna.distributions.distributions", "qualname": "Independent.is_same_family", "kind": "function", "doc": "\n", "signature": "(self, dists: list[arianna.distributions.abstract.Distribution]) -> bool:", "funcdef": "def"}, "arianna.distributions.distributions.Independent.logpdf": {"fullname": "arianna.distributions.distributions.Independent.logpdf", "modulename": "arianna.distributions.distributions", "qualname": "Independent.logpdf", "kind": "function", "doc": "\n", "signature": "(self, x: list[float | numpy.ndarray]) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.distributions.Independent.sample": {"fullname": "arianna.distributions.distributions.Independent.sample", "modulename": "arianna.distributions.distributions", "qualname": "Independent.sample", "kind": "function", "doc": "\n", "signature": "(self, sample_shape=[]) -> numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.distributions.Uniform": {"fullname": "arianna.distributions.distributions.Uniform", "modulename": "arianna.distributions.distributions", "qualname": "Uniform", "kind": "class", "doc": "Helper class that provides a standard way to create an ABC using\ninheritance.
\n", "bases": "arianna.distributions.abstract.LowerUpperBounded"}, "arianna.distributions.distributions.Uniform.from_mean_shift": {"fullname": "arianna.distributions.distributions.Uniform.from_mean_shift", "modulename": "arianna.distributions.distributions", "qualname": "Uniform.from_mean_shift", "kind": "function", "doc": "\n", "signature": "(cls, mean, shift):", "funcdef": "def"}, "arianna.distributions.distributions.Uniform.batch_shape": {"fullname": "arianna.distributions.distributions.Uniform.batch_shape", "modulename": "arianna.distributions.distributions", "qualname": "Uniform.batch_shape", "kind": "variable", "doc": "\n", "annotation": ": tuple[int, ...]"}, "arianna.distributions.distributions.Uniform.logcdf": {"fullname": "arianna.distributions.distributions.Uniform.logcdf", "modulename": "arianna.distributions.distributions", "qualname": "Uniform.logcdf", "kind": "function", "doc": "\n", "signature": "(self, x: float | numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.distributions.Uniform.cdf": {"fullname": "arianna.distributions.distributions.Uniform.cdf", "modulename": "arianna.distributions.distributions", "qualname": "Uniform.cdf", "kind": "function", "doc": "\n", "signature": "(self, x: float | numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.distributions.Uniform.mode": {"fullname": "arianna.distributions.distributions.Uniform.mode", "modulename": "arianna.distributions.distributions", "qualname": "Uniform.mode", "kind": "variable", "doc": "\n", "annotation": ": float | numpy.ndarray"}, "arianna.distributions.distributions.Uniform.median": {"fullname": "arianna.distributions.distributions.Uniform.median", "modulename": "arianna.distributions.distributions", "qualname": "Uniform.median", "kind": "variable", "doc": "\n", "annotation": ": float | numpy.ndarray"}, "arianna.distributions.distributions.Uniform.mean": {"fullname": "arianna.distributions.distributions.Uniform.mean", "modulename": "arianna.distributions.distributions", "qualname": "Uniform.mean", "kind": "variable", "doc": "\n", "annotation": ": float | numpy.ndarray"}, "arianna.distributions.distributions.Uniform.var": {"fullname": "arianna.distributions.distributions.Uniform.var", "modulename": "arianna.distributions.distributions", "qualname": "Uniform.var", "kind": "variable", "doc": "\n", "annotation": ": float | numpy.ndarray"}, "arianna.distributions.distributions.Beta": {"fullname": "arianna.distributions.distributions.Beta", "modulename": "arianna.distributions.distributions", "qualname": "Beta", "kind": "class", "doc": "Helper class that provides a standard way to create an ABC using\ninheritance.
\n", "bases": "arianna.distributions.abstract.LowerUpperBounded"}, "arianna.distributions.distributions.Beta.__init__": {"fullname": "arianna.distributions.distributions.Beta.__init__", "modulename": "arianna.distributions.distributions", "qualname": "Beta.__init__", "kind": "function", "doc": "\n", "signature": "(\ta: float | numpy.ndarray,\tb: float | numpy.ndarray,\tcheck: bool = True)"}, "arianna.distributions.distributions.Beta.a": {"fullname": "arianna.distributions.distributions.Beta.a", "modulename": "arianna.distributions.distributions", "qualname": "Beta.a", "kind": "variable", "doc": "\n"}, "arianna.distributions.distributions.Beta.b": {"fullname": "arianna.distributions.distributions.Beta.b", "modulename": "arianna.distributions.distributions", "qualname": "Beta.b", "kind": "variable", "doc": "\n"}, "arianna.distributions.distributions.Beta.mode": {"fullname": "arianna.distributions.distributions.Beta.mode", "modulename": "arianna.distributions.distributions", "qualname": "Beta.mode", "kind": "variable", "doc": "\n", "annotation": ": float | numpy.ndarray"}, "arianna.distributions.distributions.Beta.batch_shape": {"fullname": "arianna.distributions.distributions.Beta.batch_shape", "modulename": "arianna.distributions.distributions", "qualname": "Beta.batch_shape", "kind": "variable", "doc": "\n", "annotation": ": tuple[int, ...]"}, "arianna.distributions.distributions.Beta.logcdf": {"fullname": "arianna.distributions.distributions.Beta.logcdf", "modulename": "arianna.distributions.distributions", "qualname": "Beta.logcdf", "kind": "function", "doc": "\n", "signature": "(self, x: float | numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.distributions.Beta.cdf": {"fullname": "arianna.distributions.distributions.Beta.cdf", "modulename": "arianna.distributions.distributions", "qualname": "Beta.cdf", "kind": "function", "doc": "\n", "signature": "(self, x: float | numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.distributions.Beta.mean": {"fullname": "arianna.distributions.distributions.Beta.mean", "modulename": "arianna.distributions.distributions", "qualname": "Beta.mean", "kind": "variable", "doc": "\n", "annotation": ": float | numpy.ndarray"}, "arianna.distributions.distributions.Beta.var": {"fullname": "arianna.distributions.distributions.Beta.var", "modulename": "arianna.distributions.distributions", "qualname": "Beta.var", "kind": "variable", "doc": "\n"}, "arianna.distributions.distributions.ScaledBeta": {"fullname": "arianna.distributions.distributions.ScaledBeta", "modulename": "arianna.distributions.distributions", "qualname": "ScaledBeta", "kind": "class", "doc": "Helper class that provides a standard way to create an ABC using\ninheritance.
\n", "bases": "arianna.distributions.abstract.LowerUpperBounded"}, "arianna.distributions.distributions.ScaledBeta.__init__": {"fullname": "arianna.distributions.distributions.ScaledBeta.__init__", "modulename": "arianna.distributions.distributions", "qualname": "ScaledBeta.__init__", "kind": "function", "doc": "\n", "signature": "(\ta: float | numpy.ndarray,\tb: float | numpy.ndarray,\tlower: float | numpy.ndarray,\tupper: float | numpy.ndarray,\tcheck: bool = True)"}, "arianna.distributions.distributions.ScaledBeta.a": {"fullname": "arianna.distributions.distributions.ScaledBeta.a", "modulename": "arianna.distributions.distributions", "qualname": "ScaledBeta.a", "kind": "variable", "doc": "\n"}, "arianna.distributions.distributions.ScaledBeta.b": {"fullname": "arianna.distributions.distributions.ScaledBeta.b", "modulename": "arianna.distributions.distributions", "qualname": "ScaledBeta.b", "kind": "variable", "doc": "\n"}, "arianna.distributions.distributions.ScaledBeta.base_dist": {"fullname": "arianna.distributions.distributions.ScaledBeta.base_dist", "modulename": "arianna.distributions.distributions", "qualname": "ScaledBeta.base_dist", "kind": "variable", "doc": "\n"}, "arianna.distributions.distributions.ScaledBeta.batch_shape": {"fullname": "arianna.distributions.distributions.ScaledBeta.batch_shape", "modulename": "arianna.distributions.distributions", "qualname": "ScaledBeta.batch_shape", "kind": "variable", "doc": "\n", "annotation": ": tuple[int, ...]"}, "arianna.distributions.distributions.ScaledBeta.cdf": {"fullname": "arianna.distributions.distributions.ScaledBeta.cdf", "modulename": "arianna.distributions.distributions", "qualname": "ScaledBeta.cdf", "kind": "function", "doc": "\n", "signature": "(self, x: float | numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.distributions.ScaledBeta.logcdf": {"fullname": "arianna.distributions.distributions.ScaledBeta.logcdf", "modulename": "arianna.distributions.distributions", "qualname": "ScaledBeta.logcdf", "kind": "function", "doc": "\n", "signature": "(self, x: float | numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.distributions.ScaledBeta.mean": {"fullname": "arianna.distributions.distributions.ScaledBeta.mean", "modulename": "arianna.distributions.distributions", "qualname": "ScaledBeta.mean", "kind": "variable", "doc": "\n", "annotation": ": float | numpy.ndarray"}, "arianna.distributions.distributions.ScaledBeta.var": {"fullname": "arianna.distributions.distributions.ScaledBeta.var", "modulename": "arianna.distributions.distributions", "qualname": "ScaledBeta.var", "kind": "variable", "doc": "\n", "annotation": ": float | numpy.ndarray"}, "arianna.distributions.distributions.Gamma": {"fullname": "arianna.distributions.distributions.Gamma", "modulename": "arianna.distributions.distributions", "qualname": "Gamma", "kind": "class", "doc": "Helper class that provides a standard way to create an ABC using\ninheritance.
\n", "bases": "arianna.distributions.abstract.Positive"}, "arianna.distributions.distributions.Gamma.__init__": {"fullname": "arianna.distributions.distributions.Gamma.__init__", "modulename": "arianna.distributions.distributions", "qualname": "Gamma.__init__", "kind": "function", "doc": "\n", "signature": "(\tshape: float | numpy.ndarray,\tscale: float | numpy.ndarray,\tcheck: bool = True)"}, "arianna.distributions.distributions.Gamma.from_mean_std": {"fullname": "arianna.distributions.distributions.Gamma.from_mean_std", "modulename": "arianna.distributions.distributions", "qualname": "Gamma.from_mean_std", "kind": "function", "doc": "\n", "signature": "(cls, mean, std, check: bool = True):", "funcdef": "def"}, "arianna.distributions.distributions.Gamma.shape": {"fullname": "arianna.distributions.distributions.Gamma.shape", "modulename": "arianna.distributions.distributions", "qualname": "Gamma.shape", "kind": "variable", "doc": "\n"}, "arianna.distributions.distributions.Gamma.scale": {"fullname": "arianna.distributions.distributions.Gamma.scale", "modulename": "arianna.distributions.distributions", "qualname": "Gamma.scale", "kind": "variable", "doc": "\n"}, "arianna.distributions.distributions.Gamma.batch_shape": {"fullname": "arianna.distributions.distributions.Gamma.batch_shape", "modulename": "arianna.distributions.distributions", "qualname": "Gamma.batch_shape", "kind": "variable", "doc": "\n", "annotation": ": tuple[int, ...]"}, "arianna.distributions.distributions.Gamma.logcdf": {"fullname": "arianna.distributions.distributions.Gamma.logcdf", "modulename": "arianna.distributions.distributions", "qualname": "Gamma.logcdf", "kind": "function", "doc": "\n", "signature": "(self, x: float | numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.distributions.Gamma.cdf": {"fullname": "arianna.distributions.distributions.Gamma.cdf", "modulename": "arianna.distributions.distributions", "qualname": "Gamma.cdf", "kind": "function", "doc": "\n", "signature": "(self, x: float | numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.distributions.Gamma.survival": {"fullname": "arianna.distributions.distributions.Gamma.survival", "modulename": "arianna.distributions.distributions", "qualname": "Gamma.survival", "kind": "function", "doc": "\n", "signature": "(self, x: float | numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.distributions.Gamma.mean": {"fullname": "arianna.distributions.distributions.Gamma.mean", "modulename": "arianna.distributions.distributions", "qualname": "Gamma.mean", "kind": "variable", "doc": "\n", "annotation": ": float | numpy.ndarray"}, "arianna.distributions.distributions.Gamma.var": {"fullname": "arianna.distributions.distributions.Gamma.var", "modulename": "arianna.distributions.distributions", "qualname": "Gamma.var", "kind": "variable", "doc": "\n", "annotation": ": float | numpy.ndarray"}, "arianna.distributions.distributions.Gamma.mode": {"fullname": "arianna.distributions.distributions.Gamma.mode", "modulename": "arianna.distributions.distributions", "qualname": "Gamma.mode", "kind": "variable", "doc": "\n", "annotation": ": float | numpy.ndarray"}, "arianna.distributions.distributions.InverseGamma": {"fullname": "arianna.distributions.distributions.InverseGamma", "modulename": "arianna.distributions.distributions", "qualname": "InverseGamma", "kind": "class", "doc": "Helper class that provides a standard way to create an ABC using\ninheritance.
\n", "bases": "arianna.distributions.abstract.Positive"}, "arianna.distributions.distributions.InverseGamma.__init__": {"fullname": "arianna.distributions.distributions.InverseGamma.__init__", "modulename": "arianna.distributions.distributions", "qualname": "InverseGamma.__init__", "kind": "function", "doc": "\n", "signature": "(\tshape: float | numpy.ndarray,\tscale: float | numpy.ndarray,\tcheck: bool = True)"}, "arianna.distributions.distributions.InverseGamma.from_mean_std": {"fullname": "arianna.distributions.distributions.InverseGamma.from_mean_std", "modulename": "arianna.distributions.distributions", "qualname": "InverseGamma.from_mean_std", "kind": "function", "doc": "\n", "signature": "(cls, mean, std, check: bool = True):", "funcdef": "def"}, "arianna.distributions.distributions.InverseGamma.shape": {"fullname": "arianna.distributions.distributions.InverseGamma.shape", "modulename": "arianna.distributions.distributions", "qualname": "InverseGamma.shape", "kind": "variable", "doc": "\n"}, "arianna.distributions.distributions.InverseGamma.scale": {"fullname": "arianna.distributions.distributions.InverseGamma.scale", "modulename": "arianna.distributions.distributions", "qualname": "InverseGamma.scale", "kind": "variable", "doc": "\n"}, "arianna.distributions.distributions.InverseGamma.batch_shape": {"fullname": "arianna.distributions.distributions.InverseGamma.batch_shape", "modulename": "arianna.distributions.distributions", "qualname": "InverseGamma.batch_shape", "kind": "variable", "doc": "\n", "annotation": ": tuple[int, ...]"}, "arianna.distributions.distributions.InverseGamma.mean": {"fullname": "arianna.distributions.distributions.InverseGamma.mean", "modulename": "arianna.distributions.distributions", "qualname": "InverseGamma.mean", "kind": "variable", "doc": "\n", "annotation": ": float | numpy.ndarray"}, "arianna.distributions.distributions.InverseGamma.var": {"fullname": "arianna.distributions.distributions.InverseGamma.var", "modulename": "arianna.distributions.distributions", "qualname": "InverseGamma.var", "kind": "variable", "doc": "\n", "annotation": ": float | numpy.ndarray"}, "arianna.distributions.distributions.InverseGamma.mode": {"fullname": "arianna.distributions.distributions.InverseGamma.mode", "modulename": "arianna.distributions.distributions", "qualname": "InverseGamma.mode", "kind": "variable", "doc": "\n", "annotation": ": float | numpy.ndarray"}, "arianna.distributions.distributions.InverseGamma.logcdf": {"fullname": "arianna.distributions.distributions.InverseGamma.logcdf", "modulename": "arianna.distributions.distributions", "qualname": "InverseGamma.logcdf", "kind": "function", "doc": "\n", "signature": "(self, x: float | numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.distributions.InverseGamma.cdf": {"fullname": "arianna.distributions.distributions.InverseGamma.cdf", "modulename": "arianna.distributions.distributions", "qualname": "InverseGamma.cdf", "kind": "function", "doc": "\n", "signature": "(self, x: float | numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.distributions.LogNormal": {"fullname": "arianna.distributions.distributions.LogNormal", "modulename": "arianna.distributions.distributions", "qualname": "LogNormal", "kind": "class", "doc": "Helper class that provides a standard way to create an ABC using\ninheritance.
\n", "bases": "arianna.distributions.abstract.Positive"}, "arianna.distributions.distributions.LogNormal.__init__": {"fullname": "arianna.distributions.distributions.LogNormal.__init__", "modulename": "arianna.distributions.distributions", "qualname": "LogNormal.__init__", "kind": "function", "doc": "\n", "signature": "(\tmu: float | numpy.ndarray,\tsigma: float | numpy.ndarray,\tcheck: bool = True)"}, "arianna.distributions.distributions.LogNormal.from_mean_std": {"fullname": "arianna.distributions.distributions.LogNormal.from_mean_std", "modulename": "arianna.distributions.distributions", "qualname": "LogNormal.from_mean_std", "kind": "function", "doc": "\n", "signature": "(cls, mean, std, check: bool = True):", "funcdef": "def"}, "arianna.distributions.distributions.LogNormal.mu": {"fullname": "arianna.distributions.distributions.LogNormal.mu", "modulename": "arianna.distributions.distributions", "qualname": "LogNormal.mu", "kind": "variable", "doc": "\n"}, "arianna.distributions.distributions.LogNormal.sigma": {"fullname": "arianna.distributions.distributions.LogNormal.sigma", "modulename": "arianna.distributions.distributions", "qualname": "LogNormal.sigma", "kind": "variable", "doc": "\n"}, "arianna.distributions.distributions.LogNormal.batch_shape": {"fullname": "arianna.distributions.distributions.LogNormal.batch_shape", "modulename": "arianna.distributions.distributions", "qualname": "LogNormal.batch_shape", "kind": "variable", "doc": "\n", "annotation": ": tuple[int, ...]"}, "arianna.distributions.distributions.LogNormal.mean": {"fullname": "arianna.distributions.distributions.LogNormal.mean", "modulename": "arianna.distributions.distributions", "qualname": "LogNormal.mean", "kind": "variable", "doc": "\n", "annotation": ": float | numpy.ndarray"}, "arianna.distributions.distributions.LogNormal.var": {"fullname": "arianna.distributions.distributions.LogNormal.var", "modulename": "arianna.distributions.distributions", "qualname": "LogNormal.var", "kind": "variable", "doc": "\n", "annotation": ": float | numpy.ndarray"}, "arianna.distributions.distributions.LogNormal.mode": {"fullname": "arianna.distributions.distributions.LogNormal.mode", "modulename": "arianna.distributions.distributions", "qualname": "LogNormal.mode", "kind": "variable", "doc": "\n", "annotation": ": float | numpy.ndarray"}, "arianna.distributions.distributions.LogNormal.median": {"fullname": "arianna.distributions.distributions.LogNormal.median", "modulename": "arianna.distributions.distributions", "qualname": "LogNormal.median", "kind": "variable", "doc": "\n", "annotation": ": float | numpy.ndarray"}, "arianna.distributions.distributions.LogNormal.logcdf": {"fullname": "arianna.distributions.distributions.LogNormal.logcdf", "modulename": "arianna.distributions.distributions", "qualname": "LogNormal.logcdf", "kind": "function", "doc": "\n", "signature": "(self, x: float | numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.distributions.LogNormal.cdf": {"fullname": "arianna.distributions.distributions.LogNormal.cdf", "modulename": "arianna.distributions.distributions", "qualname": "LogNormal.cdf", "kind": "function", "doc": "\n", "signature": "(self, x: float | numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.distributions.Weibull": {"fullname": "arianna.distributions.distributions.Weibull", "modulename": "arianna.distributions.distributions", "qualname": "Weibull", "kind": "class", "doc": "Helper class that provides a standard way to create an ABC using\ninheritance.
\n", "bases": "arianna.distributions.abstract.Positive"}, "arianna.distributions.distributions.Gumbel": {"fullname": "arianna.distributions.distributions.Gumbel", "modulename": "arianna.distributions.distributions", "qualname": "Gumbel", "kind": "class", "doc": "Helper class that provides a standard way to create an ABC using\ninheritance.
\n", "bases": "arianna.distributions.abstract.UnivariateReal"}, "arianna.distributions.distributions.Logistic": {"fullname": "arianna.distributions.distributions.Logistic", "modulename": "arianna.distributions.distributions", "qualname": "Logistic", "kind": "class", "doc": "Helper class that provides a standard way to create an ABC using\ninheritance.
\n", "bases": "arianna.distributions.abstract.Positive"}, "arianna.distributions.distributions.LogLogistic": {"fullname": "arianna.distributions.distributions.LogLogistic", "modulename": "arianna.distributions.distributions", "qualname": "LogLogistic", "kind": "class", "doc": "Helper class that provides a standard way to create an ABC using\ninheritance.
\n", "bases": "arianna.distributions.abstract.UnivariateReal"}, "arianna.distributions.distributions.Normal": {"fullname": "arianna.distributions.distributions.Normal", "modulename": "arianna.distributions.distributions", "qualname": "Normal", "kind": "class", "doc": "Helper class that provides a standard way to create an ABC using\ninheritance.
\n", "bases": "arianna.distributions.abstract.UnivariateReal"}, "arianna.distributions.distributions.Normal.__init__": {"fullname": "arianna.distributions.distributions.Normal.__init__", "modulename": "arianna.distributions.distributions", "qualname": "Normal.__init__", "kind": "function", "doc": "\n", "signature": "(\tloc: float | numpy.ndarray = 0.0,\tscale: float | numpy.ndarray = 1.0,\tcheck: bool = True)"}, "arianna.distributions.distributions.Normal.loc": {"fullname": "arianna.distributions.distributions.Normal.loc", "modulename": "arianna.distributions.distributions", "qualname": "Normal.loc", "kind": "variable", "doc": "\n"}, "arianna.distributions.distributions.Normal.scale": {"fullname": "arianna.distributions.distributions.Normal.scale", "modulename": "arianna.distributions.distributions", "qualname": "Normal.scale", "kind": "variable", "doc": "\n"}, "arianna.distributions.distributions.Normal.batch_shape": {"fullname": "arianna.distributions.distributions.Normal.batch_shape", "modulename": "arianna.distributions.distributions", "qualname": "Normal.batch_shape", "kind": "variable", "doc": "\n", "annotation": ": tuple[int, ...]"}, "arianna.distributions.distributions.Normal.logpdf": {"fullname": "arianna.distributions.distributions.Normal.logpdf", "modulename": "arianna.distributions.distributions", "qualname": "Normal.logpdf", "kind": "function", "doc": "\n", "signature": "(self, x: float | numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.distributions.Normal.logcdf": {"fullname": "arianna.distributions.distributions.Normal.logcdf", "modulename": "arianna.distributions.distributions", "qualname": "Normal.logcdf", "kind": "function", "doc": "\n", "signature": "(self, x: float | numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.distributions.Normal.cdf": {"fullname": "arianna.distributions.distributions.Normal.cdf", "modulename": "arianna.distributions.distributions", "qualname": "Normal.cdf", "kind": "function", "doc": "\n", "signature": "(self, x: float | numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.distributions.Normal.survival": {"fullname": "arianna.distributions.distributions.Normal.survival", "modulename": "arianna.distributions.distributions", "qualname": "Normal.survival", "kind": "function", "doc": "\n", "signature": "(self, x: float | numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.distributions.Normal.mean": {"fullname": "arianna.distributions.distributions.Normal.mean", "modulename": "arianna.distributions.distributions", "qualname": "Normal.mean", "kind": "variable", "doc": "\n", "annotation": ": float | numpy.ndarray"}, "arianna.distributions.distributions.Normal.std": {"fullname": "arianna.distributions.distributions.Normal.std", "modulename": "arianna.distributions.distributions", "qualname": "Normal.std", "kind": "variable", "doc": "\n", "annotation": ": float | numpy.ndarray"}, "arianna.distributions.distributions.Normal.var": {"fullname": "arianna.distributions.distributions.Normal.var", "modulename": "arianna.distributions.distributions", "qualname": "Normal.var", "kind": "variable", "doc": "\n", "annotation": ": float | numpy.ndarray"}, "arianna.distributions.distributions.Normal.mode": {"fullname": "arianna.distributions.distributions.Normal.mode", "modulename": "arianna.distributions.distributions", "qualname": "Normal.mode", "kind": "variable", "doc": "\n", "annotation": ": float | numpy.ndarray"}, "arianna.distributions.distributions.Normal.median": {"fullname": "arianna.distributions.distributions.Normal.median", "modulename": "arianna.distributions.distributions", "qualname": "Normal.median", "kind": "variable", "doc": "\n", "annotation": ": float | numpy.ndarray"}, "arianna.distributions.distributions.MvNormal": {"fullname": "arianna.distributions.distributions.MvNormal", "modulename": "arianna.distributions.distributions", "qualname": "MvNormal", "kind": "class", "doc": "Helper class that provides a standard way to create an ABC using\ninheritance.
\n", "bases": "arianna.distributions.abstract.MultivariateReal"}, "arianna.distributions.distributions.MvNormal.__init__": {"fullname": "arianna.distributions.distributions.MvNormal.__init__", "modulename": "arianna.distributions.distributions", "qualname": "MvNormal.__init__", "kind": "function", "doc": "\n", "signature": "(\tmean: Optional[numpy.ndarray] = None,\tcov: Optional[numpy.ndarray] = None,\t**kwargs)"}, "arianna.distributions.distributions.MvNormal.mean": {"fullname": "arianna.distributions.distributions.MvNormal.mean", "modulename": "arianna.distributions.distributions", "qualname": "MvNormal.mean", "kind": "variable", "doc": "\n", "annotation": ": numpy.ndarray"}, "arianna.distributions.distributions.MvNormal.cov": {"fullname": "arianna.distributions.distributions.MvNormal.cov", "modulename": "arianna.distributions.distributions", "qualname": "MvNormal.cov", "kind": "variable", "doc": "\n", "annotation": ": numpy.ndarray"}, "arianna.distributions.distributions.MvNormal.cov_inv": {"fullname": "arianna.distributions.distributions.MvNormal.cov_inv", "modulename": "arianna.distributions.distributions", "qualname": "MvNormal.cov_inv", "kind": "variable", "doc": "\n", "annotation": ": numpy.ndarray"}, "arianna.distributions.distributions.MvNormal.L": {"fullname": "arianna.distributions.distributions.MvNormal.L", "modulename": "arianna.distributions.distributions", "qualname": "MvNormal.L", "kind": "variable", "doc": "\n", "annotation": ": numpy.ndarray"}, "arianna.distributions.distributions.MvNormal.event_shape": {"fullname": "arianna.distributions.distributions.MvNormal.event_shape", "modulename": "arianna.distributions.distributions", "qualname": "MvNormal.event_shape", "kind": "variable", "doc": "\n", "annotation": ": tuple[int, ...]"}, "arianna.distributions.distributions.MvNormal.batch_shape": {"fullname": "arianna.distributions.distributions.MvNormal.batch_shape", "modulename": "arianna.distributions.distributions", "qualname": "MvNormal.batch_shape", "kind": "variable", "doc": "\n", "annotation": ": tuple[int, ...]"}, "arianna.distributions.distributions.MvNormal.batch_plus_event_shape": {"fullname": "arianna.distributions.distributions.MvNormal.batch_plus_event_shape", "modulename": "arianna.distributions.distributions", "qualname": "MvNormal.batch_plus_event_shape", "kind": "variable", "doc": "\n", "annotation": ": tuple[int, ...]"}, "arianna.distributions.distributions.MvNormal.log_det_cov": {"fullname": "arianna.distributions.distributions.MvNormal.log_det_cov", "modulename": "arianna.distributions.distributions", "qualname": "MvNormal.log_det_cov", "kind": "variable", "doc": "\n", "annotation": ": float | numpy.ndarray"}, "arianna.distributions.distributions.MvNormal.var": {"fullname": "arianna.distributions.distributions.MvNormal.var", "modulename": "arianna.distributions.distributions", "qualname": "MvNormal.var", "kind": "variable", "doc": "\n", "annotation": ": numpy.ndarray"}, "arianna.distributions.distributions.MvNormal.logpdf": {"fullname": "arianna.distributions.distributions.MvNormal.logpdf", "modulename": "arianna.distributions.distributions", "qualname": "MvNormal.logpdf", "kind": "function", "doc": "\n", "signature": "(self, x):", "funcdef": "def"}, "arianna.distributions.distributions.MvNormal.sample": {"fullname": "arianna.distributions.distributions.MvNormal.sample", "modulename": "arianna.distributions.distributions", "qualname": "MvNormal.sample", "kind": "function", "doc": "\n", "signature": "(\tself,\tsample_shape: tuple[int, ...] = (),\trng: numpy.random._generator.Generator = Generator(PCG64) at 0x103F8FD80) -> numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.distributions.Dirichlet": {"fullname": "arianna.distributions.distributions.Dirichlet", "modulename": "arianna.distributions.distributions", "qualname": "Dirichlet", "kind": "class", "doc": "Helper class that provides a standard way to create an ABC using\ninheritance.
\n", "bases": "arianna.distributions.abstract.MultivariateContinuous"}, "arianna.distributions.distributions.Dirichlet.__init__": {"fullname": "arianna.distributions.distributions.Dirichlet.__init__", "modulename": "arianna.distributions.distributions", "qualname": "Dirichlet.__init__", "kind": "function", "doc": "\n", "signature": "(concentration: numpy.ndarray, check: bool = True)"}, "arianna.distributions.distributions.Dirichlet.concentration": {"fullname": "arianna.distributions.distributions.Dirichlet.concentration", "modulename": "arianna.distributions.distributions", "qualname": "Dirichlet.concentration", "kind": "variable", "doc": "\n"}, "arianna.distributions.distributions.Dirichlet.concentration_sum": {"fullname": "arianna.distributions.distributions.Dirichlet.concentration_sum", "modulename": "arianna.distributions.distributions", "qualname": "Dirichlet.concentration_sum", "kind": "variable", "doc": "\n"}, "arianna.distributions.distributions.Dirichlet.event_shape": {"fullname": "arianna.distributions.distributions.Dirichlet.event_shape", "modulename": "arianna.distributions.distributions", "qualname": "Dirichlet.event_shape", "kind": "variable", "doc": "\n"}, "arianna.distributions.distributions.Dirichlet.batch_plus_event_shape": {"fullname": "arianna.distributions.distributions.Dirichlet.batch_plus_event_shape", "modulename": "arianna.distributions.distributions", "qualname": "Dirichlet.batch_plus_event_shape", "kind": "variable", "doc": "\n"}, "arianna.distributions.distributions.Dirichlet.batch_shape": {"fullname": "arianna.distributions.distributions.Dirichlet.batch_shape", "modulename": "arianna.distributions.distributions", "qualname": "Dirichlet.batch_shape", "kind": "variable", "doc": "\n"}, "arianna.distributions.distributions.Dirichlet.logpdf": {"fullname": "arianna.distributions.distributions.Dirichlet.logpdf", "modulename": "arianna.distributions.distributions", "qualname": "Dirichlet.logpdf", "kind": "function", "doc": "\n", "signature": "(self, x: numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.distributions.Dirichlet.sample": {"fullname": "arianna.distributions.distributions.Dirichlet.sample", "modulename": "arianna.distributions.distributions", "qualname": "Dirichlet.sample", "kind": "function", "doc": "\n", "signature": "(\tself,\tsample_shape: tuple[int, ...] = (),\trng: numpy.random._generator.Generator = Generator(PCG64) at 0x10401C040) -> numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.distributions.Dirichlet.to_real": {"fullname": "arianna.distributions.distributions.Dirichlet.to_real", "modulename": "arianna.distributions.distributions", "qualname": "Dirichlet.to_real", "kind": "function", "doc": "\n", "signature": "(self, x: numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.distributions.Dirichlet.to_native": {"fullname": "arianna.distributions.distributions.Dirichlet.to_native", "modulename": "arianna.distributions.distributions", "qualname": "Dirichlet.to_native", "kind": "function", "doc": "\n", "signature": "(self, z: numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.distributions.Dirichlet.logdetjac": {"fullname": "arianna.distributions.distributions.Dirichlet.logdetjac", "modulename": "arianna.distributions.distributions", "qualname": "Dirichlet.logdetjac", "kind": "function", "doc": "\n", "signature": "(self, z: numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.distributions.distributions.Dirichlet.cov": {"fullname": "arianna.distributions.distributions.Dirichlet.cov", "modulename": "arianna.distributions.distributions", "qualname": "Dirichlet.cov", "kind": "variable", "doc": "\n", "annotation": ": numpy.ndarray"}, "arianna.distributions.distributions.Dirichlet.mean": {"fullname": "arianna.distributions.distributions.Dirichlet.mean", "modulename": "arianna.distributions.distributions", "qualname": "Dirichlet.mean", "kind": "variable", "doc": "\n", "annotation": ": numpy.ndarray"}, "arianna.distributions.distributions.Dirichlet.var": {"fullname": "arianna.distributions.distributions.Dirichlet.var", "modulename": "arianna.distributions.distributions", "qualname": "Dirichlet.var", "kind": "variable", "doc": "\n", "annotation": ": numpy.ndarray"}, "arianna.distributions.distributions.Dirichlet.std": {"fullname": "arianna.distributions.distributions.Dirichlet.std", "modulename": "arianna.distributions.distributions", "qualname": "Dirichlet.std", "kind": "variable", "doc": "\n", "annotation": ": numpy.ndarray"}, "arianna.ppl": {"fullname": "arianna.ppl", "modulename": "arianna.ppl", "kind": "module", "doc": "\n"}, "arianna.ppl.context": {"fullname": "arianna.ppl.context", "modulename": "arianna.ppl.context", "kind": "module", "doc": "\n"}, "arianna.ppl.context.BasicDistribution": {"fullname": "arianna.ppl.context.BasicDistribution", "modulename": "arianna.ppl.context", "qualname": "BasicDistribution", "kind": "class", "doc": "Base class for protocol classes.
\n\nProtocol classes are defined as::
\n\nclass Proto(Protocol):\n def meth(self) -> int:\n ...\n
\n\nSuch classes are primarily used with static type checkers that recognize\nstructural subtyping (static duck-typing), for example::
\n\nclass C:\n def meth(self) -> int:\n return 0\n\ndef func(x: Proto) -> int:\n return x.meth()\n\nfunc(C()) # Passes static type check\n
\n\nSee PEP 544 for details. Protocol classes decorated with\n@typing.runtime_checkable act as simple-minded runtime protocols that check\nonly the presence of given attributes, ignoring their type signatures.\nProtocol classes can be generic, they are defined as::
\n\nclass GenProto(Protocol[T]):\n def meth(self) -> T:\n ...\n
\n", "bases": "typing.Protocol"}, "arianna.ppl.context.BasicDistribution.__init__": {"fullname": "arianna.ppl.context.BasicDistribution.__init__", "modulename": "arianna.ppl.context", "qualname": "BasicDistribution.__init__", "kind": "function", "doc": "\n", "signature": "(*args, **kwargs)"}, "arianna.ppl.context.BasicDistribution.logpdf": {"fullname": "arianna.ppl.context.BasicDistribution.logpdf", "modulename": "arianna.ppl.context", "qualname": "BasicDistribution.logpdf", "kind": "function", "doc": "\n", "signature": "(self, x: float | numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.ppl.context.BasicDistribution.sample": {"fullname": "arianna.ppl.context.BasicDistribution.sample", "modulename": "arianna.ppl.context", "qualname": "BasicDistribution.sample", "kind": "function", "doc": "\n", "signature": "(\tself,\tsample_shape: tuple[int, ...] = (),\trng: numpy.random._generator.Generator = Generator(PCG64) at 0x10401C3C0) -> numpy.ndarray:", "funcdef": "def"}, "arianna.ppl.context.TransformableDistribution": {"fullname": "arianna.ppl.context.TransformableDistribution", "modulename": "arianna.ppl.context", "qualname": "TransformableDistribution", "kind": "class", "doc": "Base class for protocol classes.
\n\nProtocol classes are defined as::
\n\nclass Proto(Protocol):\n def meth(self) -> int:\n ...\n
\n\nSuch classes are primarily used with static type checkers that recognize\nstructural subtyping (static duck-typing), for example::
\n\nclass C:\n def meth(self) -> int:\n return 0\n\ndef func(x: Proto) -> int:\n return x.meth()\n\nfunc(C()) # Passes static type check\n
\n\nSee PEP 544 for details. Protocol classes decorated with\n@typing.runtime_checkable act as simple-minded runtime protocols that check\nonly the presence of given attributes, ignoring their type signatures.\nProtocol classes can be generic, they are defined as::
\n\nclass GenProto(Protocol[T]):\n def meth(self) -> T:\n ...\n
\n", "bases": "BasicDistribution"}, "arianna.ppl.context.TransformableDistribution.logdetjac": {"fullname": "arianna.ppl.context.TransformableDistribution.logdetjac", "modulename": "arianna.ppl.context", "qualname": "TransformableDistribution.logdetjac", "kind": "function", "doc": "\n", "signature": "(self, z: float | numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.ppl.context.TransformableDistribution.logpdf_plus_logdetjac": {"fullname": "arianna.ppl.context.TransformableDistribution.logpdf_plus_logdetjac", "modulename": "arianna.ppl.context", "qualname": "TransformableDistribution.logpdf_plus_logdetjac", "kind": "function", "doc": "\n", "signature": "(self, z: float | numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.ppl.context.TransformableDistribution.to_real": {"fullname": "arianna.ppl.context.TransformableDistribution.to_real", "modulename": "arianna.ppl.context", "qualname": "TransformableDistribution.to_real", "kind": "function", "doc": "\n", "signature": "(self, x: float | numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.ppl.context.TransformableDistribution.to_native": {"fullname": "arianna.ppl.context.TransformableDistribution.to_native", "modulename": "arianna.ppl.context", "qualname": "TransformableDistribution.to_native", "kind": "function", "doc": "\n", "signature": "(self, z: float | numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.ppl.context.TransformableDistribution.logpdf": {"fullname": "arianna.ppl.context.TransformableDistribution.logpdf", "modulename": "arianna.ppl.context", "qualname": "TransformableDistribution.logpdf", "kind": "function", "doc": "\n", "signature": "(self, x: float | numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.ppl.context.Context": {"fullname": "arianna.ppl.context.Context", "modulename": "arianna.ppl.context", "qualname": "Context", "kind": "class", "doc": "Helper class that provides a standard way to create an ABC using\ninheritance.
\n", "bases": "abc.ABC"}, "arianna.ppl.context.Context.result": {"fullname": "arianna.ppl.context.Context.result", "modulename": "arianna.ppl.context", "qualname": "Context.result", "kind": "variable", "doc": "\n", "annotation": ": Any"}, "arianna.ppl.context.Context.state": {"fullname": "arianna.ppl.context.Context.state", "modulename": "arianna.ppl.context", "qualname": "Context.state", "kind": "variable", "doc": "\n", "annotation": ": dict[str, float | numpy.ndarray]"}, "arianna.ppl.context.Context.run": {"fullname": "arianna.ppl.context.Context.run", "modulename": "arianna.ppl.context", "qualname": "Context.run", "kind": "function", "doc": "\n", "signature": "(cls):", "funcdef": "def"}, "arianna.ppl.context.Context.rv": {"fullname": "arianna.ppl.context.Context.rv", "modulename": "arianna.ppl.context", "qualname": "Context.rv", "kind": "function", "doc": "\n", "signature": "(\tself,\tname: str,\tdist: arianna.ppl.context.BasicDistribution,\tobs: Union[float, numpy.ndarray, NoneType] = None) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.ppl.context.Context.cached": {"fullname": "arianna.ppl.context.Context.cached", "modulename": "arianna.ppl.context", "qualname": "Context.cached", "kind": "function", "doc": "\n", "signature": "(self, name: str, value: float | numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.ppl.context.LogprobAndPriorSample": {"fullname": "arianna.ppl.context.LogprobAndPriorSample", "modulename": "arianna.ppl.context", "qualname": "LogprobAndPriorSample", "kind": "class", "doc": "Helper class that provides a standard way to create an ABC using\ninheritance.
\n", "bases": "Context"}, "arianna.ppl.context.LogprobAndPriorSample.__init__": {"fullname": "arianna.ppl.context.LogprobAndPriorSample.__init__", "modulename": "arianna.ppl.context", "qualname": "LogprobAndPriorSample.__init__", "kind": "function", "doc": "\n", "signature": "(rng: Optional[numpy.random._generator.Generator] = None)"}, "arianna.ppl.context.LogprobAndPriorSample.run": {"fullname": "arianna.ppl.context.LogprobAndPriorSample.run", "modulename": "arianna.ppl.context", "qualname": "LogprobAndPriorSample.run", "kind": "function", "doc": "Get (logprob, trace).
\n", "signature": "(\tcls,\tmodel,\trng: Optional[numpy.random._generator.Generator] = None,\t**data) -> tuple[float, dict[str, float | numpy.ndarray]]:", "funcdef": "def"}, "arianna.ppl.context.LogprobAndPriorSample.result": {"fullname": "arianna.ppl.context.LogprobAndPriorSample.result", "modulename": "arianna.ppl.context", "qualname": "LogprobAndPriorSample.result", "kind": "variable", "doc": "\n"}, "arianna.ppl.context.LogprobAndPriorSample.rng": {"fullname": "arianna.ppl.context.LogprobAndPriorSample.rng", "modulename": "arianna.ppl.context", "qualname": "LogprobAndPriorSample.rng", "kind": "variable", "doc": "\n"}, "arianna.ppl.context.LogprobAndPriorSample.rv": {"fullname": "arianna.ppl.context.LogprobAndPriorSample.rv", "modulename": "arianna.ppl.context", "qualname": "LogprobAndPriorSample.rv", "kind": "function", "doc": "\n", "signature": "(\tself,\tname: str,\tdist: arianna.ppl.context.BasicDistribution,\tobs: Union[float, numpy.ndarray, NoneType] = None):", "funcdef": "def"}, "arianna.ppl.context.LogprobAndPriorSample.cached": {"fullname": "arianna.ppl.context.LogprobAndPriorSample.cached", "modulename": "arianna.ppl.context", "qualname": "LogprobAndPriorSample.cached", "kind": "function", "doc": "\n", "signature": "(self, name: str, value: float | numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.ppl.context.LogprobAndTrace": {"fullname": "arianna.ppl.context.LogprobAndTrace", "modulename": "arianna.ppl.context", "qualname": "LogprobAndTrace", "kind": "class", "doc": "Helper class that provides a standard way to create an ABC using\ninheritance.
\n", "bases": "Context"}, "arianna.ppl.context.LogprobAndTrace.__init__": {"fullname": "arianna.ppl.context.LogprobAndTrace.__init__", "modulename": "arianna.ppl.context", "qualname": "LogprobAndTrace.__init__", "kind": "function", "doc": "\n", "signature": "(state: dict[str, float | numpy.ndarray])"}, "arianna.ppl.context.LogprobAndTrace.run": {"fullname": "arianna.ppl.context.LogprobAndTrace.run", "modulename": "arianna.ppl.context", "qualname": "LogprobAndTrace.run", "kind": "function", "doc": "TODO.
\n\nReturns (logprob, trace). A trace is the state in the native space and\nthe cached values.
\n\nHelper class that provides a standard way to create an ABC using\ninheritance.
\n", "bases": "Context"}, "arianna.ppl.context.Predictive.__init__": {"fullname": "arianna.ppl.context.Predictive.__init__", "modulename": "arianna.ppl.context", "qualname": "Predictive.__init__", "kind": "function", "doc": "\n", "signature": "(\tstate: Optional[dict[str, float | numpy.ndarray]] = None,\trng: Optional[numpy.random._generator.Generator] = None,\treturn_cached: bool = True)"}, "arianna.ppl.context.Predictive.run": {"fullname": "arianna.ppl.context.Predictive.run", "modulename": "arianna.ppl.context", "qualname": "Predictive.run", "kind": "function", "doc": "\n", "signature": "(\tcls,\tmodel,\tstate: Optional[dict[str, float | numpy.ndarray]] = None,\trng: Optional[numpy.random._generator.Generator] = None,\treturn_cached: bool = True,\t**data) -> dict[str, float | numpy.ndarray]:", "funcdef": "def"}, "arianna.ppl.context.Predictive.state": {"fullname": "arianna.ppl.context.Predictive.state", "modulename": "arianna.ppl.context", "qualname": "Predictive.state", "kind": "variable", "doc": "\n"}, "arianna.ppl.context.Predictive.rng": {"fullname": "arianna.ppl.context.Predictive.rng", "modulename": "arianna.ppl.context", "qualname": "Predictive.rng", "kind": "variable", "doc": "\n"}, "arianna.ppl.context.Predictive.return_cached": {"fullname": "arianna.ppl.context.Predictive.return_cached", "modulename": "arianna.ppl.context", "qualname": "Predictive.return_cached", "kind": "variable", "doc": "\n"}, "arianna.ppl.context.Predictive.result": {"fullname": "arianna.ppl.context.Predictive.result", "modulename": "arianna.ppl.context", "qualname": "Predictive.result", "kind": "variable", "doc": "\n"}, "arianna.ppl.context.Predictive.rv": {"fullname": "arianna.ppl.context.Predictive.rv", "modulename": "arianna.ppl.context", "qualname": "Predictive.rv", "kind": "function", "doc": "\n", "signature": "(\tself,\tname: str,\tdist: arianna.ppl.context.BasicDistribution,\tobs: Union[float, numpy.ndarray, NoneType] = None) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.ppl.context.Predictive.cached": {"fullname": "arianna.ppl.context.Predictive.cached", "modulename": "arianna.ppl.context", "qualname": "Predictive.cached", "kind": "function", "doc": "Handle cached values.
\n\nReturns the value value
and additionally stores value
in\nself.result[name]
if the return_cached
attribute is True.
value
, which is the second argument in cached
.TODO.
\n\nCalculates the transformed log probability for a given state (on the real\nspace) and also returns the state in the native space.
\n\nGet transformed predictive state.
\n\nGet transformed predictive state (i.e. state predictive in the real\nspace) via the run
method.
default_rng()
.Handle cached values.
\n\nReturns the value value
and additionally stores value
in\nself.result[name]
if the return_cached
attribute is True.
value
, which is the second argument in cached
.Helper class that provides a standard way to create an ABC using\ninheritance.
\n", "bases": "Context"}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.__init__": {"fullname": "arianna.ppl.context.LogprobAndLogjacobianAndTrace.__init__", "modulename": "arianna.ppl.context", "qualname": "LogprobAndLogjacobianAndTrace.__init__", "kind": "function", "doc": "\n", "signature": "(state: dict[str, float | numpy.ndarray])"}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.run": {"fullname": "arianna.ppl.context.LogprobAndLogjacobianAndTrace.run", "modulename": "arianna.ppl.context", "qualname": "LogprobAndLogjacobianAndTrace.run", "kind": "function", "doc": "\n", "signature": "(\tcls,\tmodel,\tstate: dict[str, float | numpy.ndarray],\t**data) -> tuple[float, float, dict[str, float | numpy.ndarray]]:", "funcdef": "def"}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.state": {"fullname": "arianna.ppl.context.LogprobAndLogjacobianAndTrace.state", "modulename": "arianna.ppl.context", "qualname": "LogprobAndLogjacobianAndTrace.state", "kind": "variable", "doc": "\n"}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.result": {"fullname": "arianna.ppl.context.LogprobAndLogjacobianAndTrace.result", "modulename": "arianna.ppl.context", "qualname": "LogprobAndLogjacobianAndTrace.result", "kind": "variable", "doc": "\n"}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.rv": {"fullname": "arianna.ppl.context.LogprobAndLogjacobianAndTrace.rv", "modulename": "arianna.ppl.context", "qualname": "LogprobAndLogjacobianAndTrace.rv", "kind": "function", "doc": "\n", "signature": "(\tself,\tname: str,\tdist: arianna.ppl.context.TransformableDistribution,\tobs: Union[float, numpy.ndarray, NoneType] = None):", "funcdef": "def"}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.cached": {"fullname": "arianna.ppl.context.LogprobAndLogjacobianAndTrace.cached", "modulename": "arianna.ppl.context", "qualname": "LogprobAndLogjacobianAndTrace.cached", "kind": "function", "doc": "\n", "signature": "(self, name: str, value: float | numpy.ndarray) -> float | numpy.ndarray:", "funcdef": "def"}, "arianna.ppl.diagnostics": {"fullname": "arianna.ppl.diagnostics", "modulename": "arianna.ppl.diagnostics", "kind": "module", "doc": "\n"}, "arianna.ppl.diagnostics.ess_kish": {"fullname": "arianna.ppl.diagnostics.ess_kish", "modulename": "arianna.ppl.diagnostics", "qualname": "ess_kish", "kind": "function", "doc": "Kish Effective Sample Size.
\n\nKish's effective sample size. Used for weighted samples. (e.g. importance\nsampling, sequential monte carlo, particle filters.)
\n\nhttps://en.wikipedia.org/wiki/Effective_sample_size
\n\nIf log is True, then the w are log weights.
\n", "signature": "(w: numpy.ndarray, log: bool = True) -> float:", "funcdef": "def"}, "arianna.ppl.inference": {"fullname": "arianna.ppl.inference", "modulename": "arianna.ppl.inference", "kind": "module", "doc": "\n"}, "arianna.ppl.inference.P": {"fullname": "arianna.ppl.inference.P", "modulename": "arianna.ppl.inference", "qualname": "P", "kind": "variable", "doc": "\n", "default_value": "~P"}, "arianna.ppl.inference.Model": {"fullname": "arianna.ppl.inference.Model", "modulename": "arianna.ppl.inference", "qualname": "Model", "kind": "variable", "doc": "\n", "default_value": "typing.Callable[typing.Concatenate[arianna.ppl.context.Context, ~P], NoneType]"}, "arianna.ppl.inference.Logprob": {"fullname": "arianna.ppl.inference.Logprob", "modulename": "arianna.ppl.inference", "qualname": "Logprob", "kind": "variable", "doc": "\n", "default_value": "typing.Callable[[dict[str, float | numpy.ndarray]], tuple[float, dict[str, float | numpy.ndarray]]]"}, "arianna.ppl.inference.Chain": {"fullname": "arianna.ppl.inference.Chain", "modulename": "arianna.ppl.inference", "qualname": "Chain", "kind": "class", "doc": "Chain MCMC samples.
\n\nGet all MCMC samples for one variable or cached value by name.
\n\nBundle MCMC values into a dictionary.
\n\nReturn subset of the states.
\n\nthin
-th sample, by default 1.burn
removed, and taking only\nevery thin
-th sample.Abstract inference engine class.
\n", "bases": "abc.ABC"}, "arianna.ppl.inference.InferenceEngine.rng": {"fullname": "arianna.ppl.inference.InferenceEngine.rng", "modulename": "arianna.ppl.inference", "qualname": "InferenceEngine.rng", "kind": "variable", "doc": "\n", "annotation": ": numpy.random._generator.Generator"}, "arianna.ppl.inference.InferenceEngine.fit": {"fullname": "arianna.ppl.inference.InferenceEngine.fit", "modulename": "arianna.ppl.inference", "qualname": "InferenceEngine.fit", "kind": "function", "doc": "Fit model.
\n", "signature": "(self):", "funcdef": "def"}, "arianna.ppl.inference.MCMC": {"fullname": "arianna.ppl.inference.MCMC", "modulename": "arianna.ppl.inference", "qualname": "MCMC", "kind": "class", "doc": "Abstract class for MCMC.
\n", "bases": "InferenceEngine"}, "arianna.ppl.inference.MCMC.model": {"fullname": "arianna.ppl.inference.MCMC.model", "modulename": "arianna.ppl.inference", "qualname": "MCMC.model", "kind": "variable", "doc": "\n", "annotation": ": Callable[Concatenate[arianna.ppl.context.Context, ~P], NoneType]"}, "arianna.ppl.inference.MCMC.model_data": {"fullname": "arianna.ppl.inference.MCMC.model_data", "modulename": "arianna.ppl.inference", "qualname": "MCMC.model_data", "kind": "variable", "doc": "\n", "annotation": ": dict[str, typing.Any]"}, "arianna.ppl.inference.MCMC.nsamples": {"fullname": "arianna.ppl.inference.MCMC.nsamples", "modulename": "arianna.ppl.inference", "qualname": "MCMC.nsamples", "kind": "variable", "doc": "\n", "annotation": ": int"}, "arianna.ppl.inference.MCMC.burn": {"fullname": "arianna.ppl.inference.MCMC.burn", "modulename": "arianna.ppl.inference", "qualname": "MCMC.burn", "kind": "variable", "doc": "\n", "annotation": ": int"}, "arianna.ppl.inference.MCMC.thin": {"fullname": "arianna.ppl.inference.MCMC.thin", "modulename": "arianna.ppl.inference", "qualname": "MCMC.thin", "kind": "variable", "doc": "\n", "annotation": ": int"}, "arianna.ppl.inference.MCMC.mcmc_iteration": {"fullname": "arianna.ppl.inference.MCMC.mcmc_iteration", "modulename": "arianna.ppl.inference", "qualname": "MCMC.mcmc_iteration", "kind": "variable", "doc": "\n", "annotation": ": int"}, "arianna.ppl.inference.MCMC.transform": {"fullname": "arianna.ppl.inference.MCMC.transform", "modulename": "arianna.ppl.inference", "qualname": "MCMC.transform", "kind": "variable", "doc": "\n", "annotation": ": bool"}, "arianna.ppl.inference.MCMC.logprob_history": {"fullname": "arianna.ppl.inference.MCMC.logprob_history", "modulename": "arianna.ppl.inference", "qualname": "MCMC.logprob_history", "kind": "variable", "doc": "\n", "annotation": ": list[float]"}, "arianna.ppl.inference.MCMC.step": {"fullname": "arianna.ppl.inference.MCMC.step", "modulename": "arianna.ppl.inference", "qualname": "MCMC.step", "kind": "function", "doc": "Update model state in one MCMC iteration.
\n", "signature": "(self):", "funcdef": "def"}, "arianna.ppl.inference.MCMC.fit": {"fullname": "arianna.ppl.inference.MCMC.fit", "modulename": "arianna.ppl.inference", "qualname": "MCMC.fit", "kind": "function", "doc": "Run MCMC.
\n\nCompute log density.
\n\nMarkov Chain Monte Carlo.
\n", "bases": "MCMC"}, "arianna.ppl.inference.SingleWalkerMCMC.init_state": {"fullname": "arianna.ppl.inference.SingleWalkerMCMC.init_state", "modulename": "arianna.ppl.inference", "qualname": "SingleWalkerMCMC.init_state", "kind": "variable", "doc": "\n", "annotation": ": dict[str, float | numpy.ndarray]"}, "arianna.ppl.inference.SingleWalkerMCMC.mcmc_state": {"fullname": "arianna.ppl.inference.SingleWalkerMCMC.mcmc_state", "modulename": "arianna.ppl.inference", "qualname": "SingleWalkerMCMC.mcmc_state", "kind": "variable", "doc": "\n", "annotation": ": dict[str, float | numpy.ndarray]"}, "arianna.ppl.inference.SingleWalkerMCMC.transform": {"fullname": "arianna.ppl.inference.SingleWalkerMCMC.transform", "modulename": "arianna.ppl.inference", "qualname": "SingleWalkerMCMC.transform", "kind": "variable", "doc": "\n", "annotation": ": bool"}, "arianna.ppl.inference.SingleWalkerMCMC.step": {"fullname": "arianna.ppl.inference.SingleWalkerMCMC.step", "modulename": "arianna.ppl.inference", "qualname": "SingleWalkerMCMC.step", "kind": "function", "doc": "Update mcmc_state and return logprob and native_state_and_cache.
\n\nRandom walk Metropolis.
\n\ntransform=True
then init_state
should\ncontain values in the real space; if transform=False
, then\ninit_state
should contain values in the native space. If not\nprovided, init_state
is sampled from the prior predictive.\nDefaults to None.init_state
will be an empty\ndictionary.proposal (dict[str, Any]):\nIf None is received in the constructor, an empty dictionary is first\ncreated. In addition, any model parameters unnamed in the constructor\nwill have a value of\nlambda value, rng, mcmc_iteration: rng.normal(value, 0.1)
.\nThus, if you supplied in the constructor\ndict(mu=lambda value, rng, mcmc_iteration: rng.normal(value, 1))
\nand your model is
def model(ctx, y=None):\n mu = ctx.rv("mu", Normal(0, 10))\n sigma = ctx.rv("sigma", Gamma(1, 1))\n ctx.rv("y", Normal(mu, sigma), obs=y)\n
\nthen the value for sigma will be\nlambda value, rng, _: rng.normal(value, 0.1)
.
None
was supplied in the constructor, then rng will be set to\nnp.random.default_rng()
.Update mcmc_state and return native state and cached values.
\n\nAffine Invariant MCMC.
\n", "bases": "MCMC"}, "arianna.ppl.inference.AffineInvariantMCMC.nsteps": {"fullname": "arianna.ppl.inference.AffineInvariantMCMC.nsteps", "modulename": "arianna.ppl.inference", "qualname": "AffineInvariantMCMC.nsteps", "kind": "variable", "doc": "\n", "annotation": ": int"}, "arianna.ppl.inference.AffineInvariantMCMC.init_state": {"fullname": "arianna.ppl.inference.AffineInvariantMCMC.init_state", "modulename": "arianna.ppl.inference", "qualname": "AffineInvariantMCMC.init_state", "kind": "variable", "doc": "\n", "annotation": ": list[dict[str, float | numpy.ndarray]]"}, "arianna.ppl.inference.AffineInvariantMCMC.mcmc_state": {"fullname": "arianna.ppl.inference.AffineInvariantMCMC.mcmc_state", "modulename": "arianna.ppl.inference", "qualname": "AffineInvariantMCMC.mcmc_state", "kind": "variable", "doc": "\n", "annotation": ": list[dict[str, float | numpy.ndarray]]"}, "arianna.ppl.inference.AffineInvariantMCMC.accept_rate": {"fullname": "arianna.ppl.inference.AffineInvariantMCMC.accept_rate", "modulename": "arianna.ppl.inference", "qualname": "AffineInvariantMCMC.accept_rate", "kind": "variable", "doc": "\n", "annotation": ": numpy.ndarray"}, "arianna.ppl.inference.AffineInvariantMCMC.accept": {"fullname": "arianna.ppl.inference.AffineInvariantMCMC.accept", "modulename": "arianna.ppl.inference", "qualname": "AffineInvariantMCMC.accept", "kind": "variable", "doc": "\n", "annotation": ": list[int]"}, "arianna.ppl.inference.AffineInvariantMCMC.nwalkers": {"fullname": "arianna.ppl.inference.AffineInvariantMCMC.nwalkers", "modulename": "arianna.ppl.inference", "qualname": "AffineInvariantMCMC.nwalkers", "kind": "variable", "doc": "\n", "annotation": ": int"}, "arianna.ppl.inference.AffineInvariantMCMC.rng": {"fullname": "arianna.ppl.inference.AffineInvariantMCMC.rng", "modulename": "arianna.ppl.inference", "qualname": "AffineInvariantMCMC.rng", "kind": "variable", "doc": "\n", "annotation": ": numpy.random._generator.Generator"}, "arianna.ppl.inference.AffineInvariantMCMC.a": {"fullname": "arianna.ppl.inference.AffineInvariantMCMC.a", "modulename": "arianna.ppl.inference", "qualname": "AffineInvariantMCMC.a", "kind": "variable", "doc": "\n", "annotation": ": float"}, "arianna.ppl.inference.AffineInvariantMCMC.dim": {"fullname": "arianna.ppl.inference.AffineInvariantMCMC.dim", "modulename": "arianna.ppl.inference", "qualname": "AffineInvariantMCMC.dim", "kind": "variable", "doc": "Number of model parameters.
\n", "annotation": ": int"}, "arianna.ppl.inference.AffineInvariantMCMC.logprob": {"fullname": "arianna.ppl.inference.AffineInvariantMCMC.logprob", "modulename": "arianna.ppl.inference", "qualname": "AffineInvariantMCMC.logprob", "kind": "function", "doc": "Compute log density.
\n\nUpdate mcmc_state and return list of native_state_and_cache.
\n\nFit model with AIES.
\n", "signature": "(\tself,\t*args,\trebalanced_samples: Optional[int] = None,\t**kwargs) -> arianna.ppl.inference.Chain:", "funcdef": "def"}, "arianna.ppl.inference.AIES": {"fullname": "arianna.ppl.inference.AIES", "modulename": "arianna.ppl.inference", "qualname": "AIES", "kind": "class", "doc": "Sequential Affine Invariant Ensemble Sampler.
\n\nThis sampler is good for target distributions that are not multimodal and\nseparated by large low density regions. You should use as many walkers as\nyou can afford. Whereas this sampler employs walkers that are sequeutnailly\nupdated. there is a parallel analog that updates walkers in parallel.
\n\ndef model(ctx: Context, **data)
.Return 1.
\n", "signature": "(iter: int) -> float:", "funcdef": "def"}, "arianna.ppl.inference.AIES.model": {"fullname": "arianna.ppl.inference.AIES.model", "modulename": "arianna.ppl.inference", "qualname": "AIES.model", "kind": "variable", "doc": "\n", "annotation": ": Callable[Concatenate[arianna.ppl.context.Context, ~P], NoneType]"}, "arianna.ppl.inference.AIES.nwalkers": {"fullname": "arianna.ppl.inference.AIES.nwalkers", "modulename": "arianna.ppl.inference", "qualname": "AIES.nwalkers", "kind": "variable", "doc": "\n", "annotation": ": int"}, "arianna.ppl.inference.AIES.transform": {"fullname": "arianna.ppl.inference.AIES.transform", "modulename": "arianna.ppl.inference", "qualname": "AIES.transform", "kind": "variable", "doc": "\n", "annotation": ": bool"}, "arianna.ppl.inference.AIES.rng": {"fullname": "arianna.ppl.inference.AIES.rng", "modulename": "arianna.ppl.inference", "qualname": "AIES.rng", "kind": "variable", "doc": "\n"}, "arianna.ppl.inference.AIES.accept": {"fullname": "arianna.ppl.inference.AIES.accept", "modulename": "arianna.ppl.inference", "qualname": "AIES.accept", "kind": "variable", "doc": "\n"}, "arianna.ppl.inference.AIES.a": {"fullname": "arianna.ppl.inference.AIES.a", "modulename": "arianna.ppl.inference", "qualname": "AIES.a", "kind": "variable", "doc": "\n", "annotation": ": float"}, "arianna.ppl.inference.AIES.model_data": {"fullname": "arianna.ppl.inference.AIES.model_data", "modulename": "arianna.ppl.inference", "qualname": "AIES.model_data", "kind": "variable", "doc": "\n"}, "arianna.ppl.inference.AIES.temperature_fn": {"fullname": "arianna.ppl.inference.AIES.temperature_fn", "modulename": "arianna.ppl.inference", "qualname": "AIES.temperature_fn", "kind": "variable", "doc": "\n", "annotation": ": Callable[[int], float]"}, "arianna.ppl.inference.AIES.init_state": {"fullname": "arianna.ppl.inference.AIES.init_state", "modulename": "arianna.ppl.inference", "qualname": "AIES.init_state", "kind": "variable", "doc": "\n"}, "arianna.ppl.inference.AIES.step": {"fullname": "arianna.ppl.inference.AIES.step", "modulename": "arianna.ppl.inference", "qualname": "AIES.step", "kind": "function", "doc": "Update mcmc_state and return list of native_state_and_cache.
\n\nParallel Affine Invariant MCMC (or Parallel AIES).
\n\nUpdate mcmc_state and return list of native_state_and_cache.
\n\nImportance Sampling.
\n", "bases": "InferenceEngine"}, "arianna.ppl.inference.ImportanceSampling.__init__": {"fullname": "arianna.ppl.inference.ImportanceSampling.__init__", "modulename": "arianna.ppl.inference", "qualname": "ImportanceSampling.__init__", "kind": "function", "doc": "\n", "signature": "(\tmodel: Callable[Concatenate[arianna.ppl.context.Context, ~P], NoneType],\trng: Optional[numpy.random._generator.Generator] = None,\tparticles: Optional[list[dict[str, float | numpy.ndarray]]] = None,\tnparticles: Optional[int] = None,\ttemperature: float = 1.0,\t**model_data)"}, "arianna.ppl.inference.ImportanceSampling.particles": {"fullname": "arianna.ppl.inference.ImportanceSampling.particles", "modulename": "arianna.ppl.inference", "qualname": "ImportanceSampling.particles", "kind": "variable", "doc": "\n", "annotation": ": list[dict[str, float | numpy.ndarray]]"}, "arianna.ppl.inference.ImportanceSampling.model": {"fullname": "arianna.ppl.inference.ImportanceSampling.model", "modulename": "arianna.ppl.inference", "qualname": "ImportanceSampling.model", "kind": "variable", "doc": "\n"}, "arianna.ppl.inference.ImportanceSampling.model_data": {"fullname": "arianna.ppl.inference.ImportanceSampling.model_data", "modulename": "arianna.ppl.inference", "qualname": "ImportanceSampling.model_data", "kind": "variable", "doc": "\n"}, "arianna.ppl.inference.ImportanceSampling.temperature": {"fullname": "arianna.ppl.inference.ImportanceSampling.temperature", "modulename": "arianna.ppl.inference", "qualname": "ImportanceSampling.temperature", "kind": "variable", "doc": "\n"}, "arianna.ppl.inference.ImportanceSampling.rng": {"fullname": "arianna.ppl.inference.ImportanceSampling.rng", "modulename": "arianna.ppl.inference", "qualname": "ImportanceSampling.rng", "kind": "variable", "doc": "\n"}, "arianna.ppl.inference.ImportanceSampling.log_weights": {"fullname": "arianna.ppl.inference.ImportanceSampling.log_weights", "modulename": "arianna.ppl.inference", "qualname": "ImportanceSampling.log_weights", "kind": "variable", "doc": "\n"}, "arianna.ppl.inference.ImportanceSampling.weights": {"fullname": "arianna.ppl.inference.ImportanceSampling.weights", "modulename": "arianna.ppl.inference", "qualname": "ImportanceSampling.weights", "kind": "variable", "doc": "\n"}, "arianna.ppl.inference.ImportanceSampling.fit": {"fullname": "arianna.ppl.inference.ImportanceSampling.fit", "modulename": "arianna.ppl.inference", "qualname": "ImportanceSampling.fit", "kind": "function", "doc": "Sample.
\n", "signature": "(self, nsamples: int) -> arianna.ppl.inference.Chain:", "funcdef": "def"}, "arianna.ppl.inference.LaplaceApproximation": {"fullname": "arianna.ppl.inference.LaplaceApproximation", "modulename": "arianna.ppl.inference", "qualname": "LaplaceApproximation", "kind": "class", "doc": "Laplace Approximation of Posterior.
\n", "bases": "InferenceEngine"}, "arianna.ppl.inference.LaplaceApproximation.__init__": {"fullname": "arianna.ppl.inference.LaplaceApproximation.__init__", "modulename": "arianna.ppl.inference", "qualname": "LaplaceApproximation.__init__", "kind": "function", "doc": "\n", "signature": "(\tmodel: Callable[Concatenate[arianna.ppl.context.Context, ~P], NoneType],\ttransform: bool = True,\trng: Optional[numpy.random._generator.Generator] = None,\t**model_data)"}, "arianna.ppl.inference.LaplaceApproximation.rng": {"fullname": "arianna.ppl.inference.LaplaceApproximation.rng", "modulename": "arianna.ppl.inference", "qualname": "LaplaceApproximation.rng", "kind": "variable", "doc": "\n", "annotation": ": numpy.random._generator.Generator"}, "arianna.ppl.inference.LaplaceApproximation.model": {"fullname": "arianna.ppl.inference.LaplaceApproximation.model", "modulename": "arianna.ppl.inference", "qualname": "LaplaceApproximation.model", "kind": "variable", "doc": "\n"}, "arianna.ppl.inference.LaplaceApproximation.model_data": {"fullname": "arianna.ppl.inference.LaplaceApproximation.model_data", "modulename": "arianna.ppl.inference", "qualname": "LaplaceApproximation.model_data", "kind": "variable", "doc": "\n"}, "arianna.ppl.inference.LaplaceApproximation.transform": {"fullname": "arianna.ppl.inference.LaplaceApproximation.transform", "modulename": "arianna.ppl.inference", "qualname": "LaplaceApproximation.transform", "kind": "variable", "doc": "\n"}, "arianna.ppl.inference.LaplaceApproximation.shaper": {"fullname": "arianna.ppl.inference.LaplaceApproximation.shaper", "modulename": "arianna.ppl.inference", "qualname": "LaplaceApproximation.shaper", "kind": "variable", "doc": "\n"}, "arianna.ppl.inference.LaplaceApproximation.init_vec_state": {"fullname": "arianna.ppl.inference.LaplaceApproximation.init_vec_state", "modulename": "arianna.ppl.inference", "qualname": "LaplaceApproximation.init_vec_state", "kind": "variable", "doc": "\n"}, "arianna.ppl.inference.LaplaceApproximation.logprob": {"fullname": "arianna.ppl.inference.LaplaceApproximation.logprob", "modulename": "arianna.ppl.inference", "qualname": "LaplaceApproximation.logprob", "kind": "function", "doc": "Compute log density.
\n\nFit model with laplace approx.
\n", "signature": "(self, nsamples: int, **minimize_kwargs):", "funcdef": "def"}, "arianna.ppl.inference.BayesianOptimization": {"fullname": "arianna.ppl.inference.BayesianOptimization", "modulename": "arianna.ppl.inference", "qualname": "BayesianOptimization", "kind": "class", "doc": "Bayesian Optimization.
\n", "bases": "InferenceEngine"}, "arianna.ppl.inference.AdaptiveRandomWalkMetropolis": {"fullname": "arianna.ppl.inference.AdaptiveRandomWalkMetropolis", "modulename": "arianna.ppl.inference", "qualname": "AdaptiveRandomWalkMetropolis", "kind": "class", "doc": "Adaptive Random Walk Metropolis.
\n\nShapes dict of numeric values into np.array and back.
\n"}, "arianna.ppl.shaper.Shaper.__init__": {"fullname": "arianna.ppl.shaper.Shaper.__init__", "modulename": "arianna.ppl.shaper", "qualname": "Shaper.__init__", "kind": "function", "doc": "\n", "signature": "(shape: dict[str, tuple[int, ...]])"}, "arianna.ppl.shaper.Shaper.from_state": {"fullname": "arianna.ppl.shaper.Shaper.from_state", "modulename": "arianna.ppl.shaper", "qualname": "Shaper.from_state", "kind": "function", "doc": "Construct a Shaper from a state.
\n", "signature": "(cls, state: dict[str, float | numpy.ndarray]):", "funcdef": "def"}, "arianna.ppl.shaper.Shaper.shape": {"fullname": "arianna.ppl.shaper.Shaper.shape", "modulename": "arianna.ppl.shaper", "qualname": "Shaper.shape", "kind": "variable", "doc": "\n"}, "arianna.ppl.shaper.Shaper.dim": {"fullname": "arianna.ppl.shaper.Shaper.dim", "modulename": "arianna.ppl.shaper", "qualname": "Shaper.dim", "kind": "variable", "doc": "\n"}, "arianna.ppl.shaper.Shaper.vec": {"fullname": "arianna.ppl.shaper.Shaper.vec", "modulename": "arianna.ppl.shaper", "qualname": "Shaper.vec", "kind": "function", "doc": "Convert a state dict into a np.ndarray.
\n", "signature": "(self, state: dict[str, float | numpy.ndarray]) -> numpy.ndarray:", "funcdef": "def"}, "arianna.ppl.shaper.Shaper.unvec": {"fullname": "arianna.ppl.shaper.Shaper.unvec", "modulename": "arianna.ppl.shaper", "qualname": "Shaper.unvec", "kind": "function", "doc": "Convert a np.ndarray back to a state dict.
\n", "signature": "(self, flat_state: numpy.ndarray) -> dict[str, float | numpy.ndarray]:", "funcdef": "def"}, "arianna.types": {"fullname": "arianna.types", "modulename": "arianna.types", "kind": "module", "doc": "\n"}, "arianna.types.Numeric": {"fullname": "arianna.types.Numeric", "modulename": "arianna.types", "qualname": "Numeric", "kind": "variable", "doc": "\n", "default_value": "float | numpy.ndarray"}, "arianna.types.Shape": {"fullname": "arianna.types.Shape", "modulename": "arianna.types", "qualname": "Shape", "kind": "variable", "doc": "\n", "default_value": "tuple[int, ...]"}, "arianna.types.State": {"fullname": "arianna.types.State", "modulename": "arianna.types", "qualname": "State", "kind": "variable", "doc": "\n", "default_value": "dict[str, float | numpy.ndarray]"}, "arianna.types.NegativeInfinityError": {"fullname": "arianna.types.NegativeInfinityError", "modulename": "arianna.types", "qualname": "NegativeInfinityError", "kind": "class", "doc": "Common base class for all non-exit exceptions.
\n", "bases": "builtins.Exception"}, "arianna.types.NegativeParameterError": {"fullname": "arianna.types.NegativeParameterError", "modulename": "arianna.types", "qualname": "NegativeParameterError", "kind": "class", "doc": "Common base class for all non-exit exceptions.
\n", "bases": "builtins.Exception"}, "arianna.types.InvalidBoundsError": {"fullname": "arianna.types.InvalidBoundsError", "modulename": "arianna.types", "qualname": "InvalidBoundsError", "kind": "class", "doc": "Common base class for all non-exit exceptions.
\n", "bases": "builtins.Exception"}}, "docInfo": {"arianna": {"qualname": 0, "fullname": 1, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.abstract": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.abstract.Distribution": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 16}, "arianna.distributions.abstract.Distribution.event_shape": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.abstract.Distribution.batch_shape": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.abstract.Distribution.logpdf": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 3}, "arianna.distributions.abstract.Distribution.sample": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 101, "bases": 0, "doc": 3}, "arianna.distributions.abstract.Distribution.pdf": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 3}, "arianna.distributions.abstract.Distribution.mean": {"qualname": 2, "fullname": 5, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.abstract.Distribution.std": {"qualname": 2, "fullname": 5, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.abstract.Distribution.var": {"qualname": 2, "fullname": 5, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.abstract.Continuous": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 16}, "arianna.distributions.abstract.Continuous.to_real": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 3}, "arianna.distributions.abstract.Continuous.to_native": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 3}, "arianna.distributions.abstract.Continuous.logdetjac": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 3}, "arianna.distributions.abstract.Discrete": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 16}, "arianna.distributions.abstract.Multivariate": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 16}, "arianna.distributions.abstract.Multivariate.mean": {"qualname": 2, "fullname": 5, "annotation": 3, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.abstract.Multivariate.std": {"qualname": 2, "fullname": 5, "annotation": 3, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.abstract.Multivariate.var": {"qualname": 2, "fullname": 5, "annotation": 3, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.abstract.Univariate": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 16}, "arianna.distributions.abstract.Univariate.event_shape": {"qualname": 3, "fullname": 6, "annotation": 3, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.abstract.Univariate.batch_shape": {"qualname": 3, "fullname": 6, "annotation": 3, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.abstract.Univariate.sample": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 101, "bases": 0, "doc": 3}, "arianna.distributions.abstract.UnivariateContinuous": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 16}, "arianna.distributions.abstract.UnivariateContinuous.logpdf_plus_logdetjac": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 32}, "arianna.distributions.abstract.UnivariateContinuous.logcdf": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 3}, "arianna.distributions.abstract.UnivariateContinuous.cdf": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 3}, "arianna.distributions.abstract.UnivariateContinuous.survival": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 3}, "arianna.distributions.abstract.UnivariateContinuous.logsurvival": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 3}, "arianna.distributions.abstract.Positive": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 16}, "arianna.distributions.abstract.Positive.to_real": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 3}, "arianna.distributions.abstract.Positive.to_native": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 3}, "arianna.distributions.abstract.Positive.logdetjac": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 3}, "arianna.distributions.abstract.Positive.logpdf": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 3}, "arianna.distributions.abstract.LowerUpperBounded": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 3, "doc": 16}, "arianna.distributions.abstract.LowerUpperBounded.lower": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.abstract.LowerUpperBounded.upper": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.abstract.LowerUpperBounded.range": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.abstract.LowerUpperBounded.to_real": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 3}, "arianna.distributions.abstract.LowerUpperBounded.to_native": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 3}, "arianna.distributions.abstract.LowerUpperBounded.logdetjac": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 3}, "arianna.distributions.abstract.LowerUpperBounded.logpdf": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 3}, "arianna.distributions.abstract.MultivariateContinuous": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 16}, "arianna.distributions.abstract.MultivariateContinuous.logpdf_plus_logdetjac": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 32}, "arianna.distributions.abstract.MultivariateContinuous.cov": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 3}, "arianna.distributions.abstract.MultivariateContinuous.mean": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 3}, "arianna.distributions.abstract.Real": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.abstract.Real.to_real": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 3}, "arianna.distributions.abstract.Real.to_native": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 3}, "arianna.distributions.abstract.Real.logdetjac": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 3}, "arianna.distributions.abstract.UnivariateReal": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 16}, "arianna.distributions.abstract.MultivariateReal": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 16}, "arianna.distributions.distributions": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.IndependentRagged": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 16}, "arianna.distributions.distributions.Independent": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 16}, "arianna.distributions.distributions.Independent.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 35, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Independent.dists": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Independent.is_same_family": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 45, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Independent.logpdf": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 52, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Independent.sample": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 30, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Uniform": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 16}, "arianna.distributions.distributions.Uniform.from_mean_shift": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Uniform.batch_shape": {"qualname": 3, "fullname": 6, "annotation": 3, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Uniform.logcdf": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Uniform.cdf": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Uniform.mode": {"qualname": 2, "fullname": 5, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Uniform.median": {"qualname": 2, "fullname": 5, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Uniform.mean": {"qualname": 2, "fullname": 5, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Uniform.var": {"qualname": 2, "fullname": 5, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Beta": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 16}, "arianna.distributions.distributions.Beta.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 66, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Beta.a": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Beta.b": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Beta.mode": {"qualname": 2, "fullname": 5, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Beta.batch_shape": {"qualname": 3, "fullname": 6, "annotation": 3, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Beta.logcdf": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Beta.cdf": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Beta.mean": {"qualname": 2, "fullname": 5, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Beta.var": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.ScaledBeta": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 16}, "arianna.distributions.distributions.ScaledBeta.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 110, "bases": 0, "doc": 3}, "arianna.distributions.distributions.ScaledBeta.a": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.ScaledBeta.b": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.ScaledBeta.base_dist": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.ScaledBeta.batch_shape": {"qualname": 3, "fullname": 6, "annotation": 3, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.ScaledBeta.cdf": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 3}, "arianna.distributions.distributions.ScaledBeta.logcdf": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 3}, "arianna.distributions.distributions.ScaledBeta.mean": {"qualname": 2, "fullname": 5, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.ScaledBeta.var": {"qualname": 2, "fullname": 5, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Gamma": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 16}, "arianna.distributions.distributions.Gamma.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 66, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Gamma.from_mean_std": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 38, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Gamma.shape": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Gamma.scale": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Gamma.batch_shape": {"qualname": 3, "fullname": 6, "annotation": 3, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Gamma.logcdf": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Gamma.cdf": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Gamma.survival": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Gamma.mean": {"qualname": 2, "fullname": 5, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Gamma.var": {"qualname": 2, "fullname": 5, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Gamma.mode": {"qualname": 2, "fullname": 5, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.InverseGamma": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 16}, "arianna.distributions.distributions.InverseGamma.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 66, "bases": 0, "doc": 3}, "arianna.distributions.distributions.InverseGamma.from_mean_std": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 38, "bases": 0, "doc": 3}, "arianna.distributions.distributions.InverseGamma.shape": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.InverseGamma.scale": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.InverseGamma.batch_shape": {"qualname": 3, "fullname": 6, "annotation": 3, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.InverseGamma.mean": {"qualname": 2, "fullname": 5, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.InverseGamma.var": {"qualname": 2, "fullname": 5, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.InverseGamma.mode": {"qualname": 2, "fullname": 5, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.InverseGamma.logcdf": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 3}, "arianna.distributions.distributions.InverseGamma.cdf": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 3}, "arianna.distributions.distributions.LogNormal": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 16}, "arianna.distributions.distributions.LogNormal.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 66, "bases": 0, "doc": 3}, "arianna.distributions.distributions.LogNormal.from_mean_std": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 38, "bases": 0, "doc": 3}, "arianna.distributions.distributions.LogNormal.mu": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.LogNormal.sigma": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.LogNormal.batch_shape": {"qualname": 3, "fullname": 6, "annotation": 3, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.LogNormal.mean": {"qualname": 2, "fullname": 5, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.LogNormal.var": {"qualname": 2, "fullname": 5, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.LogNormal.mode": {"qualname": 2, "fullname": 5, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.LogNormal.median": {"qualname": 2, "fullname": 5, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.LogNormal.logcdf": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 3}, "arianna.distributions.distributions.LogNormal.cdf": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Weibull": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 16}, "arianna.distributions.distributions.Gumbel": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 16}, "arianna.distributions.distributions.Logistic": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 16}, "arianna.distributions.distributions.LogLogistic": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 16}, "arianna.distributions.distributions.Normal": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 16}, "arianna.distributions.distributions.Normal.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 82, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Normal.loc": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Normal.scale": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Normal.batch_shape": {"qualname": 3, "fullname": 6, "annotation": 3, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Normal.logpdf": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Normal.logcdf": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Normal.cdf": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Normal.survival": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Normal.mean": {"qualname": 2, "fullname": 5, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Normal.std": {"qualname": 2, "fullname": 5, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Normal.var": {"qualname": 2, "fullname": 5, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Normal.mode": {"qualname": 2, "fullname": 5, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Normal.median": {"qualname": 2, "fullname": 5, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.MvNormal": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 16}, "arianna.distributions.distributions.MvNormal.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 70, "bases": 0, "doc": 3}, "arianna.distributions.distributions.MvNormal.mean": {"qualname": 2, "fullname": 5, "annotation": 3, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.MvNormal.cov": {"qualname": 2, "fullname": 5, "annotation": 3, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.MvNormal.cov_inv": {"qualname": 3, "fullname": 6, "annotation": 3, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.MvNormal.L": {"qualname": 2, "fullname": 5, "annotation": 3, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.MvNormal.event_shape": {"qualname": 3, "fullname": 6, "annotation": 3, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.MvNormal.batch_shape": {"qualname": 3, "fullname": 6, "annotation": 3, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.MvNormal.batch_plus_event_shape": {"qualname": 5, "fullname": 8, "annotation": 3, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.MvNormal.log_det_cov": {"qualname": 4, "fullname": 7, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.MvNormal.var": {"qualname": 2, "fullname": 5, "annotation": 3, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.MvNormal.logpdf": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 3}, "arianna.distributions.distributions.MvNormal.sample": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 101, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Dirichlet": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 16}, "arianna.distributions.distributions.Dirichlet.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 36, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Dirichlet.concentration": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Dirichlet.concentration_sum": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Dirichlet.event_shape": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Dirichlet.batch_plus_event_shape": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Dirichlet.batch_shape": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Dirichlet.logpdf": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Dirichlet.sample": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 101, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Dirichlet.to_real": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Dirichlet.to_native": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Dirichlet.logdetjac": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Dirichlet.cov": {"qualname": 2, "fullname": 5, "annotation": 3, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Dirichlet.mean": {"qualname": 2, "fullname": 5, "annotation": 3, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Dirichlet.var": {"qualname": 2, "fullname": 5, "annotation": 3, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.distributions.distributions.Dirichlet.std": {"qualname": 2, "fullname": 5, "annotation": 3, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.context": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.context.BasicDistribution": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 134}, "arianna.ppl.context.BasicDistribution.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 3}, "arianna.ppl.context.BasicDistribution.logpdf": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 3}, "arianna.ppl.context.BasicDistribution.sample": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 101, "bases": 0, "doc": 3}, "arianna.ppl.context.TransformableDistribution": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 134}, "arianna.ppl.context.TransformableDistribution.logdetjac": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 3}, "arianna.ppl.context.TransformableDistribution.logpdf_plus_logdetjac": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 3}, "arianna.ppl.context.TransformableDistribution.to_real": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 3}, "arianna.ppl.context.TransformableDistribution.to_native": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 3}, "arianna.ppl.context.TransformableDistribution.logpdf": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 3}, "arianna.ppl.context.Context": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 16}, "arianna.ppl.context.Context.result": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.context.Context.state": {"qualname": 2, "fullname": 5, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.context.Context.run": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "arianna.ppl.context.Context.rv": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 104, "bases": 0, "doc": 3}, "arianna.ppl.context.Context.cached": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 56, "bases": 0, "doc": 3}, "arianna.ppl.context.LogprobAndPriorSample": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 16}, "arianna.ppl.context.LogprobAndPriorSample.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 3}, "arianna.ppl.context.LogprobAndPriorSample.run": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 102, "bases": 0, "doc": 6}, "arianna.ppl.context.LogprobAndPriorSample.result": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.context.LogprobAndPriorSample.rng": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.context.LogprobAndPriorSample.rv": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 90, "bases": 0, "doc": 3}, "arianna.ppl.context.LogprobAndPriorSample.cached": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 56, "bases": 0, "doc": 3}, "arianna.ppl.context.LogprobAndTrace": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 16}, "arianna.ppl.context.LogprobAndTrace.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 37, "bases": 0, "doc": 3}, "arianna.ppl.context.LogprobAndTrace.run": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 96, "bases": 0, "doc": 63}, "arianna.ppl.context.LogprobAndTrace.state": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.context.LogprobAndTrace.result": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.context.LogprobAndTrace.rv": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 90, "bases": 0, "doc": 3}, "arianna.ppl.context.LogprobAndTrace.cached": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 56, "bases": 0, "doc": 3}, "arianna.ppl.context.Predictive": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 16}, "arianna.ppl.context.Predictive.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 108, "bases": 0, "doc": 3}, "arianna.ppl.context.Predictive.run": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 156, "bases": 0, "doc": 3}, "arianna.ppl.context.Predictive.state": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.context.Predictive.rng": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.context.Predictive.return_cached": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.context.Predictive.result": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.context.Predictive.rv": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 104, "bases": 0, "doc": 3}, "arianna.ppl.context.Predictive.cached": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 56, "bases": 0, "doc": 94}, "arianna.ppl.context.TransformedLogprobAndTrace": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 51}, "arianna.ppl.context.TransformedLogprobAndTrace.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 37, "bases": 0, "doc": 3}, "arianna.ppl.context.TransformedLogprobAndTrace.run": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 96, "bases": 0, "doc": 3}, "arianna.ppl.context.TransformedLogprobAndTrace.state": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.context.TransformedLogprobAndTrace.result": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.context.TransformedLogprobAndTrace.rv": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 90, "bases": 0, "doc": 3}, "arianna.ppl.context.TransformedLogprobAndTrace.cached": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 56, "bases": 0, "doc": 3}, "arianna.ppl.context.TransformedPredictive": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 180}, "arianna.ppl.context.TransformedPredictive.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 108, "bases": 0, "doc": 3}, "arianna.ppl.context.TransformedPredictive.run": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 130, "bases": 0, "doc": 3}, "arianna.ppl.context.TransformedPredictive.state": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.context.TransformedPredictive.rng": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.context.TransformedPredictive.return_cached": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.context.TransformedPredictive.result": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.context.TransformedPredictive.rv": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 104, "bases": 0, "doc": 3}, "arianna.ppl.context.TransformedPredictive.cached": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 56, "bases": 0, "doc": 94}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 16}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 37, "bases": 0, "doc": 3}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.run": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 102, "bases": 0, "doc": 3}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.state": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.result": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.rv": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 90, "bases": 0, "doc": 3}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.cached": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 56, "bases": 0, "doc": 3}, "arianna.ppl.diagnostics": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.diagnostics.ess_kish": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 50}, "arianna.ppl.inference": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.P": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.Model": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 8, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.Logprob": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 12, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.Chain": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 43}, "arianna.ppl.inference.Chain.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 3}, "arianna.ppl.inference.Chain.states": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.Chain.names": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.Chain.get": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 29, "bases": 0, "doc": 59}, "arianna.ppl.inference.Chain.bundle": {"qualname": 2, "fullname": 5, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 28}, "arianna.ppl.inference.Chain.subset": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 45, "bases": 0, "doc": 86}, "arianna.ppl.inference.InferenceEngine": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 7}, "arianna.ppl.inference.InferenceEngine.rng": {"qualname": 2, "fullname": 5, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.InferenceEngine.fit": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 5}, "arianna.ppl.inference.MCMC": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 7}, "arianna.ppl.inference.MCMC.model": {"qualname": 2, "fullname": 5, "annotation": 7, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.MCMC.model_data": {"qualname": 3, "fullname": 6, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.MCMC.nsamples": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.MCMC.burn": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.MCMC.thin": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.MCMC.mcmc_iteration": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.MCMC.transform": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.MCMC.logprob_history": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.MCMC.step": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 10}, "arianna.ppl.inference.MCMC.fit": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 22}, "arianna.ppl.inference.MCMC.logprob": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 82, "bases": 0, "doc": 50}, "arianna.ppl.inference.SingleWalkerMCMC": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 7}, "arianna.ppl.inference.SingleWalkerMCMC.init_state": {"qualname": 3, "fullname": 6, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.SingleWalkerMCMC.mcmc_state": {"qualname": 3, "fullname": 6, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.SingleWalkerMCMC.transform": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.SingleWalkerMCMC.step": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 47, "bases": 0, "doc": 35}, "arianna.ppl.inference.RandomWalkMetropolis": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 515}, "arianna.ppl.inference.RandomWalkMetropolis.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 201, "bases": 0, "doc": 3}, "arianna.ppl.inference.RandomWalkMetropolis.mcmc_state": {"qualname": 3, "fullname": 6, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.RandomWalkMetropolis.init_state": {"qualname": 3, "fullname": 6, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.RandomWalkMetropolis.model": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.RandomWalkMetropolis.model_data": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.RandomWalkMetropolis.transform": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.RandomWalkMetropolis.rng": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.RandomWalkMetropolis.proposal": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.RandomWalkMetropolis.step": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 47, "bases": 0, "doc": 31}, "arianna.ppl.inference.AffineInvariantMCMC": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 6}, "arianna.ppl.inference.AffineInvariantMCMC.nsteps": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.AffineInvariantMCMC.init_state": {"qualname": 3, "fullname": 6, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.AffineInvariantMCMC.mcmc_state": {"qualname": 3, "fullname": 6, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.AffineInvariantMCMC.accept_rate": {"qualname": 3, "fullname": 6, "annotation": 3, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.AffineInvariantMCMC.accept": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.AffineInvariantMCMC.nwalkers": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.AffineInvariantMCMC.rng": {"qualname": 2, "fullname": 5, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.AffineInvariantMCMC.a": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.AffineInvariantMCMC.dim": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 7}, "arianna.ppl.inference.AffineInvariantMCMC.logprob": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 88, "bases": 0, "doc": 57}, "arianna.ppl.inference.AffineInvariantMCMC.step": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 55, "bases": 0, "doc": 34}, "arianna.ppl.inference.AffineInvariantMCMC.fit": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 71, "bases": 0, "doc": 7}, "arianna.ppl.inference.AIES": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 209}, "arianna.ppl.inference.AIES.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 251, "bases": 0, "doc": 3}, "arianna.ppl.inference.AIES.default_temperature_fn": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 5}, "arianna.ppl.inference.AIES.model": {"qualname": 2, "fullname": 5, "annotation": 7, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.AIES.nwalkers": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.AIES.transform": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.AIES.rng": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.AIES.accept": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.AIES.a": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.AIES.model_data": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.AIES.temperature_fn": {"qualname": 3, "fullname": 6, "annotation": 3, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.AIES.init_state": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.AIES.step": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 55, "bases": 0, "doc": 39}, "arianna.ppl.inference.ParallelAIES": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 34}, "arianna.ppl.inference.ParallelAIES.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 243, "bases": 0, "doc": 3}, "arianna.ppl.inference.ParallelAIES.executor": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.ParallelAIES.model": {"qualname": 2, "fullname": 5, "annotation": 7, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.ParallelAIES.nwalkers": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.ParallelAIES.transform": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.ParallelAIES.rng": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.ParallelAIES.rngs": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.ParallelAIES.accept": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.ParallelAIES.a": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.ParallelAIES.model_data": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.ParallelAIES.init_state": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.ParallelAIES.step": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 55, "bases": 0, "doc": 55}, "arianna.ppl.inference.ImportanceSampling": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 5}, "arianna.ppl.inference.ImportanceSampling.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 195, "bases": 0, "doc": 3}, "arianna.ppl.inference.ImportanceSampling.particles": {"qualname": 2, "fullname": 5, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.ImportanceSampling.model": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.ImportanceSampling.model_data": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.ImportanceSampling.temperature": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.ImportanceSampling.rng": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.ImportanceSampling.log_weights": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.ImportanceSampling.weights": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.ImportanceSampling.fit": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 39, "bases": 0, "doc": 4}, "arianna.ppl.inference.LaplaceApproximation": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 7}, "arianna.ppl.inference.LaplaceApproximation.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 121, "bases": 0, "doc": 3}, "arianna.ppl.inference.LaplaceApproximation.rng": {"qualname": 2, "fullname": 5, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.LaplaceApproximation.model": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.LaplaceApproximation.model_data": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.LaplaceApproximation.transform": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.LaplaceApproximation.shaper": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.LaplaceApproximation.init_vec_state": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.inference.LaplaceApproximation.logprob": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 30, "bases": 0, "doc": 50}, "arianna.ppl.inference.LaplaceApproximation.fit": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 29, "bases": 0, "doc": 8}, "arianna.ppl.inference.BayesianOptimization": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 5}, "arianna.ppl.inference.AdaptiveRandomWalkMetropolis": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 21}, "arianna.ppl.shaper": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.shaper.Shaper": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 13}, "arianna.ppl.shaper.Shaper.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 37, "bases": 0, "doc": 3}, "arianna.ppl.shaper.Shaper.from_state": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 44, "bases": 0, "doc": 9}, "arianna.ppl.shaper.Shaper.shape": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.shaper.Shaper.dim": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.ppl.shaper.Shaper.vec": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 52, "bases": 0, "doc": 11}, "arianna.ppl.shaper.Shaper.unvec": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 53, "bases": 0, "doc": 12}, "arianna.types": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "arianna.types.Numeric": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 4, "signature": 0, "bases": 0, "doc": 3}, "arianna.types.Shape": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "arianna.types.State": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 5, "signature": 0, "bases": 0, "doc": 3}, "arianna.types.NegativeInfinityError": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 11}, "arianna.types.NegativeParameterError": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 11}, "arianna.types.InvalidBoundsError": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 11}}, "length": 356, "save": true}, "index": {"qualname": {"root": {"docs": {"arianna.distributions.distributions.Independent.__init__": {"tf": 1}, "arianna.distributions.distributions.Beta.__init__": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.__init__": {"tf": 1}, "arianna.distributions.distributions.Gamma.__init__": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.__init__": {"tf": 1}, "arianna.distributions.distributions.LogNormal.__init__": {"tf": 1}, "arianna.distributions.distributions.Normal.__init__": {"tf": 1}, "arianna.distributions.distributions.MvNormal.__init__": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.__init__": {"tf": 1}, "arianna.ppl.context.BasicDistribution.__init__": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.__init__": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.__init__": {"tf": 1}, "arianna.ppl.context.Predictive.__init__": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.__init__": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.__init__": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.__init__": {"tf": 1}, "arianna.ppl.inference.Chain.__init__": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.__init__": {"tf": 1}, "arianna.ppl.inference.AIES.__init__": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.__init__": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.__init__": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.__init__": {"tf": 1}, "arianna.ppl.shaper.Shaper.__init__": {"tf": 1}}, "df": 23, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"arianna.distributions.distributions.ScaledBeta.base_dist": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"arianna.distributions.abstract.Distribution": {"tf": 1}, "arianna.distributions.abstract.Distribution.event_shape": {"tf": 1}, "arianna.distributions.abstract.Distribution.batch_shape": {"tf": 1}, "arianna.distributions.abstract.Distribution.logpdf": {"tf": 1}, "arianna.distributions.abstract.Distribution.sample": {"tf": 1}, "arianna.distributions.abstract.Distribution.pdf": {"tf": 1}, "arianna.distributions.abstract.Distribution.mean": {"tf": 1}, "arianna.distributions.abstract.Distribution.std": {"tf": 1}, "arianna.distributions.abstract.Distribution.var": {"tf": 1}}, "df": 9}}}}}}}}, "s": {"docs": {"arianna.distributions.distributions.Independent.dists": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"arianna.distributions.abstract.Discrete": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"arianna.distributions.distributions.Dirichlet": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.__init__": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.concentration": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.concentration_sum": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.event_shape": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.batch_plus_event_shape": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.batch_shape": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.logpdf": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.sample": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.to_real": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.to_native": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.logdetjac": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.cov": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.mean": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.var": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.std": {"tf": 1}}, "df": 16}}}}}}}, "m": {"docs": {"arianna.ppl.inference.AffineInvariantMCMC.dim": {"tf": 1}, "arianna.ppl.shaper.Shaper.dim": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"arianna.distributions.distributions.MvNormal.log_det_cov": {"tf": 1}}, "df": 1}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.inference.AIES.default_temperature_fn": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"arianna.ppl.inference.MCMC.model_data": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.model_data": {"tf": 1}, "arianna.ppl.inference.AIES.model_data": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.model_data": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.model_data": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.model_data": {"tf": 1}}, "df": 6}}}}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"arianna.distributions.abstract.Distribution.event_shape": {"tf": 1}, "arianna.distributions.abstract.Univariate.event_shape": {"tf": 1}, "arianna.distributions.distributions.MvNormal.event_shape": {"tf": 1}, "arianna.distributions.distributions.MvNormal.batch_plus_event_shape": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.event_shape": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.batch_plus_event_shape": {"tf": 1}}, "df": 6}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.diagnostics.ess_kish": {"tf": 1}}, "df": 1}}, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"arianna.ppl.inference.ParallelAIES.executor": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"arianna.distributions.abstract.Distribution.event_shape": {"tf": 1}, "arianna.distributions.abstract.Distribution.batch_shape": {"tf": 1}, "arianna.distributions.abstract.Univariate.event_shape": {"tf": 1}, "arianna.distributions.abstract.Univariate.batch_shape": {"tf": 1}, "arianna.distributions.distributions.Uniform.batch_shape": {"tf": 1}, "arianna.distributions.distributions.Beta.batch_shape": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.batch_shape": {"tf": 1}, "arianna.distributions.distributions.Gamma.shape": {"tf": 1}, "arianna.distributions.distributions.Gamma.batch_shape": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.shape": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.batch_shape": {"tf": 1}, "arianna.distributions.distributions.LogNormal.batch_shape": {"tf": 1}, "arianna.distributions.distributions.Normal.batch_shape": {"tf": 1}, "arianna.distributions.distributions.MvNormal.event_shape": {"tf": 1}, "arianna.distributions.distributions.MvNormal.batch_shape": {"tf": 1}, "arianna.distributions.distributions.MvNormal.batch_plus_event_shape": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.event_shape": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.batch_plus_event_shape": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.batch_shape": {"tf": 1}, "arianna.ppl.shaper.Shaper.shape": {"tf": 1}, "arianna.types.Shape": {"tf": 1}}, "df": 21, "r": {"docs": {"arianna.ppl.inference.LaplaceApproximation.shaper": {"tf": 1}, "arianna.ppl.shaper.Shaper": {"tf": 1}, "arianna.ppl.shaper.Shaper.__init__": {"tf": 1}, "arianna.ppl.shaper.Shaper.from_state": {"tf": 1}, "arianna.ppl.shaper.Shaper.shape": {"tf": 1}, "arianna.ppl.shaper.Shaper.dim": {"tf": 1}, "arianna.ppl.shaper.Shaper.vec": {"tf": 1}, "arianna.ppl.shaper.Shaper.unvec": {"tf": 1}}, "df": 8}}}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {"arianna.distributions.distributions.Uniform.from_mean_shift": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"arianna.distributions.abstract.Distribution.sample": {"tf": 1}, "arianna.distributions.abstract.Univariate.sample": {"tf": 1}, "arianna.distributions.distributions.Independent.sample": {"tf": 1}, "arianna.distributions.distributions.MvNormal.sample": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.sample": {"tf": 1}, "arianna.ppl.context.BasicDistribution.sample": {"tf": 1}}, "df": 6}}}, "e": {"docs": {"arianna.distributions.distributions.Independent.is_same_family": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "d": {"docs": {"arianna.distributions.abstract.Distribution.std": {"tf": 1}, "arianna.distributions.abstract.Multivariate.std": {"tf": 1}, "arianna.distributions.distributions.Gamma.from_mean_std": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.from_mean_std": {"tf": 1}, "arianna.distributions.distributions.LogNormal.from_mean_std": {"tf": 1}, "arianna.distributions.distributions.Normal.std": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.std": {"tf": 1}}, "df": 7}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.context.Context.state": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.state": {"tf": 1}, "arianna.ppl.context.Predictive.state": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.state": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.state": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.state": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.init_state": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.mcmc_state": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.mcmc_state": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.init_state": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.init_state": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.mcmc_state": {"tf": 1}, "arianna.ppl.inference.AIES.init_state": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.init_state": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.init_vec_state": {"tf": 1}, "arianna.ppl.shaper.Shaper.from_state": {"tf": 1}, "arianna.types.State": {"tf": 1}}, "df": 17, "s": {"docs": {"arianna.ppl.inference.Chain.states": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {"arianna.ppl.inference.MCMC.step": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.step": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.step": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.step": {"tf": 1}, "arianna.ppl.inference.AIES.step": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.step": {"tf": 1}}, "df": 6}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"arianna.distributions.abstract.UnivariateContinuous.survival": {"tf": 1}, "arianna.distributions.distributions.Gamma.survival": {"tf": 1}, "arianna.distributions.distributions.Normal.survival": {"tf": 1}}, "df": 3}}}}}}, "m": {"docs": {"arianna.distributions.distributions.Dirichlet.concentration_sum": {"tf": 1}}, "df": 1}, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.inference.Chain.subset": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"arianna.distributions.distributions.Gamma.scale": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.scale": {"tf": 1}, "arianna.distributions.distributions.Normal.scale": {"tf": 1}}, "df": 3, "d": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"arianna.distributions.distributions.ScaledBeta": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.__init__": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.a": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.b": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.base_dist": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.batch_shape": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.cdf": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.logcdf": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.mean": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.var": {"tf": 1}}, "df": 10}}}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"arianna.distributions.distributions.LogNormal.sigma": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "c": {"docs": {"arianna.ppl.inference.SingleWalkerMCMC": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.init_state": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.mcmc_state": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.transform": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.step": {"tf": 1}}, "df": 5}}}}}}}}}}}}}}}}, "b": {"docs": {"arianna.distributions.distributions.Beta.b": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.b": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"arianna.distributions.abstract.Distribution.batch_shape": {"tf": 1}, "arianna.distributions.abstract.Univariate.batch_shape": {"tf": 1}, "arianna.distributions.distributions.Uniform.batch_shape": {"tf": 1}, "arianna.distributions.distributions.Beta.batch_shape": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.batch_shape": {"tf": 1}, "arianna.distributions.distributions.Gamma.batch_shape": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.batch_shape": {"tf": 1}, "arianna.distributions.distributions.LogNormal.batch_shape": {"tf": 1}, "arianna.distributions.distributions.Normal.batch_shape": {"tf": 1}, "arianna.distributions.distributions.MvNormal.batch_shape": {"tf": 1}, "arianna.distributions.distributions.MvNormal.batch_plus_event_shape": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.batch_plus_event_shape": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.batch_shape": {"tf": 1}}, "df": 13}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"arianna.distributions.distributions.ScaledBeta.base_dist": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1}, "arianna.ppl.context.BasicDistribution.__init__": {"tf": 1}, "arianna.ppl.context.BasicDistribution.logpdf": {"tf": 1}, "arianna.ppl.context.BasicDistribution.sample": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}}, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"arianna.ppl.inference.BayesianOptimization": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"arianna.distributions.distributions.Beta": {"tf": 1}, "arianna.distributions.distributions.Beta.__init__": {"tf": 1}, "arianna.distributions.distributions.Beta.a": {"tf": 1}, "arianna.distributions.distributions.Beta.b": {"tf": 1}, "arianna.distributions.distributions.Beta.mode": {"tf": 1}, "arianna.distributions.distributions.Beta.batch_shape": {"tf": 1}, "arianna.distributions.distributions.Beta.logcdf": {"tf": 1}, "arianna.distributions.distributions.Beta.cdf": {"tf": 1}, "arianna.distributions.distributions.Beta.mean": {"tf": 1}, "arianna.distributions.distributions.Beta.var": {"tf": 1}}, "df": 10}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.inference.Chain.bundle": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "n": {"docs": {"arianna.ppl.inference.MCMC.burn": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {"arianna.distributions.distributions.MvNormal.L": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "g": {"docs": {"arianna.distributions.distributions.MvNormal.log_det_cov": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.log_weights": {"tf": 1}}, "df": 2, "p": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "f": {"docs": {"arianna.distributions.abstract.Distribution.logpdf": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous.logpdf_plus_logdetjac": {"tf": 1}, "arianna.distributions.abstract.Positive.logpdf": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.logpdf": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous.logpdf_plus_logdetjac": {"tf": 1}, "arianna.distributions.distributions.Independent.logpdf": {"tf": 1}, "arianna.distributions.distributions.Normal.logpdf": {"tf": 1}, "arianna.distributions.distributions.MvNormal.logpdf": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.logpdf": {"tf": 1}, "arianna.ppl.context.BasicDistribution.logpdf": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.logpdf_plus_logdetjac": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.logpdf": {"tf": 1}}, "df": 12}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"arianna.ppl.inference.Logprob": {"tf": 1}, "arianna.ppl.inference.MCMC.logprob_history": {"tf": 1}, "arianna.ppl.inference.MCMC.logprob": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.logprob": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.logprob": {"tf": 1}}, "df": 5, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.context.LogprobAndPriorSample": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.__init__": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.run": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.result": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.rng": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.cached": {"tf": 1}}, "df": 7}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.context.LogprobAndTrace": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.__init__": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.run": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.state": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.result": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.cached": {"tf": 1}}, "df": 7}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.context.LogprobAndLogjacobianAndTrace": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.__init__": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.run": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.state": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.result": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.cached": {"tf": 1}}, "df": 7}}}}}}}}}}}}}}}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {"arianna.distributions.abstract.Continuous.logdetjac": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous.logpdf_plus_logdetjac": {"tf": 1}, "arianna.distributions.abstract.Positive.logdetjac": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.logdetjac": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous.logpdf_plus_logdetjac": {"tf": 1}, "arianna.distributions.abstract.Real.logdetjac": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.logdetjac": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.logdetjac": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.logpdf_plus_logdetjac": {"tf": 1}}, "df": 9}}}}}}, "c": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "f": {"docs": {"arianna.distributions.abstract.UnivariateContinuous.logcdf": {"tf": 1}, "arianna.distributions.distributions.Uniform.logcdf": {"tf": 1}, "arianna.distributions.distributions.Beta.logcdf": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.logcdf": {"tf": 1}, "arianna.distributions.distributions.Gamma.logcdf": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.logcdf": {"tf": 1}, "arianna.distributions.distributions.LogNormal.logcdf": {"tf": 1}, "arianna.distributions.distributions.Normal.logcdf": {"tf": 1}}, "df": 8}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"arianna.distributions.abstract.UnivariateContinuous.logsurvival": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"arianna.distributions.distributions.LogNormal": {"tf": 1}, "arianna.distributions.distributions.LogNormal.__init__": {"tf": 1}, "arianna.distributions.distributions.LogNormal.from_mean_std": {"tf": 1}, "arianna.distributions.distributions.LogNormal.mu": {"tf": 1}, "arianna.distributions.distributions.LogNormal.sigma": {"tf": 1}, "arianna.distributions.distributions.LogNormal.batch_shape": {"tf": 1}, "arianna.distributions.distributions.LogNormal.mean": {"tf": 1}, "arianna.distributions.distributions.LogNormal.var": {"tf": 1}, "arianna.distributions.distributions.LogNormal.mode": {"tf": 1}, "arianna.distributions.distributions.LogNormal.median": {"tf": 1}, "arianna.distributions.distributions.LogNormal.logcdf": {"tf": 1}, "arianna.distributions.distributions.LogNormal.cdf": {"tf": 1}}, "df": 12}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"arianna.distributions.distributions.Logistic": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"arianna.distributions.distributions.LogLogistic": {"tf": 1}}, "df": 1}}}}}}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"arianna.distributions.abstract.LowerUpperBounded.lower": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"arianna.distributions.abstract.LowerUpperBounded": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.lower": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.upper": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.range": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.to_real": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.to_native": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.logdetjac": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.logpdf": {"tf": 1}}, "df": 8}}}}}}}}}}}}}}}, "c": {"docs": {"arianna.distributions.distributions.Normal.loc": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"arianna.ppl.inference.LaplaceApproximation": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.__init__": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.rng": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.model": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.model_data": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.transform": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.shaper": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.init_vec_state": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.logprob": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.fit": {"tf": 1}}, "df": 10}}}}}}}}}}}}}}}}}}}}, "p": {"docs": {"arianna.ppl.inference.P": {"tf": 1}}, "df": 1, "d": {"docs": {}, "df": 0, "f": {"docs": {"arianna.distributions.abstract.Distribution.pdf": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"arianna.distributions.abstract.UnivariateContinuous.logpdf_plus_logdetjac": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous.logpdf_plus_logdetjac": {"tf": 1}, "arianna.distributions.distributions.MvNormal.batch_plus_event_shape": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.batch_plus_event_shape": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.logpdf_plus_logdetjac": {"tf": 1}}, "df": 5}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"arianna.distributions.abstract.Positive": {"tf": 1}, "arianna.distributions.abstract.Positive.to_real": {"tf": 1}, "arianna.distributions.abstract.Positive.to_native": {"tf": 1}, "arianna.distributions.abstract.Positive.logdetjac": {"tf": 1}, "arianna.distributions.abstract.Positive.logpdf": {"tf": 1}}, "df": 5}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.context.Predictive": {"tf": 1}, "arianna.ppl.context.Predictive.__init__": {"tf": 1}, "arianna.ppl.context.Predictive.run": {"tf": 1}, "arianna.ppl.context.Predictive.state": {"tf": 1}, "arianna.ppl.context.Predictive.rng": {"tf": 1}, "arianna.ppl.context.Predictive.return_cached": {"tf": 1}, "arianna.ppl.context.Predictive.result": {"tf": 1}, "arianna.ppl.context.Predictive.rv": {"tf": 1}, "arianna.ppl.context.Predictive.cached": {"tf": 1}}, "df": 9}}}}}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis.proposal": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.inference.ParallelAIES": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.__init__": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.executor": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.model": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.nwalkers": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.transform": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.rng": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.rngs": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.accept": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.a": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.model_data": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.init_state": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.step": {"tf": 1}}, "df": 13}}}}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.inference.ImportanceSampling.particles": {"tf": 1}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"arianna.distributions.abstract.Distribution.mean": {"tf": 1}, "arianna.distributions.abstract.Multivariate.mean": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous.mean": {"tf": 1}, "arianna.distributions.distributions.Uniform.from_mean_shift": {"tf": 1}, "arianna.distributions.distributions.Uniform.mean": {"tf": 1}, "arianna.distributions.distributions.Beta.mean": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.mean": {"tf": 1}, "arianna.distributions.distributions.Gamma.from_mean_std": {"tf": 1}, "arianna.distributions.distributions.Gamma.mean": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.from_mean_std": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.mean": {"tf": 1}, "arianna.distributions.distributions.LogNormal.from_mean_std": {"tf": 1}, "arianna.distributions.distributions.LogNormal.mean": {"tf": 1}, "arianna.distributions.distributions.Normal.mean": {"tf": 1}, "arianna.distributions.distributions.MvNormal.mean": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.mean": {"tf": 1}}, "df": 16}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"arianna.distributions.distributions.Uniform.median": {"tf": 1}, "arianna.distributions.distributions.LogNormal.median": {"tf": 1}, "arianna.distributions.distributions.Normal.median": {"tf": 1}}, "df": 3}}}}}, "u": {"docs": {"arianna.distributions.distributions.LogNormal.mu": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"arianna.distributions.abstract.Multivariate": {"tf": 1}, "arianna.distributions.abstract.Multivariate.mean": {"tf": 1}, "arianna.distributions.abstract.Multivariate.std": {"tf": 1}, "arianna.distributions.abstract.Multivariate.var": {"tf": 1}}, "df": 4, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"arianna.distributions.abstract.MultivariateContinuous": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous.logpdf_plus_logdetjac": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous.cov": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous.mean": {"tf": 1}}, "df": 4}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"arianna.distributions.abstract.MultivariateReal": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"arianna.distributions.distributions.Uniform.mode": {"tf": 1}, "arianna.distributions.distributions.Beta.mode": {"tf": 1}, "arianna.distributions.distributions.Gamma.mode": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.mode": {"tf": 1}, "arianna.distributions.distributions.LogNormal.mode": {"tf": 1}, "arianna.distributions.distributions.Normal.mode": {"tf": 1}}, "df": 6, "l": {"docs": {"arianna.ppl.inference.Model": {"tf": 1}, "arianna.ppl.inference.MCMC.model": {"tf": 1}, "arianna.ppl.inference.MCMC.model_data": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.model": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.model_data": {"tf": 1}, "arianna.ppl.inference.AIES.model": {"tf": 1}, "arianna.ppl.inference.AIES.model_data": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.model": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.model_data": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.model": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.model_data": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.model": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.model_data": {"tf": 1}}, "df": 13}}}}, "v": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"arianna.distributions.distributions.MvNormal": {"tf": 1}, "arianna.distributions.distributions.MvNormal.__init__": {"tf": 1}, "arianna.distributions.distributions.MvNormal.mean": {"tf": 1}, "arianna.distributions.distributions.MvNormal.cov": {"tf": 1}, "arianna.distributions.distributions.MvNormal.cov_inv": {"tf": 1}, "arianna.distributions.distributions.MvNormal.L": {"tf": 1}, "arianna.distributions.distributions.MvNormal.event_shape": {"tf": 1}, "arianna.distributions.distributions.MvNormal.batch_shape": {"tf": 1}, "arianna.distributions.distributions.MvNormal.batch_plus_event_shape": {"tf": 1}, "arianna.distributions.distributions.MvNormal.log_det_cov": {"tf": 1}, "arianna.distributions.distributions.MvNormal.var": {"tf": 1}, "arianna.distributions.distributions.MvNormal.logpdf": {"tf": 1}, "arianna.distributions.distributions.MvNormal.sample": {"tf": 1}}, "df": 13}}}}}}}, "c": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "c": {"docs": {"arianna.ppl.inference.MCMC": {"tf": 1}, "arianna.ppl.inference.MCMC.model": {"tf": 1}, "arianna.ppl.inference.MCMC.model_data": {"tf": 1}, "arianna.ppl.inference.MCMC.nsamples": {"tf": 1}, "arianna.ppl.inference.MCMC.burn": {"tf": 1}, "arianna.ppl.inference.MCMC.thin": {"tf": 1}, "arianna.ppl.inference.MCMC.mcmc_iteration": {"tf": 1.4142135623730951}, "arianna.ppl.inference.MCMC.transform": {"tf": 1}, "arianna.ppl.inference.MCMC.logprob_history": {"tf": 1}, "arianna.ppl.inference.MCMC.step": {"tf": 1}, "arianna.ppl.inference.MCMC.fit": {"tf": 1}, "arianna.ppl.inference.MCMC.logprob": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.mcmc_state": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.mcmc_state": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.mcmc_state": {"tf": 1}}, "df": 15}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"arianna.distributions.abstract.Distribution.var": {"tf": 1}, "arianna.distributions.abstract.Multivariate.var": {"tf": 1}, "arianna.distributions.distributions.Uniform.var": {"tf": 1}, "arianna.distributions.distributions.Beta.var": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.var": {"tf": 1}, "arianna.distributions.distributions.Gamma.var": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.var": {"tf": 1}, "arianna.distributions.distributions.LogNormal.var": {"tf": 1}, "arianna.distributions.distributions.Normal.var": {"tf": 1}, "arianna.distributions.distributions.MvNormal.var": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.var": {"tf": 1}}, "df": 11}}, "e": {"docs": {}, "df": 0, "c": {"docs": {"arianna.ppl.inference.LaplaceApproximation.init_vec_state": {"tf": 1}, "arianna.ppl.shaper.Shaper.vec": {"tf": 1}}, "df": 2}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"arianna.distributions.abstract.Continuous": {"tf": 1}, "arianna.distributions.abstract.Continuous.to_real": {"tf": 1}, "arianna.distributions.abstract.Continuous.to_native": {"tf": 1}, "arianna.distributions.abstract.Continuous.logdetjac": {"tf": 1}}, "df": 4}}}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.context.Context": {"tf": 1}, "arianna.ppl.context.Context.result": {"tf": 1}, "arianna.ppl.context.Context.state": {"tf": 1}, "arianna.ppl.context.Context.run": {"tf": 1}, "arianna.ppl.context.Context.rv": {"tf": 1}, "arianna.ppl.context.Context.cached": {"tf": 1}}, "df": 6}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"arianna.distributions.distributions.Dirichlet.concentration": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.concentration_sum": {"tf": 1}}, "df": 2}}}}}}}}}}}, "v": {"docs": {"arianna.distributions.abstract.MultivariateContinuous.cov": {"tf": 1}, "arianna.distributions.distributions.MvNormal.cov": {"tf": 1}, "arianna.distributions.distributions.MvNormal.cov_inv": {"tf": 1}, "arianna.distributions.distributions.MvNormal.log_det_cov": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.cov": {"tf": 1}}, "df": 5}}, "d": {"docs": {}, "df": 0, "f": {"docs": {"arianna.distributions.abstract.UnivariateContinuous.cdf": {"tf": 1}, "arianna.distributions.distributions.Uniform.cdf": {"tf": 1}, "arianna.distributions.distributions.Beta.cdf": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.cdf": {"tf": 1}, "arianna.distributions.distributions.Gamma.cdf": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.cdf": {"tf": 1}, "arianna.distributions.distributions.LogNormal.cdf": {"tf": 1}, "arianna.distributions.distributions.Normal.cdf": {"tf": 1}}, "df": 8}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"arianna.ppl.context.Context.cached": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.cached": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.cached": {"tf": 1}, "arianna.ppl.context.Predictive.return_cached": {"tf": 1}, "arianna.ppl.context.Predictive.cached": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.cached": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.return_cached": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.cached": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.cached": {"tf": 1}}, "df": 9}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"arianna.ppl.inference.Chain": {"tf": 1}, "arianna.ppl.inference.Chain.__init__": {"tf": 1}, "arianna.ppl.inference.Chain.states": {"tf": 1}, "arianna.ppl.inference.Chain.names": {"tf": 1}, "arianna.ppl.inference.Chain.get": {"tf": 1}, "arianna.ppl.inference.Chain.bundle": {"tf": 1}, "arianna.ppl.inference.Chain.subset": {"tf": 1}}, "df": 7}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {"arianna.distributions.abstract.Continuous.to_real": {"tf": 1}, "arianna.distributions.abstract.Continuous.to_native": {"tf": 1}, "arianna.distributions.abstract.Positive.to_real": {"tf": 1}, "arianna.distributions.abstract.Positive.to_native": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.to_real": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.to_native": {"tf": 1}, "arianna.distributions.abstract.Real.to_real": {"tf": 1}, "arianna.distributions.abstract.Real.to_native": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.to_real": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.to_native": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.to_real": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.to_native": {"tf": 1}}, "df": 12}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"arianna.ppl.inference.MCMC.transform": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.transform": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.transform": {"tf": 1}, "arianna.ppl.inference.AIES.transform": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.transform": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.transform": {"tf": 1}}, "df": 6, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"arianna.ppl.context.TransformableDistribution": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.logdetjac": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.logpdf_plus_logdetjac": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.to_real": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.to_native": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.logpdf": {"tf": 1}}, "df": 6}}}}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.context.TransformedLogprobAndTrace": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.__init__": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.run": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.state": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.result": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.rv": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.cached": {"tf": 1}}, "df": 7}}}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.context.TransformedPredictive": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.__init__": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.run": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.state": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.rng": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.return_cached": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.result": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.rv": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.cached": {"tf": 1}}, "df": 9}}}}}}}}}}}}}}}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"arianna.ppl.inference.MCMC.thin": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.inference.AIES.default_temperature_fn": {"tf": 1}, "arianna.ppl.inference.AIES.temperature_fn": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.temperature": {"tf": 1}}, "df": 3}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"arianna.distributions.abstract.Continuous.to_real": {"tf": 1}, "arianna.distributions.abstract.Positive.to_real": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.to_real": {"tf": 1}, "arianna.distributions.abstract.Real": {"tf": 1}, "arianna.distributions.abstract.Real.to_real": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.Real.to_native": {"tf": 1}, "arianna.distributions.abstract.Real.logdetjac": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.to_real": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.to_real": {"tf": 1}}, "df": 9}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.context.Context.result": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.result": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.result": {"tf": 1}, "arianna.ppl.context.Predictive.result": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.result": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.result": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.result": {"tf": 1}}, "df": 7}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"arianna.ppl.context.Predictive.return_cached": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.return_cached": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"arianna.distributions.abstract.LowerUpperBounded.range": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.__init__": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.mcmc_state": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.init_state": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.model": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.model_data": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.transform": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.rng": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.proposal": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.step": {"tf": 1}}, "df": 10}}}}}}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.inference.AffineInvariantMCMC.accept_rate": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"arianna.ppl.context.Context.run": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.run": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.run": {"tf": 1}, "arianna.ppl.context.Predictive.run": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.run": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.run": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.run": {"tf": 1}}, "df": 7}}, "v": {"docs": {"arianna.ppl.context.Context.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.rv": {"tf": 1}, "arianna.ppl.context.Predictive.rv": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.rv": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.rv": {"tf": 1}}, "df": 7}, "n": {"docs": {}, "df": 0, "g": {"docs": {"arianna.ppl.context.LogprobAndPriorSample.rng": {"tf": 1}, "arianna.ppl.context.Predictive.rng": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.rng": {"tf": 1}, "arianna.ppl.inference.InferenceEngine.rng": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.rng": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.rng": {"tf": 1}, "arianna.ppl.inference.AIES.rng": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.rng": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.rng": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.rng": {"tf": 1}}, "df": 10, "s": {"docs": {"arianna.ppl.inference.ParallelAIES.rngs": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"arianna.distributions.abstract.Continuous.to_native": {"tf": 1}, "arianna.distributions.abstract.Positive.to_native": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.to_native": {"tf": 1}, "arianna.distributions.abstract.Real.to_native": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.to_native": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.to_native": {"tf": 1}}, "df": 6}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.inference.Chain.names": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"arianna.distributions.distributions.Normal": {"tf": 1}, "arianna.distributions.distributions.Normal.__init__": {"tf": 1}, "arianna.distributions.distributions.Normal.loc": {"tf": 1}, "arianna.distributions.distributions.Normal.scale": {"tf": 1}, "arianna.distributions.distributions.Normal.batch_shape": {"tf": 1}, "arianna.distributions.distributions.Normal.logpdf": {"tf": 1}, "arianna.distributions.distributions.Normal.logcdf": {"tf": 1}, "arianna.distributions.distributions.Normal.cdf": {"tf": 1}, "arianna.distributions.distributions.Normal.survival": {"tf": 1}, "arianna.distributions.distributions.Normal.mean": {"tf": 1}, "arianna.distributions.distributions.Normal.std": {"tf": 1}, "arianna.distributions.distributions.Normal.var": {"tf": 1}, "arianna.distributions.distributions.Normal.mode": {"tf": 1}, "arianna.distributions.distributions.Normal.median": {"tf": 1}}, "df": 14}}}}}, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.inference.MCMC.nsamples": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.inference.AffineInvariantMCMC.nsteps": {"tf": 1}}, "df": 1}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.inference.AffineInvariantMCMC.nwalkers": {"tf": 1}, "arianna.ppl.inference.AIES.nwalkers": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.nwalkers": {"tf": 1}}, "df": 3}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"arianna.types.Numeric": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"arianna.types.NegativeInfinityError": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"arianna.types.NegativeParameterError": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"arianna.distributions.abstract.Univariate": {"tf": 1}, "arianna.distributions.abstract.Univariate.event_shape": {"tf": 1}, "arianna.distributions.abstract.Univariate.batch_shape": {"tf": 1}, "arianna.distributions.abstract.Univariate.sample": {"tf": 1}}, "df": 4, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"arianna.distributions.abstract.UnivariateContinuous": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous.logpdf_plus_logdetjac": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous.logcdf": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous.cdf": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous.survival": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous.logsurvival": {"tf": 1}}, "df": 6}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"arianna.distributions.abstract.UnivariateReal": {"tf": 1}}, "df": 1}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"arianna.distributions.distributions.Uniform": {"tf": 1}, "arianna.distributions.distributions.Uniform.from_mean_shift": {"tf": 1}, "arianna.distributions.distributions.Uniform.batch_shape": {"tf": 1}, "arianna.distributions.distributions.Uniform.logcdf": {"tf": 1}, "arianna.distributions.distributions.Uniform.cdf": {"tf": 1}, "arianna.distributions.distributions.Uniform.mode": {"tf": 1}, "arianna.distributions.distributions.Uniform.median": {"tf": 1}, "arianna.distributions.distributions.Uniform.mean": {"tf": 1}, "arianna.distributions.distributions.Uniform.var": {"tf": 1}}, "df": 9}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {"arianna.ppl.shaper.Shaper.unvec": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"arianna.distributions.abstract.LowerUpperBounded.upper": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"arianna.distributions.distributions.Independent": {"tf": 1}, "arianna.distributions.distributions.Independent.__init__": {"tf": 1}, "arianna.distributions.distributions.Independent.dists": {"tf": 1}, "arianna.distributions.distributions.Independent.is_same_family": {"tf": 1}, "arianna.distributions.distributions.Independent.logpdf": {"tf": 1}, "arianna.distributions.distributions.Independent.sample": {"tf": 1}}, "df": 6, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"arianna.distributions.distributions.IndependentRagged": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"arianna.distributions.distributions.Independent.__init__": {"tf": 1}, "arianna.distributions.distributions.Beta.__init__": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.__init__": {"tf": 1}, "arianna.distributions.distributions.Gamma.__init__": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.__init__": {"tf": 1}, "arianna.distributions.distributions.LogNormal.__init__": {"tf": 1}, "arianna.distributions.distributions.Normal.__init__": {"tf": 1}, "arianna.distributions.distributions.MvNormal.__init__": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.__init__": {"tf": 1}, "arianna.ppl.context.BasicDistribution.__init__": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.__init__": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.__init__": {"tf": 1}, "arianna.ppl.context.Predictive.__init__": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.__init__": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.__init__": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.__init__": {"tf": 1}, "arianna.ppl.inference.Chain.__init__": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.init_state": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.__init__": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.init_state": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.init_state": {"tf": 1}, "arianna.ppl.inference.AIES.__init__": {"tf": 1}, "arianna.ppl.inference.AIES.init_state": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.__init__": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.init_state": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.__init__": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.__init__": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.init_vec_state": {"tf": 1}, "arianna.ppl.shaper.Shaper.__init__": {"tf": 1}}, "df": 29}}, "v": {"docs": {"arianna.distributions.distributions.MvNormal.cov_inv": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"arianna.distributions.distributions.InverseGamma": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.__init__": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.from_mean_std": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.shape": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.scale": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.batch_shape": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.mean": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.var": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.mode": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.logcdf": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.cdf": {"tf": 1}}, "df": 11}}}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"arianna.types.InvalidBoundsError": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.inference.InferenceEngine": {"tf": 1}, "arianna.ppl.inference.InferenceEngine.rng": {"tf": 1}, "arianna.ppl.inference.InferenceEngine.fit": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}, "s": {"docs": {"arianna.distributions.distributions.Independent.is_same_family": {"tf": 1}}, "df": 1}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"arianna.ppl.inference.MCMC.mcmc_iteration": {"tf": 1}}, "df": 1}}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"arianna.ppl.inference.ImportanceSampling": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.__init__": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.particles": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.model": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.model_data": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.temperature": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.rng": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.log_weights": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.weights": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.fit": {"tf": 1}}, "df": 10}}}}}}}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"arianna.distributions.distributions.Independent.is_same_family": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"arianna.distributions.distributions.Uniform.from_mean_shift": {"tf": 1}, "arianna.distributions.distributions.Gamma.from_mean_std": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.from_mean_std": {"tf": 1}, "arianna.distributions.distributions.LogNormal.from_mean_std": {"tf": 1}, "arianna.ppl.shaper.Shaper.from_state": {"tf": 1}}, "df": 5}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.inference.InferenceEngine.fit": {"tf": 1}, "arianna.ppl.inference.MCMC.fit": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.fit": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.fit": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.fit": {"tf": 1}}, "df": 5}}, "n": {"docs": {"arianna.ppl.inference.AIES.default_temperature_fn": {"tf": 1}, "arianna.ppl.inference.AIES.temperature_fn": {"tf": 1}}, "df": 2}}, "a": {"docs": {"arianna.distributions.distributions.Beta.a": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.a": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.a": {"tf": 1}, "arianna.ppl.inference.AIES.a": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.a": {"tf": 1}}, "df": 5, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "c": {"docs": {"arianna.ppl.inference.AffineInvariantMCMC": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.nsteps": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.init_state": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.mcmc_state": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.accept_rate": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.accept": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.nwalkers": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.rng": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.a": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.dim": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.logprob": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.step": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.fit": {"tf": 1}}, "df": 13}}}}}}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.inference.AffineInvariantMCMC.accept_rate": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.accept": {"tf": 1}, "arianna.ppl.inference.AIES.accept": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.accept": {"tf": 1}}, "df": 4}}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.inference.AIES": {"tf": 1}, "arianna.ppl.inference.AIES.__init__": {"tf": 1}, "arianna.ppl.inference.AIES.default_temperature_fn": {"tf": 1}, "arianna.ppl.inference.AIES.model": {"tf": 1}, "arianna.ppl.inference.AIES.nwalkers": {"tf": 1}, "arianna.ppl.inference.AIES.transform": {"tf": 1}, "arianna.ppl.inference.AIES.rng": {"tf": 1}, "arianna.ppl.inference.AIES.accept": {"tf": 1}, "arianna.ppl.inference.AIES.a": {"tf": 1}, "arianna.ppl.inference.AIES.model_data": {"tf": 1}, "arianna.ppl.inference.AIES.temperature_fn": {"tf": 1}, "arianna.ppl.inference.AIES.init_state": {"tf": 1}, "arianna.ppl.inference.AIES.step": {"tf": 1}}, "df": 13}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.inference.AdaptiveRandomWalkMetropolis": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}}}}}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"arianna.distributions.distributions.Gamma": {"tf": 1}, "arianna.distributions.distributions.Gamma.__init__": {"tf": 1}, "arianna.distributions.distributions.Gamma.from_mean_std": {"tf": 1}, "arianna.distributions.distributions.Gamma.shape": {"tf": 1}, "arianna.distributions.distributions.Gamma.scale": {"tf": 1}, "arianna.distributions.distributions.Gamma.batch_shape": {"tf": 1}, "arianna.distributions.distributions.Gamma.logcdf": {"tf": 1}, "arianna.distributions.distributions.Gamma.cdf": {"tf": 1}, "arianna.distributions.distributions.Gamma.survival": {"tf": 1}, "arianna.distributions.distributions.Gamma.mean": {"tf": 1}, "arianna.distributions.distributions.Gamma.var": {"tf": 1}, "arianna.distributions.distributions.Gamma.mode": {"tf": 1}}, "df": 12}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"arianna.distributions.distributions.Gumbel": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.inference.Chain.get": {"tf": 1}}, "df": 1}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"arianna.distributions.distributions.Weibull": {"tf": 1}}, "df": 1}}}}, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.inference.ImportanceSampling.log_weights": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.weights": {"tf": 1}}, "df": 2}}}}}}}, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"arianna.ppl.diagnostics.ess_kish": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"arianna.ppl.inference.MCMC.logprob_history": {"tf": 1}}, "df": 1}}}}}}}}}, "fullname": {"root": {"docs": {"arianna.distributions.distributions.Independent.__init__": {"tf": 1}, "arianna.distributions.distributions.Beta.__init__": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.__init__": {"tf": 1}, "arianna.distributions.distributions.Gamma.__init__": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.__init__": {"tf": 1}, "arianna.distributions.distributions.LogNormal.__init__": {"tf": 1}, "arianna.distributions.distributions.Normal.__init__": {"tf": 1}, "arianna.distributions.distributions.MvNormal.__init__": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.__init__": {"tf": 1}, "arianna.ppl.context.BasicDistribution.__init__": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.__init__": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.__init__": {"tf": 1}, "arianna.ppl.context.Predictive.__init__": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.__init__": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.__init__": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.__init__": {"tf": 1}, "arianna.ppl.inference.Chain.__init__": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.__init__": {"tf": 1}, "arianna.ppl.inference.AIES.__init__": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.__init__": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.__init__": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.__init__": {"tf": 1}, "arianna.ppl.shaper.Shaper.__init__": {"tf": 1}}, "df": 23, "a": {"docs": {"arianna.distributions.distributions.Beta.a": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.a": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.a": {"tf": 1}, "arianna.ppl.inference.AIES.a": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.a": {"tf": 1}}, "df": 5, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {"arianna": {"tf": 1}, "arianna.distributions": {"tf": 1}, "arianna.distributions.abstract": {"tf": 1}, "arianna.distributions.abstract.Distribution": {"tf": 1}, "arianna.distributions.abstract.Distribution.event_shape": {"tf": 1}, "arianna.distributions.abstract.Distribution.batch_shape": {"tf": 1}, "arianna.distributions.abstract.Distribution.logpdf": {"tf": 1}, "arianna.distributions.abstract.Distribution.sample": {"tf": 1}, "arianna.distributions.abstract.Distribution.pdf": {"tf": 1}, "arianna.distributions.abstract.Distribution.mean": {"tf": 1}, "arianna.distributions.abstract.Distribution.std": {"tf": 1}, "arianna.distributions.abstract.Distribution.var": {"tf": 1}, "arianna.distributions.abstract.Continuous": {"tf": 1}, "arianna.distributions.abstract.Continuous.to_real": {"tf": 1}, "arianna.distributions.abstract.Continuous.to_native": {"tf": 1}, "arianna.distributions.abstract.Continuous.logdetjac": {"tf": 1}, "arianna.distributions.abstract.Discrete": {"tf": 1}, "arianna.distributions.abstract.Multivariate": {"tf": 1}, "arianna.distributions.abstract.Multivariate.mean": {"tf": 1}, "arianna.distributions.abstract.Multivariate.std": {"tf": 1}, "arianna.distributions.abstract.Multivariate.var": {"tf": 1}, "arianna.distributions.abstract.Univariate": {"tf": 1}, "arianna.distributions.abstract.Univariate.event_shape": {"tf": 1}, "arianna.distributions.abstract.Univariate.batch_shape": {"tf": 1}, "arianna.distributions.abstract.Univariate.sample": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous.logpdf_plus_logdetjac": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous.logcdf": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous.cdf": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous.survival": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous.logsurvival": {"tf": 1}, "arianna.distributions.abstract.Positive": {"tf": 1}, "arianna.distributions.abstract.Positive.to_real": {"tf": 1}, "arianna.distributions.abstract.Positive.to_native": {"tf": 1}, "arianna.distributions.abstract.Positive.logdetjac": {"tf": 1}, "arianna.distributions.abstract.Positive.logpdf": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.lower": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.upper": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.range": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.to_real": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.to_native": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.logdetjac": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.logpdf": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous.logpdf_plus_logdetjac": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous.cov": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous.mean": {"tf": 1}, "arianna.distributions.abstract.Real": {"tf": 1}, "arianna.distributions.abstract.Real.to_real": {"tf": 1}, "arianna.distributions.abstract.Real.to_native": {"tf": 1}, "arianna.distributions.abstract.Real.logdetjac": {"tf": 1}, "arianna.distributions.abstract.UnivariateReal": {"tf": 1}, "arianna.distributions.abstract.MultivariateReal": {"tf": 1}, "arianna.distributions.distributions": {"tf": 1}, "arianna.distributions.distributions.IndependentRagged": {"tf": 1}, "arianna.distributions.distributions.Independent": {"tf": 1}, "arianna.distributions.distributions.Independent.__init__": {"tf": 1}, "arianna.distributions.distributions.Independent.dists": {"tf": 1}, "arianna.distributions.distributions.Independent.is_same_family": {"tf": 1}, "arianna.distributions.distributions.Independent.logpdf": {"tf": 1}, "arianna.distributions.distributions.Independent.sample": {"tf": 1}, "arianna.distributions.distributions.Uniform": {"tf": 1}, "arianna.distributions.distributions.Uniform.from_mean_shift": {"tf": 1}, "arianna.distributions.distributions.Uniform.batch_shape": {"tf": 1}, "arianna.distributions.distributions.Uniform.logcdf": {"tf": 1}, "arianna.distributions.distributions.Uniform.cdf": {"tf": 1}, "arianna.distributions.distributions.Uniform.mode": {"tf": 1}, "arianna.distributions.distributions.Uniform.median": {"tf": 1}, "arianna.distributions.distributions.Uniform.mean": {"tf": 1}, "arianna.distributions.distributions.Uniform.var": {"tf": 1}, "arianna.distributions.distributions.Beta": {"tf": 1}, "arianna.distributions.distributions.Beta.__init__": {"tf": 1}, "arianna.distributions.distributions.Beta.a": {"tf": 1}, "arianna.distributions.distributions.Beta.b": {"tf": 1}, "arianna.distributions.distributions.Beta.mode": {"tf": 1}, "arianna.distributions.distributions.Beta.batch_shape": {"tf": 1}, "arianna.distributions.distributions.Beta.logcdf": {"tf": 1}, "arianna.distributions.distributions.Beta.cdf": {"tf": 1}, "arianna.distributions.distributions.Beta.mean": {"tf": 1}, "arianna.distributions.distributions.Beta.var": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.__init__": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.a": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.b": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.base_dist": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.batch_shape": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.cdf": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.logcdf": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.mean": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.var": {"tf": 1}, "arianna.distributions.distributions.Gamma": {"tf": 1}, "arianna.distributions.distributions.Gamma.__init__": {"tf": 1}, "arianna.distributions.distributions.Gamma.from_mean_std": {"tf": 1}, "arianna.distributions.distributions.Gamma.shape": {"tf": 1}, "arianna.distributions.distributions.Gamma.scale": {"tf": 1}, "arianna.distributions.distributions.Gamma.batch_shape": {"tf": 1}, "arianna.distributions.distributions.Gamma.logcdf": {"tf": 1}, "arianna.distributions.distributions.Gamma.cdf": {"tf": 1}, "arianna.distributions.distributions.Gamma.survival": {"tf": 1}, "arianna.distributions.distributions.Gamma.mean": {"tf": 1}, "arianna.distributions.distributions.Gamma.var": {"tf": 1}, "arianna.distributions.distributions.Gamma.mode": {"tf": 1}, "arianna.distributions.distributions.InverseGamma": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.__init__": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.from_mean_std": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.shape": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.scale": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.batch_shape": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.mean": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.var": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.mode": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.logcdf": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.cdf": {"tf": 1}, "arianna.distributions.distributions.LogNormal": {"tf": 1}, "arianna.distributions.distributions.LogNormal.__init__": {"tf": 1}, "arianna.distributions.distributions.LogNormal.from_mean_std": {"tf": 1}, "arianna.distributions.distributions.LogNormal.mu": {"tf": 1}, "arianna.distributions.distributions.LogNormal.sigma": {"tf": 1}, "arianna.distributions.distributions.LogNormal.batch_shape": {"tf": 1}, "arianna.distributions.distributions.LogNormal.mean": {"tf": 1}, "arianna.distributions.distributions.LogNormal.var": {"tf": 1}, "arianna.distributions.distributions.LogNormal.mode": {"tf": 1}, "arianna.distributions.distributions.LogNormal.median": {"tf": 1}, "arianna.distributions.distributions.LogNormal.logcdf": {"tf": 1}, "arianna.distributions.distributions.LogNormal.cdf": {"tf": 1}, "arianna.distributions.distributions.Weibull": {"tf": 1}, "arianna.distributions.distributions.Gumbel": {"tf": 1}, "arianna.distributions.distributions.Logistic": {"tf": 1}, "arianna.distributions.distributions.LogLogistic": {"tf": 1}, "arianna.distributions.distributions.Normal": {"tf": 1}, "arianna.distributions.distributions.Normal.__init__": {"tf": 1}, "arianna.distributions.distributions.Normal.loc": {"tf": 1}, "arianna.distributions.distributions.Normal.scale": {"tf": 1}, "arianna.distributions.distributions.Normal.batch_shape": {"tf": 1}, "arianna.distributions.distributions.Normal.logpdf": {"tf": 1}, "arianna.distributions.distributions.Normal.logcdf": {"tf": 1}, "arianna.distributions.distributions.Normal.cdf": {"tf": 1}, "arianna.distributions.distributions.Normal.survival": {"tf": 1}, "arianna.distributions.distributions.Normal.mean": {"tf": 1}, "arianna.distributions.distributions.Normal.std": {"tf": 1}, "arianna.distributions.distributions.Normal.var": {"tf": 1}, "arianna.distributions.distributions.Normal.mode": {"tf": 1}, "arianna.distributions.distributions.Normal.median": {"tf": 1}, "arianna.distributions.distributions.MvNormal": {"tf": 1}, "arianna.distributions.distributions.MvNormal.__init__": {"tf": 1}, "arianna.distributions.distributions.MvNormal.mean": {"tf": 1}, "arianna.distributions.distributions.MvNormal.cov": {"tf": 1}, "arianna.distributions.distributions.MvNormal.cov_inv": {"tf": 1}, "arianna.distributions.distributions.MvNormal.L": {"tf": 1}, "arianna.distributions.distributions.MvNormal.event_shape": {"tf": 1}, "arianna.distributions.distributions.MvNormal.batch_shape": {"tf": 1}, "arianna.distributions.distributions.MvNormal.batch_plus_event_shape": {"tf": 1}, "arianna.distributions.distributions.MvNormal.log_det_cov": {"tf": 1}, "arianna.distributions.distributions.MvNormal.var": {"tf": 1}, "arianna.distributions.distributions.MvNormal.logpdf": {"tf": 1}, "arianna.distributions.distributions.MvNormal.sample": {"tf": 1}, "arianna.distributions.distributions.Dirichlet": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.__init__": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.concentration": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.concentration_sum": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.event_shape": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.batch_plus_event_shape": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.batch_shape": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.logpdf": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.sample": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.to_real": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.to_native": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.logdetjac": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.cov": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.mean": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.var": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.std": {"tf": 1}, "arianna.ppl": {"tf": 1}, "arianna.ppl.context": {"tf": 1}, "arianna.ppl.context.BasicDistribution": {"tf": 1}, "arianna.ppl.context.BasicDistribution.__init__": {"tf": 1}, "arianna.ppl.context.BasicDistribution.logpdf": {"tf": 1}, "arianna.ppl.context.BasicDistribution.sample": {"tf": 1}, "arianna.ppl.context.TransformableDistribution": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.logdetjac": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.logpdf_plus_logdetjac": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.to_real": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.to_native": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.logpdf": {"tf": 1}, "arianna.ppl.context.Context": {"tf": 1}, "arianna.ppl.context.Context.result": {"tf": 1}, "arianna.ppl.context.Context.state": {"tf": 1}, "arianna.ppl.context.Context.run": {"tf": 1}, "arianna.ppl.context.Context.rv": {"tf": 1}, "arianna.ppl.context.Context.cached": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.__init__": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.run": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.result": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.rng": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.cached": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.__init__": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.run": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.state": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.result": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.cached": {"tf": 1}, "arianna.ppl.context.Predictive": {"tf": 1}, "arianna.ppl.context.Predictive.__init__": {"tf": 1}, "arianna.ppl.context.Predictive.run": {"tf": 1}, "arianna.ppl.context.Predictive.state": {"tf": 1}, "arianna.ppl.context.Predictive.rng": {"tf": 1}, "arianna.ppl.context.Predictive.return_cached": {"tf": 1}, "arianna.ppl.context.Predictive.result": {"tf": 1}, "arianna.ppl.context.Predictive.rv": {"tf": 1}, "arianna.ppl.context.Predictive.cached": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.__init__": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.run": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.state": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.result": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.rv": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.cached": {"tf": 1}, "arianna.ppl.context.TransformedPredictive": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.__init__": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.run": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.state": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.rng": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.return_cached": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.result": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.rv": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.cached": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.__init__": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.run": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.state": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.result": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.cached": {"tf": 1}, "arianna.ppl.diagnostics": {"tf": 1}, "arianna.ppl.diagnostics.ess_kish": {"tf": 1}, "arianna.ppl.inference": {"tf": 1}, "arianna.ppl.inference.P": {"tf": 1}, "arianna.ppl.inference.Model": {"tf": 1}, "arianna.ppl.inference.Logprob": {"tf": 1}, "arianna.ppl.inference.Chain": {"tf": 1}, "arianna.ppl.inference.Chain.__init__": {"tf": 1}, "arianna.ppl.inference.Chain.states": {"tf": 1}, "arianna.ppl.inference.Chain.names": {"tf": 1}, "arianna.ppl.inference.Chain.get": {"tf": 1}, "arianna.ppl.inference.Chain.bundle": {"tf": 1}, "arianna.ppl.inference.Chain.subset": {"tf": 1}, "arianna.ppl.inference.InferenceEngine": {"tf": 1}, "arianna.ppl.inference.InferenceEngine.rng": {"tf": 1}, "arianna.ppl.inference.InferenceEngine.fit": {"tf": 1}, "arianna.ppl.inference.MCMC": {"tf": 1}, "arianna.ppl.inference.MCMC.model": {"tf": 1}, "arianna.ppl.inference.MCMC.model_data": {"tf": 1}, "arianna.ppl.inference.MCMC.nsamples": {"tf": 1}, "arianna.ppl.inference.MCMC.burn": {"tf": 1}, "arianna.ppl.inference.MCMC.thin": {"tf": 1}, "arianna.ppl.inference.MCMC.mcmc_iteration": {"tf": 1}, "arianna.ppl.inference.MCMC.transform": {"tf": 1}, "arianna.ppl.inference.MCMC.logprob_history": {"tf": 1}, "arianna.ppl.inference.MCMC.step": {"tf": 1}, "arianna.ppl.inference.MCMC.fit": {"tf": 1}, "arianna.ppl.inference.MCMC.logprob": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.init_state": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.mcmc_state": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.transform": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.step": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.__init__": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.mcmc_state": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.init_state": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.model": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.model_data": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.transform": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.rng": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.proposal": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.step": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.nsteps": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.init_state": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.mcmc_state": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.accept_rate": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.accept": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.nwalkers": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.rng": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.a": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.dim": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.logprob": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.step": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.fit": {"tf": 1}, "arianna.ppl.inference.AIES": {"tf": 1}, "arianna.ppl.inference.AIES.__init__": {"tf": 1}, "arianna.ppl.inference.AIES.default_temperature_fn": {"tf": 1}, "arianna.ppl.inference.AIES.model": {"tf": 1}, "arianna.ppl.inference.AIES.nwalkers": {"tf": 1}, "arianna.ppl.inference.AIES.transform": {"tf": 1}, "arianna.ppl.inference.AIES.rng": {"tf": 1}, "arianna.ppl.inference.AIES.accept": {"tf": 1}, "arianna.ppl.inference.AIES.a": {"tf": 1}, "arianna.ppl.inference.AIES.model_data": {"tf": 1}, "arianna.ppl.inference.AIES.temperature_fn": {"tf": 1}, "arianna.ppl.inference.AIES.init_state": {"tf": 1}, "arianna.ppl.inference.AIES.step": {"tf": 1}, "arianna.ppl.inference.ParallelAIES": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.__init__": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.executor": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.model": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.nwalkers": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.transform": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.rng": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.rngs": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.accept": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.a": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.model_data": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.init_state": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.step": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.__init__": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.particles": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.model": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.model_data": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.temperature": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.rng": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.log_weights": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.weights": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.fit": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.__init__": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.rng": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.model": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.model_data": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.transform": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.shaper": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.init_vec_state": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.logprob": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.fit": {"tf": 1}, "arianna.ppl.inference.BayesianOptimization": {"tf": 1}, "arianna.ppl.inference.AdaptiveRandomWalkMetropolis": {"tf": 1}, "arianna.ppl.shaper": {"tf": 1}, "arianna.ppl.shaper.Shaper": {"tf": 1}, "arianna.ppl.shaper.Shaper.__init__": {"tf": 1}, "arianna.ppl.shaper.Shaper.from_state": {"tf": 1}, "arianna.ppl.shaper.Shaper.shape": {"tf": 1}, "arianna.ppl.shaper.Shaper.dim": {"tf": 1}, "arianna.ppl.shaper.Shaper.vec": {"tf": 1}, "arianna.ppl.shaper.Shaper.unvec": {"tf": 1}, "arianna.types": {"tf": 1}, "arianna.types.Numeric": {"tf": 1}, "arianna.types.Shape": {"tf": 1}, "arianna.types.State": {"tf": 1}, "arianna.types.NegativeInfinityError": {"tf": 1}, "arianna.types.NegativeParameterError": {"tf": 1}, "arianna.types.InvalidBoundsError": {"tf": 1}}, "df": 356}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"arianna.distributions.abstract": {"tf": 1}, "arianna.distributions.abstract.Distribution": {"tf": 1}, "arianna.distributions.abstract.Distribution.event_shape": {"tf": 1}, "arianna.distributions.abstract.Distribution.batch_shape": {"tf": 1}, "arianna.distributions.abstract.Distribution.logpdf": {"tf": 1}, "arianna.distributions.abstract.Distribution.sample": {"tf": 1}, "arianna.distributions.abstract.Distribution.pdf": {"tf": 1}, "arianna.distributions.abstract.Distribution.mean": {"tf": 1}, "arianna.distributions.abstract.Distribution.std": {"tf": 1}, "arianna.distributions.abstract.Distribution.var": {"tf": 1}, "arianna.distributions.abstract.Continuous": {"tf": 1}, "arianna.distributions.abstract.Continuous.to_real": {"tf": 1}, "arianna.distributions.abstract.Continuous.to_native": {"tf": 1}, "arianna.distributions.abstract.Continuous.logdetjac": {"tf": 1}, "arianna.distributions.abstract.Discrete": {"tf": 1}, "arianna.distributions.abstract.Multivariate": {"tf": 1}, "arianna.distributions.abstract.Multivariate.mean": {"tf": 1}, "arianna.distributions.abstract.Multivariate.std": {"tf": 1}, "arianna.distributions.abstract.Multivariate.var": {"tf": 1}, "arianna.distributions.abstract.Univariate": {"tf": 1}, "arianna.distributions.abstract.Univariate.event_shape": {"tf": 1}, "arianna.distributions.abstract.Univariate.batch_shape": {"tf": 1}, "arianna.distributions.abstract.Univariate.sample": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous.logpdf_plus_logdetjac": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous.logcdf": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous.cdf": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous.survival": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous.logsurvival": {"tf": 1}, "arianna.distributions.abstract.Positive": {"tf": 1}, "arianna.distributions.abstract.Positive.to_real": {"tf": 1}, "arianna.distributions.abstract.Positive.to_native": {"tf": 1}, "arianna.distributions.abstract.Positive.logdetjac": {"tf": 1}, "arianna.distributions.abstract.Positive.logpdf": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.lower": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.upper": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.range": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.to_real": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.to_native": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.logdetjac": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.logpdf": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous.logpdf_plus_logdetjac": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous.cov": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous.mean": {"tf": 1}, "arianna.distributions.abstract.Real": {"tf": 1}, "arianna.distributions.abstract.Real.to_real": {"tf": 1}, "arianna.distributions.abstract.Real.to_native": {"tf": 1}, "arianna.distributions.abstract.Real.logdetjac": {"tf": 1}, "arianna.distributions.abstract.UnivariateReal": {"tf": 1}, "arianna.distributions.abstract.MultivariateReal": {"tf": 1}}, "df": 52}}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "c": {"docs": {"arianna.ppl.inference.AffineInvariantMCMC": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.nsteps": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.init_state": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.mcmc_state": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.accept_rate": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.accept": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.nwalkers": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.rng": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.a": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.dim": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.logprob": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.step": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.fit": {"tf": 1}}, "df": 13}}}}}}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.inference.AffineInvariantMCMC.accept_rate": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.accept": {"tf": 1}, "arianna.ppl.inference.AIES.accept": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.accept": {"tf": 1}}, "df": 4}}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.inference.AIES": {"tf": 1}, "arianna.ppl.inference.AIES.__init__": {"tf": 1}, "arianna.ppl.inference.AIES.default_temperature_fn": {"tf": 1}, "arianna.ppl.inference.AIES.model": {"tf": 1}, "arianna.ppl.inference.AIES.nwalkers": {"tf": 1}, "arianna.ppl.inference.AIES.transform": {"tf": 1}, "arianna.ppl.inference.AIES.rng": {"tf": 1}, "arianna.ppl.inference.AIES.accept": {"tf": 1}, "arianna.ppl.inference.AIES.a": {"tf": 1}, "arianna.ppl.inference.AIES.model_data": {"tf": 1}, "arianna.ppl.inference.AIES.temperature_fn": {"tf": 1}, "arianna.ppl.inference.AIES.init_state": {"tf": 1}, "arianna.ppl.inference.AIES.step": {"tf": 1}}, "df": 13}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.inference.AdaptiveRandomWalkMetropolis": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"arianna.distributions.distributions.ScaledBeta.base_dist": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"arianna.distributions.abstract.Distribution": {"tf": 1}, "arianna.distributions.abstract.Distribution.event_shape": {"tf": 1}, "arianna.distributions.abstract.Distribution.batch_shape": {"tf": 1}, "arianna.distributions.abstract.Distribution.logpdf": {"tf": 1}, "arianna.distributions.abstract.Distribution.sample": {"tf": 1}, "arianna.distributions.abstract.Distribution.pdf": {"tf": 1}, "arianna.distributions.abstract.Distribution.mean": {"tf": 1}, "arianna.distributions.abstract.Distribution.std": {"tf": 1}, "arianna.distributions.abstract.Distribution.var": {"tf": 1}}, "df": 9, "s": {"docs": {"arianna.distributions": {"tf": 1}, "arianna.distributions.abstract": {"tf": 1}, "arianna.distributions.abstract.Distribution": {"tf": 1}, "arianna.distributions.abstract.Distribution.event_shape": {"tf": 1}, "arianna.distributions.abstract.Distribution.batch_shape": {"tf": 1}, "arianna.distributions.abstract.Distribution.logpdf": {"tf": 1}, "arianna.distributions.abstract.Distribution.sample": {"tf": 1}, "arianna.distributions.abstract.Distribution.pdf": {"tf": 1}, "arianna.distributions.abstract.Distribution.mean": {"tf": 1}, "arianna.distributions.abstract.Distribution.std": {"tf": 1}, "arianna.distributions.abstract.Distribution.var": {"tf": 1}, "arianna.distributions.abstract.Continuous": {"tf": 1}, "arianna.distributions.abstract.Continuous.to_real": {"tf": 1}, "arianna.distributions.abstract.Continuous.to_native": {"tf": 1}, "arianna.distributions.abstract.Continuous.logdetjac": {"tf": 1}, "arianna.distributions.abstract.Discrete": {"tf": 1}, "arianna.distributions.abstract.Multivariate": {"tf": 1}, "arianna.distributions.abstract.Multivariate.mean": {"tf": 1}, "arianna.distributions.abstract.Multivariate.std": {"tf": 1}, "arianna.distributions.abstract.Multivariate.var": {"tf": 1}, "arianna.distributions.abstract.Univariate": {"tf": 1}, "arianna.distributions.abstract.Univariate.event_shape": {"tf": 1}, "arianna.distributions.abstract.Univariate.batch_shape": {"tf": 1}, "arianna.distributions.abstract.Univariate.sample": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous.logpdf_plus_logdetjac": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous.logcdf": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous.cdf": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous.survival": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous.logsurvival": {"tf": 1}, "arianna.distributions.abstract.Positive": {"tf": 1}, "arianna.distributions.abstract.Positive.to_real": {"tf": 1}, "arianna.distributions.abstract.Positive.to_native": {"tf": 1}, "arianna.distributions.abstract.Positive.logdetjac": {"tf": 1}, "arianna.distributions.abstract.Positive.logpdf": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.lower": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.upper": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.range": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.to_real": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.to_native": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.logdetjac": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.logpdf": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous.logpdf_plus_logdetjac": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous.cov": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous.mean": {"tf": 1}, "arianna.distributions.abstract.Real": {"tf": 1}, "arianna.distributions.abstract.Real.to_real": {"tf": 1}, "arianna.distributions.abstract.Real.to_native": {"tf": 1}, "arianna.distributions.abstract.Real.logdetjac": {"tf": 1}, "arianna.distributions.abstract.UnivariateReal": {"tf": 1}, "arianna.distributions.abstract.MultivariateReal": {"tf": 1}, "arianna.distributions.distributions": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.IndependentRagged": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Independent": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Independent.__init__": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Independent.dists": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Independent.is_same_family": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Independent.logpdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Independent.sample": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Uniform": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Uniform.from_mean_shift": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Uniform.batch_shape": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Uniform.logcdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Uniform.cdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Uniform.mode": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Uniform.median": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Uniform.mean": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Uniform.var": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Beta": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Beta.__init__": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Beta.a": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Beta.b": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Beta.mode": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Beta.batch_shape": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Beta.logcdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Beta.cdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Beta.mean": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Beta.var": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.ScaledBeta": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.ScaledBeta.__init__": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.ScaledBeta.a": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.ScaledBeta.b": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.ScaledBeta.base_dist": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.ScaledBeta.batch_shape": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.ScaledBeta.cdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.ScaledBeta.logcdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.ScaledBeta.mean": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.ScaledBeta.var": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Gamma": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Gamma.__init__": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Gamma.from_mean_std": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Gamma.shape": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Gamma.scale": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Gamma.batch_shape": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Gamma.logcdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Gamma.cdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Gamma.survival": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Gamma.mean": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Gamma.var": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Gamma.mode": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.InverseGamma": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.InverseGamma.__init__": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.InverseGamma.from_mean_std": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.InverseGamma.shape": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.InverseGamma.scale": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.InverseGamma.batch_shape": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.InverseGamma.mean": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.InverseGamma.var": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.InverseGamma.mode": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.InverseGamma.logcdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.InverseGamma.cdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.LogNormal": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.LogNormal.__init__": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.LogNormal.from_mean_std": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.LogNormal.mu": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.LogNormal.sigma": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.LogNormal.batch_shape": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.LogNormal.mean": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.LogNormal.var": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.LogNormal.mode": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.LogNormal.median": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.LogNormal.logcdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.LogNormal.cdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Weibull": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Gumbel": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Logistic": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.LogLogistic": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Normal": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Normal.__init__": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Normal.loc": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Normal.scale": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Normal.batch_shape": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Normal.logpdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Normal.logcdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Normal.cdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Normal.survival": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Normal.mean": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Normal.std": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Normal.var": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Normal.mode": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Normal.median": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.MvNormal": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.MvNormal.__init__": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.MvNormal.mean": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.MvNormal.cov": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.MvNormal.cov_inv": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.MvNormal.L": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.MvNormal.event_shape": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.MvNormal.batch_shape": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.MvNormal.batch_plus_event_shape": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.MvNormal.log_det_cov": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.MvNormal.var": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.MvNormal.logpdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.MvNormal.sample": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Dirichlet": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Dirichlet.__init__": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Dirichlet.concentration": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Dirichlet.concentration_sum": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Dirichlet.event_shape": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Dirichlet.batch_plus_event_shape": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Dirichlet.batch_shape": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Dirichlet.logpdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Dirichlet.sample": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Dirichlet.to_real": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Dirichlet.to_native": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Dirichlet.logdetjac": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Dirichlet.cov": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Dirichlet.mean": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Dirichlet.var": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Dirichlet.std": {"tf": 1.4142135623730951}}, "df": 172}}}}}}}}}, "s": {"docs": {"arianna.distributions.distributions.Independent.dists": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"arianna.distributions.abstract.Discrete": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"arianna.distributions.distributions.Dirichlet": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.__init__": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.concentration": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.concentration_sum": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.event_shape": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.batch_plus_event_shape": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.batch_shape": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.logpdf": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.sample": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.to_real": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.to_native": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.logdetjac": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.cov": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.mean": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.var": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.std": {"tf": 1}}, "df": 16}}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.diagnostics": {"tf": 1}, "arianna.ppl.diagnostics.ess_kish": {"tf": 1}}, "df": 2}}}}}}}}}, "m": {"docs": {"arianna.ppl.inference.AffineInvariantMCMC.dim": {"tf": 1}, "arianna.ppl.shaper.Shaper.dim": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"arianna.distributions.distributions.MvNormal.log_det_cov": {"tf": 1}}, "df": 1}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.inference.AIES.default_temperature_fn": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"arianna.ppl.inference.MCMC.model_data": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.model_data": {"tf": 1}, "arianna.ppl.inference.AIES.model_data": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.model_data": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.model_data": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.model_data": {"tf": 1}}, "df": 6}}}}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"arianna.distributions.abstract.Distribution.event_shape": {"tf": 1}, "arianna.distributions.abstract.Univariate.event_shape": {"tf": 1}, "arianna.distributions.distributions.MvNormal.event_shape": {"tf": 1}, "arianna.distributions.distributions.MvNormal.batch_plus_event_shape": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.event_shape": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.batch_plus_event_shape": {"tf": 1}}, "df": 6}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.diagnostics.ess_kish": {"tf": 1}}, "df": 1}}, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"arianna.ppl.inference.ParallelAIES.executor": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"arianna.distributions.abstract.Distribution.event_shape": {"tf": 1}, "arianna.distributions.abstract.Distribution.batch_shape": {"tf": 1}, "arianna.distributions.abstract.Univariate.event_shape": {"tf": 1}, "arianna.distributions.abstract.Univariate.batch_shape": {"tf": 1}, "arianna.distributions.distributions.Uniform.batch_shape": {"tf": 1}, "arianna.distributions.distributions.Beta.batch_shape": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.batch_shape": {"tf": 1}, "arianna.distributions.distributions.Gamma.shape": {"tf": 1}, "arianna.distributions.distributions.Gamma.batch_shape": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.shape": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.batch_shape": {"tf": 1}, "arianna.distributions.distributions.LogNormal.batch_shape": {"tf": 1}, "arianna.distributions.distributions.Normal.batch_shape": {"tf": 1}, "arianna.distributions.distributions.MvNormal.event_shape": {"tf": 1}, "arianna.distributions.distributions.MvNormal.batch_shape": {"tf": 1}, "arianna.distributions.distributions.MvNormal.batch_plus_event_shape": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.event_shape": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.batch_plus_event_shape": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.batch_shape": {"tf": 1}, "arianna.ppl.shaper.Shaper.shape": {"tf": 1}, "arianna.types.Shape": {"tf": 1}}, "df": 21, "r": {"docs": {"arianna.ppl.inference.LaplaceApproximation.shaper": {"tf": 1}, "arianna.ppl.shaper": {"tf": 1}, "arianna.ppl.shaper.Shaper": {"tf": 1.4142135623730951}, "arianna.ppl.shaper.Shaper.__init__": {"tf": 1.4142135623730951}, "arianna.ppl.shaper.Shaper.from_state": {"tf": 1.4142135623730951}, "arianna.ppl.shaper.Shaper.shape": {"tf": 1.4142135623730951}, "arianna.ppl.shaper.Shaper.dim": {"tf": 1.4142135623730951}, "arianna.ppl.shaper.Shaper.vec": {"tf": 1.4142135623730951}, "arianna.ppl.shaper.Shaper.unvec": {"tf": 1.4142135623730951}}, "df": 9}}}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {"arianna.distributions.distributions.Uniform.from_mean_shift": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"arianna.distributions.abstract.Distribution.sample": {"tf": 1}, "arianna.distributions.abstract.Univariate.sample": {"tf": 1}, "arianna.distributions.distributions.Independent.sample": {"tf": 1}, "arianna.distributions.distributions.MvNormal.sample": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.sample": {"tf": 1}, "arianna.ppl.context.BasicDistribution.sample": {"tf": 1}}, "df": 6}}}, "e": {"docs": {"arianna.distributions.distributions.Independent.is_same_family": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "d": {"docs": {"arianna.distributions.abstract.Distribution.std": {"tf": 1}, "arianna.distributions.abstract.Multivariate.std": {"tf": 1}, "arianna.distributions.distributions.Gamma.from_mean_std": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.from_mean_std": {"tf": 1}, "arianna.distributions.distributions.LogNormal.from_mean_std": {"tf": 1}, "arianna.distributions.distributions.Normal.std": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.std": {"tf": 1}}, "df": 7}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.context.Context.state": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.state": {"tf": 1}, "arianna.ppl.context.Predictive.state": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.state": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.state": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.state": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.init_state": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.mcmc_state": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.mcmc_state": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.init_state": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.init_state": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.mcmc_state": {"tf": 1}, "arianna.ppl.inference.AIES.init_state": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.init_state": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.init_vec_state": {"tf": 1}, "arianna.ppl.shaper.Shaper.from_state": {"tf": 1}, "arianna.types.State": {"tf": 1}}, "df": 17, "s": {"docs": {"arianna.ppl.inference.Chain.states": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {"arianna.ppl.inference.MCMC.step": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.step": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.step": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.step": {"tf": 1}, "arianna.ppl.inference.AIES.step": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.step": {"tf": 1}}, "df": 6}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"arianna.distributions.abstract.UnivariateContinuous.survival": {"tf": 1}, "arianna.distributions.distributions.Gamma.survival": {"tf": 1}, "arianna.distributions.distributions.Normal.survival": {"tf": 1}}, "df": 3}}}}}}, "m": {"docs": {"arianna.distributions.distributions.Dirichlet.concentration_sum": {"tf": 1}}, "df": 1}, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.inference.Chain.subset": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"arianna.distributions.distributions.Gamma.scale": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.scale": {"tf": 1}, "arianna.distributions.distributions.Normal.scale": {"tf": 1}}, "df": 3, "d": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"arianna.distributions.distributions.ScaledBeta": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.__init__": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.a": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.b": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.base_dist": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.batch_shape": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.cdf": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.logcdf": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.mean": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.var": {"tf": 1}}, "df": 10}}}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"arianna.distributions.distributions.LogNormal.sigma": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "c": {"docs": {"arianna.ppl.inference.SingleWalkerMCMC": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.init_state": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.mcmc_state": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.transform": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.step": {"tf": 1}}, "df": 5}}}}}}}}}}}}}}}}, "b": {"docs": {"arianna.distributions.distributions.Beta.b": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.b": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"arianna.distributions.abstract.Distribution.batch_shape": {"tf": 1}, "arianna.distributions.abstract.Univariate.batch_shape": {"tf": 1}, "arianna.distributions.distributions.Uniform.batch_shape": {"tf": 1}, "arianna.distributions.distributions.Beta.batch_shape": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.batch_shape": {"tf": 1}, "arianna.distributions.distributions.Gamma.batch_shape": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.batch_shape": {"tf": 1}, "arianna.distributions.distributions.LogNormal.batch_shape": {"tf": 1}, "arianna.distributions.distributions.Normal.batch_shape": {"tf": 1}, "arianna.distributions.distributions.MvNormal.batch_shape": {"tf": 1}, "arianna.distributions.distributions.MvNormal.batch_plus_event_shape": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.batch_plus_event_shape": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.batch_shape": {"tf": 1}}, "df": 13}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"arianna.distributions.distributions.ScaledBeta.base_dist": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1}, "arianna.ppl.context.BasicDistribution.__init__": {"tf": 1}, "arianna.ppl.context.BasicDistribution.logpdf": {"tf": 1}, "arianna.ppl.context.BasicDistribution.sample": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}}, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"arianna.ppl.inference.BayesianOptimization": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"arianna.distributions.distributions.Beta": {"tf": 1}, "arianna.distributions.distributions.Beta.__init__": {"tf": 1}, "arianna.distributions.distributions.Beta.a": {"tf": 1}, "arianna.distributions.distributions.Beta.b": {"tf": 1}, "arianna.distributions.distributions.Beta.mode": {"tf": 1}, "arianna.distributions.distributions.Beta.batch_shape": {"tf": 1}, "arianna.distributions.distributions.Beta.logcdf": {"tf": 1}, "arianna.distributions.distributions.Beta.cdf": {"tf": 1}, "arianna.distributions.distributions.Beta.mean": {"tf": 1}, "arianna.distributions.distributions.Beta.var": {"tf": 1}}, "df": 10}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.inference.Chain.bundle": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "n": {"docs": {"arianna.ppl.inference.MCMC.burn": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {"arianna.distributions.distributions.MvNormal.L": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "g": {"docs": {"arianna.distributions.distributions.MvNormal.log_det_cov": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.log_weights": {"tf": 1}}, "df": 2, "p": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "f": {"docs": {"arianna.distributions.abstract.Distribution.logpdf": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous.logpdf_plus_logdetjac": {"tf": 1}, "arianna.distributions.abstract.Positive.logpdf": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.logpdf": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous.logpdf_plus_logdetjac": {"tf": 1}, "arianna.distributions.distributions.Independent.logpdf": {"tf": 1}, "arianna.distributions.distributions.Normal.logpdf": {"tf": 1}, "arianna.distributions.distributions.MvNormal.logpdf": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.logpdf": {"tf": 1}, "arianna.ppl.context.BasicDistribution.logpdf": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.logpdf_plus_logdetjac": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.logpdf": {"tf": 1}}, "df": 12}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"arianna.ppl.inference.Logprob": {"tf": 1}, "arianna.ppl.inference.MCMC.logprob_history": {"tf": 1}, "arianna.ppl.inference.MCMC.logprob": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.logprob": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.logprob": {"tf": 1}}, "df": 5, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.context.LogprobAndPriorSample": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.__init__": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.run": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.result": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.rng": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.cached": {"tf": 1}}, "df": 7}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.context.LogprobAndTrace": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.__init__": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.run": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.state": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.result": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.cached": {"tf": 1}}, "df": 7}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.context.LogprobAndLogjacobianAndTrace": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.__init__": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.run": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.state": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.result": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.cached": {"tf": 1}}, "df": 7}}}}}}}}}}}}}}}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {"arianna.distributions.abstract.Continuous.logdetjac": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous.logpdf_plus_logdetjac": {"tf": 1}, "arianna.distributions.abstract.Positive.logdetjac": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.logdetjac": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous.logpdf_plus_logdetjac": {"tf": 1}, "arianna.distributions.abstract.Real.logdetjac": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.logdetjac": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.logdetjac": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.logpdf_plus_logdetjac": {"tf": 1}}, "df": 9}}}}}}, "c": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "f": {"docs": {"arianna.distributions.abstract.UnivariateContinuous.logcdf": {"tf": 1}, "arianna.distributions.distributions.Uniform.logcdf": {"tf": 1}, "arianna.distributions.distributions.Beta.logcdf": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.logcdf": {"tf": 1}, "arianna.distributions.distributions.Gamma.logcdf": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.logcdf": {"tf": 1}, "arianna.distributions.distributions.LogNormal.logcdf": {"tf": 1}, "arianna.distributions.distributions.Normal.logcdf": {"tf": 1}}, "df": 8}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"arianna.distributions.abstract.UnivariateContinuous.logsurvival": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"arianna.distributions.distributions.LogNormal": {"tf": 1}, "arianna.distributions.distributions.LogNormal.__init__": {"tf": 1}, "arianna.distributions.distributions.LogNormal.from_mean_std": {"tf": 1}, "arianna.distributions.distributions.LogNormal.mu": {"tf": 1}, "arianna.distributions.distributions.LogNormal.sigma": {"tf": 1}, "arianna.distributions.distributions.LogNormal.batch_shape": {"tf": 1}, "arianna.distributions.distributions.LogNormal.mean": {"tf": 1}, "arianna.distributions.distributions.LogNormal.var": {"tf": 1}, "arianna.distributions.distributions.LogNormal.mode": {"tf": 1}, "arianna.distributions.distributions.LogNormal.median": {"tf": 1}, "arianna.distributions.distributions.LogNormal.logcdf": {"tf": 1}, "arianna.distributions.distributions.LogNormal.cdf": {"tf": 1}}, "df": 12}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"arianna.distributions.distributions.Logistic": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"arianna.distributions.distributions.LogLogistic": {"tf": 1}}, "df": 1}}}}}}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"arianna.distributions.abstract.LowerUpperBounded.lower": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"arianna.distributions.abstract.LowerUpperBounded": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.lower": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.upper": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.range": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.to_real": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.to_native": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.logdetjac": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.logpdf": {"tf": 1}}, "df": 8}}}}}}}}}}}}}}}, "c": {"docs": {"arianna.distributions.distributions.Normal.loc": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"arianna.ppl.inference.LaplaceApproximation": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.__init__": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.rng": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.model": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.model_data": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.transform": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.shaper": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.init_vec_state": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.logprob": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.fit": {"tf": 1}}, "df": 10}}}}}}}}}}}}}}}}}}}}, "p": {"docs": {"arianna.ppl.inference.P": {"tf": 1}}, "df": 1, "d": {"docs": {}, "df": 0, "f": {"docs": {"arianna.distributions.abstract.Distribution.pdf": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"arianna.distributions.abstract.UnivariateContinuous.logpdf_plus_logdetjac": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous.logpdf_plus_logdetjac": {"tf": 1}, "arianna.distributions.distributions.MvNormal.batch_plus_event_shape": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.batch_plus_event_shape": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.logpdf_plus_logdetjac": {"tf": 1}}, "df": 5}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"arianna.distributions.abstract.Positive": {"tf": 1}, "arianna.distributions.abstract.Positive.to_real": {"tf": 1}, "arianna.distributions.abstract.Positive.to_native": {"tf": 1}, "arianna.distributions.abstract.Positive.logdetjac": {"tf": 1}, "arianna.distributions.abstract.Positive.logpdf": {"tf": 1}}, "df": 5}}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {"arianna.ppl": {"tf": 1}, "arianna.ppl.context": {"tf": 1}, "arianna.ppl.context.BasicDistribution": {"tf": 1}, "arianna.ppl.context.BasicDistribution.__init__": {"tf": 1}, "arianna.ppl.context.BasicDistribution.logpdf": {"tf": 1}, "arianna.ppl.context.BasicDistribution.sample": {"tf": 1}, "arianna.ppl.context.TransformableDistribution": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.logdetjac": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.logpdf_plus_logdetjac": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.to_real": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.to_native": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.logpdf": {"tf": 1}, "arianna.ppl.context.Context": {"tf": 1}, "arianna.ppl.context.Context.result": {"tf": 1}, "arianna.ppl.context.Context.state": {"tf": 1}, "arianna.ppl.context.Context.run": {"tf": 1}, "arianna.ppl.context.Context.rv": {"tf": 1}, "arianna.ppl.context.Context.cached": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.__init__": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.run": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.result": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.rng": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.cached": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.__init__": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.run": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.state": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.result": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.cached": {"tf": 1}, "arianna.ppl.context.Predictive": {"tf": 1}, "arianna.ppl.context.Predictive.__init__": {"tf": 1}, "arianna.ppl.context.Predictive.run": {"tf": 1}, "arianna.ppl.context.Predictive.state": {"tf": 1}, "arianna.ppl.context.Predictive.rng": {"tf": 1}, "arianna.ppl.context.Predictive.return_cached": {"tf": 1}, "arianna.ppl.context.Predictive.result": {"tf": 1}, "arianna.ppl.context.Predictive.rv": {"tf": 1}, "arianna.ppl.context.Predictive.cached": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.__init__": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.run": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.state": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.result": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.rv": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.cached": {"tf": 1}, "arianna.ppl.context.TransformedPredictive": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.__init__": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.run": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.state": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.rng": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.return_cached": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.result": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.rv": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.cached": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.__init__": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.run": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.state": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.result": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.cached": {"tf": 1}, "arianna.ppl.diagnostics": {"tf": 1}, "arianna.ppl.diagnostics.ess_kish": {"tf": 1}, "arianna.ppl.inference": {"tf": 1}, "arianna.ppl.inference.P": {"tf": 1}, "arianna.ppl.inference.Model": {"tf": 1}, "arianna.ppl.inference.Logprob": {"tf": 1}, "arianna.ppl.inference.Chain": {"tf": 1}, "arianna.ppl.inference.Chain.__init__": {"tf": 1}, "arianna.ppl.inference.Chain.states": {"tf": 1}, "arianna.ppl.inference.Chain.names": {"tf": 1}, "arianna.ppl.inference.Chain.get": {"tf": 1}, "arianna.ppl.inference.Chain.bundle": {"tf": 1}, "arianna.ppl.inference.Chain.subset": {"tf": 1}, "arianna.ppl.inference.InferenceEngine": {"tf": 1}, "arianna.ppl.inference.InferenceEngine.rng": {"tf": 1}, "arianna.ppl.inference.InferenceEngine.fit": {"tf": 1}, "arianna.ppl.inference.MCMC": {"tf": 1}, "arianna.ppl.inference.MCMC.model": {"tf": 1}, "arianna.ppl.inference.MCMC.model_data": {"tf": 1}, "arianna.ppl.inference.MCMC.nsamples": {"tf": 1}, "arianna.ppl.inference.MCMC.burn": {"tf": 1}, "arianna.ppl.inference.MCMC.thin": {"tf": 1}, "arianna.ppl.inference.MCMC.mcmc_iteration": {"tf": 1}, "arianna.ppl.inference.MCMC.transform": {"tf": 1}, "arianna.ppl.inference.MCMC.logprob_history": {"tf": 1}, "arianna.ppl.inference.MCMC.step": {"tf": 1}, "arianna.ppl.inference.MCMC.fit": {"tf": 1}, "arianna.ppl.inference.MCMC.logprob": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.init_state": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.mcmc_state": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.transform": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.step": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.__init__": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.mcmc_state": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.init_state": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.model": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.model_data": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.transform": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.rng": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.proposal": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.step": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.nsteps": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.init_state": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.mcmc_state": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.accept_rate": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.accept": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.nwalkers": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.rng": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.a": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.dim": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.logprob": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.step": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.fit": {"tf": 1}, "arianna.ppl.inference.AIES": {"tf": 1}, "arianna.ppl.inference.AIES.__init__": {"tf": 1}, "arianna.ppl.inference.AIES.default_temperature_fn": {"tf": 1}, "arianna.ppl.inference.AIES.model": {"tf": 1}, "arianna.ppl.inference.AIES.nwalkers": {"tf": 1}, "arianna.ppl.inference.AIES.transform": {"tf": 1}, "arianna.ppl.inference.AIES.rng": {"tf": 1}, "arianna.ppl.inference.AIES.accept": {"tf": 1}, "arianna.ppl.inference.AIES.a": {"tf": 1}, "arianna.ppl.inference.AIES.model_data": {"tf": 1}, "arianna.ppl.inference.AIES.temperature_fn": {"tf": 1}, "arianna.ppl.inference.AIES.init_state": {"tf": 1}, "arianna.ppl.inference.AIES.step": {"tf": 1}, "arianna.ppl.inference.ParallelAIES": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.__init__": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.executor": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.model": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.nwalkers": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.transform": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.rng": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.rngs": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.accept": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.a": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.model_data": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.init_state": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.step": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.__init__": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.particles": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.model": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.model_data": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.temperature": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.rng": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.log_weights": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.weights": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.fit": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.__init__": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.rng": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.model": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.model_data": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.transform": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.shaper": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.init_vec_state": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.logprob": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.fit": {"tf": 1}, "arianna.ppl.inference.BayesianOptimization": {"tf": 1}, "arianna.ppl.inference.AdaptiveRandomWalkMetropolis": {"tf": 1}, "arianna.ppl.shaper": {"tf": 1}, "arianna.ppl.shaper.Shaper": {"tf": 1}, "arianna.ppl.shaper.Shaper.__init__": {"tf": 1}, "arianna.ppl.shaper.Shaper.from_state": {"tf": 1}, "arianna.ppl.shaper.Shaper.shape": {"tf": 1}, "arianna.ppl.shaper.Shaper.dim": {"tf": 1}, "arianna.ppl.shaper.Shaper.vec": {"tf": 1}, "arianna.ppl.shaper.Shaper.unvec": {"tf": 1}}, "df": 176}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.context.Predictive": {"tf": 1}, "arianna.ppl.context.Predictive.__init__": {"tf": 1}, "arianna.ppl.context.Predictive.run": {"tf": 1}, "arianna.ppl.context.Predictive.state": {"tf": 1}, "arianna.ppl.context.Predictive.rng": {"tf": 1}, "arianna.ppl.context.Predictive.return_cached": {"tf": 1}, "arianna.ppl.context.Predictive.result": {"tf": 1}, "arianna.ppl.context.Predictive.rv": {"tf": 1}, "arianna.ppl.context.Predictive.cached": {"tf": 1}}, "df": 9}}}}}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis.proposal": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.inference.ParallelAIES": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.__init__": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.executor": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.model": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.nwalkers": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.transform": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.rng": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.rngs": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.accept": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.a": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.model_data": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.init_state": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.step": {"tf": 1}}, "df": 13}}}}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.inference.ImportanceSampling.particles": {"tf": 1}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"arianna.distributions.abstract.Distribution.mean": {"tf": 1}, "arianna.distributions.abstract.Multivariate.mean": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous.mean": {"tf": 1}, "arianna.distributions.distributions.Uniform.from_mean_shift": {"tf": 1}, "arianna.distributions.distributions.Uniform.mean": {"tf": 1}, "arianna.distributions.distributions.Beta.mean": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.mean": {"tf": 1}, "arianna.distributions.distributions.Gamma.from_mean_std": {"tf": 1}, "arianna.distributions.distributions.Gamma.mean": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.from_mean_std": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.mean": {"tf": 1}, "arianna.distributions.distributions.LogNormal.from_mean_std": {"tf": 1}, "arianna.distributions.distributions.LogNormal.mean": {"tf": 1}, "arianna.distributions.distributions.Normal.mean": {"tf": 1}, "arianna.distributions.distributions.MvNormal.mean": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.mean": {"tf": 1}}, "df": 16}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"arianna.distributions.distributions.Uniform.median": {"tf": 1}, "arianna.distributions.distributions.LogNormal.median": {"tf": 1}, "arianna.distributions.distributions.Normal.median": {"tf": 1}}, "df": 3}}}}}, "u": {"docs": {"arianna.distributions.distributions.LogNormal.mu": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"arianna.distributions.abstract.Multivariate": {"tf": 1}, "arianna.distributions.abstract.Multivariate.mean": {"tf": 1}, "arianna.distributions.abstract.Multivariate.std": {"tf": 1}, "arianna.distributions.abstract.Multivariate.var": {"tf": 1}}, "df": 4, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"arianna.distributions.abstract.MultivariateContinuous": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous.logpdf_plus_logdetjac": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous.cov": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous.mean": {"tf": 1}}, "df": 4}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"arianna.distributions.abstract.MultivariateReal": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"arianna.distributions.distributions.Uniform.mode": {"tf": 1}, "arianna.distributions.distributions.Beta.mode": {"tf": 1}, "arianna.distributions.distributions.Gamma.mode": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.mode": {"tf": 1}, "arianna.distributions.distributions.LogNormal.mode": {"tf": 1}, "arianna.distributions.distributions.Normal.mode": {"tf": 1}}, "df": 6, "l": {"docs": {"arianna.ppl.inference.Model": {"tf": 1}, "arianna.ppl.inference.MCMC.model": {"tf": 1}, "arianna.ppl.inference.MCMC.model_data": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.model": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.model_data": {"tf": 1}, "arianna.ppl.inference.AIES.model": {"tf": 1}, "arianna.ppl.inference.AIES.model_data": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.model": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.model_data": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.model": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.model_data": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.model": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.model_data": {"tf": 1}}, "df": 13}}}}, "v": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"arianna.distributions.distributions.MvNormal": {"tf": 1}, "arianna.distributions.distributions.MvNormal.__init__": {"tf": 1}, "arianna.distributions.distributions.MvNormal.mean": {"tf": 1}, "arianna.distributions.distributions.MvNormal.cov": {"tf": 1}, "arianna.distributions.distributions.MvNormal.cov_inv": {"tf": 1}, "arianna.distributions.distributions.MvNormal.L": {"tf": 1}, "arianna.distributions.distributions.MvNormal.event_shape": {"tf": 1}, "arianna.distributions.distributions.MvNormal.batch_shape": {"tf": 1}, "arianna.distributions.distributions.MvNormal.batch_plus_event_shape": {"tf": 1}, "arianna.distributions.distributions.MvNormal.log_det_cov": {"tf": 1}, "arianna.distributions.distributions.MvNormal.var": {"tf": 1}, "arianna.distributions.distributions.MvNormal.logpdf": {"tf": 1}, "arianna.distributions.distributions.MvNormal.sample": {"tf": 1}}, "df": 13}}}}}}}, "c": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "c": {"docs": {"arianna.ppl.inference.MCMC": {"tf": 1}, "arianna.ppl.inference.MCMC.model": {"tf": 1}, "arianna.ppl.inference.MCMC.model_data": {"tf": 1}, "arianna.ppl.inference.MCMC.nsamples": {"tf": 1}, "arianna.ppl.inference.MCMC.burn": {"tf": 1}, "arianna.ppl.inference.MCMC.thin": {"tf": 1}, "arianna.ppl.inference.MCMC.mcmc_iteration": {"tf": 1.4142135623730951}, "arianna.ppl.inference.MCMC.transform": {"tf": 1}, "arianna.ppl.inference.MCMC.logprob_history": {"tf": 1}, "arianna.ppl.inference.MCMC.step": {"tf": 1}, "arianna.ppl.inference.MCMC.fit": {"tf": 1}, "arianna.ppl.inference.MCMC.logprob": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.mcmc_state": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.mcmc_state": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.mcmc_state": {"tf": 1}}, "df": 15}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"arianna.distributions.abstract.Distribution.var": {"tf": 1}, "arianna.distributions.abstract.Multivariate.var": {"tf": 1}, "arianna.distributions.distributions.Uniform.var": {"tf": 1}, "arianna.distributions.distributions.Beta.var": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.var": {"tf": 1}, "arianna.distributions.distributions.Gamma.var": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.var": {"tf": 1}, "arianna.distributions.distributions.LogNormal.var": {"tf": 1}, "arianna.distributions.distributions.Normal.var": {"tf": 1}, "arianna.distributions.distributions.MvNormal.var": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.var": {"tf": 1}}, "df": 11}}, "e": {"docs": {}, "df": 0, "c": {"docs": {"arianna.ppl.inference.LaplaceApproximation.init_vec_state": {"tf": 1}, "arianna.ppl.shaper.Shaper.vec": {"tf": 1}}, "df": 2}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"arianna.distributions.abstract.Continuous": {"tf": 1}, "arianna.distributions.abstract.Continuous.to_real": {"tf": 1}, "arianna.distributions.abstract.Continuous.to_native": {"tf": 1}, "arianna.distributions.abstract.Continuous.logdetjac": {"tf": 1}}, "df": 4}}}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.context": {"tf": 1}, "arianna.ppl.context.BasicDistribution": {"tf": 1}, "arianna.ppl.context.BasicDistribution.__init__": {"tf": 1}, "arianna.ppl.context.BasicDistribution.logpdf": {"tf": 1}, "arianna.ppl.context.BasicDistribution.sample": {"tf": 1}, "arianna.ppl.context.TransformableDistribution": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.logdetjac": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.logpdf_plus_logdetjac": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.to_real": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.to_native": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.logpdf": {"tf": 1}, "arianna.ppl.context.Context": {"tf": 1.4142135623730951}, "arianna.ppl.context.Context.result": {"tf": 1.4142135623730951}, "arianna.ppl.context.Context.state": {"tf": 1.4142135623730951}, "arianna.ppl.context.Context.run": {"tf": 1.4142135623730951}, "arianna.ppl.context.Context.rv": {"tf": 1.4142135623730951}, "arianna.ppl.context.Context.cached": {"tf": 1.4142135623730951}, "arianna.ppl.context.LogprobAndPriorSample": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.__init__": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.run": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.result": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.rng": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.cached": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.__init__": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.run": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.state": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.result": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.cached": {"tf": 1}, "arianna.ppl.context.Predictive": {"tf": 1}, "arianna.ppl.context.Predictive.__init__": {"tf": 1}, "arianna.ppl.context.Predictive.run": {"tf": 1}, "arianna.ppl.context.Predictive.state": {"tf": 1}, "arianna.ppl.context.Predictive.rng": {"tf": 1}, "arianna.ppl.context.Predictive.return_cached": {"tf": 1}, "arianna.ppl.context.Predictive.result": {"tf": 1}, "arianna.ppl.context.Predictive.rv": {"tf": 1}, "arianna.ppl.context.Predictive.cached": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.__init__": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.run": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.state": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.result": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.rv": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.cached": {"tf": 1}, "arianna.ppl.context.TransformedPredictive": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.__init__": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.run": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.state": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.rng": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.return_cached": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.result": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.rv": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.cached": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.__init__": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.run": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.state": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.result": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.cached": {"tf": 1}}, "df": 63}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"arianna.distributions.distributions.Dirichlet.concentration": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.concentration_sum": {"tf": 1}}, "df": 2}}}}}}}}}}}, "v": {"docs": {"arianna.distributions.abstract.MultivariateContinuous.cov": {"tf": 1}, "arianna.distributions.distributions.MvNormal.cov": {"tf": 1}, "arianna.distributions.distributions.MvNormal.cov_inv": {"tf": 1}, "arianna.distributions.distributions.MvNormal.log_det_cov": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.cov": {"tf": 1}}, "df": 5}}, "d": {"docs": {}, "df": 0, "f": {"docs": {"arianna.distributions.abstract.UnivariateContinuous.cdf": {"tf": 1}, "arianna.distributions.distributions.Uniform.cdf": {"tf": 1}, "arianna.distributions.distributions.Beta.cdf": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.cdf": {"tf": 1}, "arianna.distributions.distributions.Gamma.cdf": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.cdf": {"tf": 1}, "arianna.distributions.distributions.LogNormal.cdf": {"tf": 1}, "arianna.distributions.distributions.Normal.cdf": {"tf": 1}}, "df": 8}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"arianna.ppl.context.Context.cached": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.cached": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.cached": {"tf": 1}, "arianna.ppl.context.Predictive.return_cached": {"tf": 1}, "arianna.ppl.context.Predictive.cached": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.cached": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.return_cached": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.cached": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.cached": {"tf": 1}}, "df": 9}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"arianna.ppl.inference.Chain": {"tf": 1}, "arianna.ppl.inference.Chain.__init__": {"tf": 1}, "arianna.ppl.inference.Chain.states": {"tf": 1}, "arianna.ppl.inference.Chain.names": {"tf": 1}, "arianna.ppl.inference.Chain.get": {"tf": 1}, "arianna.ppl.inference.Chain.bundle": {"tf": 1}, "arianna.ppl.inference.Chain.subset": {"tf": 1}}, "df": 7}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {"arianna.distributions.abstract.Continuous.to_real": {"tf": 1}, "arianna.distributions.abstract.Continuous.to_native": {"tf": 1}, "arianna.distributions.abstract.Positive.to_real": {"tf": 1}, "arianna.distributions.abstract.Positive.to_native": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.to_real": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.to_native": {"tf": 1}, "arianna.distributions.abstract.Real.to_real": {"tf": 1}, "arianna.distributions.abstract.Real.to_native": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.to_real": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.to_native": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.to_real": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.to_native": {"tf": 1}}, "df": 12}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"arianna.ppl.inference.MCMC.transform": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.transform": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.transform": {"tf": 1}, "arianna.ppl.inference.AIES.transform": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.transform": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.transform": {"tf": 1}}, "df": 6, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"arianna.ppl.context.TransformableDistribution": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.logdetjac": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.logpdf_plus_logdetjac": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.to_real": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.to_native": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.logpdf": {"tf": 1}}, "df": 6}}}}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.context.TransformedLogprobAndTrace": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.__init__": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.run": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.state": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.result": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.rv": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.cached": {"tf": 1}}, "df": 7}}}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.context.TransformedPredictive": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.__init__": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.run": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.state": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.rng": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.return_cached": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.result": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.rv": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.cached": {"tf": 1}}, "df": 9}}}}}}}}}}}}}}}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"arianna.ppl.inference.MCMC.thin": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.inference.AIES.default_temperature_fn": {"tf": 1}, "arianna.ppl.inference.AIES.temperature_fn": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.temperature": {"tf": 1}}, "df": 3}}}}}}}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"arianna.types": {"tf": 1}, "arianna.types.Numeric": {"tf": 1}, "arianna.types.Shape": {"tf": 1}, "arianna.types.State": {"tf": 1}, "arianna.types.NegativeInfinityError": {"tf": 1}, "arianna.types.NegativeParameterError": {"tf": 1}, "arianna.types.InvalidBoundsError": {"tf": 1}}, "df": 7}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"arianna.distributions.abstract.Continuous.to_real": {"tf": 1}, "arianna.distributions.abstract.Positive.to_real": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.to_real": {"tf": 1}, "arianna.distributions.abstract.Real": {"tf": 1}, "arianna.distributions.abstract.Real.to_real": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.Real.to_native": {"tf": 1}, "arianna.distributions.abstract.Real.logdetjac": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.to_real": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.to_real": {"tf": 1}}, "df": 9}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.context.Context.result": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.result": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.result": {"tf": 1}, "arianna.ppl.context.Predictive.result": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.result": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.result": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.result": {"tf": 1}}, "df": 7}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"arianna.ppl.context.Predictive.return_cached": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.return_cached": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"arianna.distributions.abstract.LowerUpperBounded.range": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.__init__": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.mcmc_state": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.init_state": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.model": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.model_data": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.transform": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.rng": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.proposal": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.step": {"tf": 1}}, "df": 10}}}}}}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.inference.AffineInvariantMCMC.accept_rate": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"arianna.ppl.context.Context.run": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.run": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.run": {"tf": 1}, "arianna.ppl.context.Predictive.run": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.run": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.run": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.run": {"tf": 1}}, "df": 7}}, "v": {"docs": {"arianna.ppl.context.Context.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.rv": {"tf": 1}, "arianna.ppl.context.Predictive.rv": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.rv": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.rv": {"tf": 1}}, "df": 7}, "n": {"docs": {}, "df": 0, "g": {"docs": {"arianna.ppl.context.LogprobAndPriorSample.rng": {"tf": 1}, "arianna.ppl.context.Predictive.rng": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.rng": {"tf": 1}, "arianna.ppl.inference.InferenceEngine.rng": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.rng": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.rng": {"tf": 1}, "arianna.ppl.inference.AIES.rng": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.rng": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.rng": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.rng": {"tf": 1}}, "df": 10, "s": {"docs": {"arianna.ppl.inference.ParallelAIES.rngs": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"arianna.distributions.abstract.Continuous.to_native": {"tf": 1}, "arianna.distributions.abstract.Positive.to_native": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.to_native": {"tf": 1}, "arianna.distributions.abstract.Real.to_native": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.to_native": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.to_native": {"tf": 1}}, "df": 6}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.inference.Chain.names": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"arianna.distributions.distributions.Normal": {"tf": 1}, "arianna.distributions.distributions.Normal.__init__": {"tf": 1}, "arianna.distributions.distributions.Normal.loc": {"tf": 1}, "arianna.distributions.distributions.Normal.scale": {"tf": 1}, "arianna.distributions.distributions.Normal.batch_shape": {"tf": 1}, "arianna.distributions.distributions.Normal.logpdf": {"tf": 1}, "arianna.distributions.distributions.Normal.logcdf": {"tf": 1}, "arianna.distributions.distributions.Normal.cdf": {"tf": 1}, "arianna.distributions.distributions.Normal.survival": {"tf": 1}, "arianna.distributions.distributions.Normal.mean": {"tf": 1}, "arianna.distributions.distributions.Normal.std": {"tf": 1}, "arianna.distributions.distributions.Normal.var": {"tf": 1}, "arianna.distributions.distributions.Normal.mode": {"tf": 1}, "arianna.distributions.distributions.Normal.median": {"tf": 1}}, "df": 14}}}}}, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.inference.MCMC.nsamples": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.inference.AffineInvariantMCMC.nsteps": {"tf": 1}}, "df": 1}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.inference.AffineInvariantMCMC.nwalkers": {"tf": 1}, "arianna.ppl.inference.AIES.nwalkers": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.nwalkers": {"tf": 1}}, "df": 3}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"arianna.types.Numeric": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"arianna.types.NegativeInfinityError": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"arianna.types.NegativeParameterError": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"arianna.distributions.abstract.Univariate": {"tf": 1}, "arianna.distributions.abstract.Univariate.event_shape": {"tf": 1}, "arianna.distributions.abstract.Univariate.batch_shape": {"tf": 1}, "arianna.distributions.abstract.Univariate.sample": {"tf": 1}}, "df": 4, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"arianna.distributions.abstract.UnivariateContinuous": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous.logpdf_plus_logdetjac": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous.logcdf": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous.cdf": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous.survival": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous.logsurvival": {"tf": 1}}, "df": 6}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"arianna.distributions.abstract.UnivariateReal": {"tf": 1}}, "df": 1}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"arianna.distributions.distributions.Uniform": {"tf": 1}, "arianna.distributions.distributions.Uniform.from_mean_shift": {"tf": 1}, "arianna.distributions.distributions.Uniform.batch_shape": {"tf": 1}, "arianna.distributions.distributions.Uniform.logcdf": {"tf": 1}, "arianna.distributions.distributions.Uniform.cdf": {"tf": 1}, "arianna.distributions.distributions.Uniform.mode": {"tf": 1}, "arianna.distributions.distributions.Uniform.median": {"tf": 1}, "arianna.distributions.distributions.Uniform.mean": {"tf": 1}, "arianna.distributions.distributions.Uniform.var": {"tf": 1}}, "df": 9}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {"arianna.ppl.shaper.Shaper.unvec": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"arianna.distributions.abstract.LowerUpperBounded.upper": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"arianna.distributions.distributions.Independent": {"tf": 1}, "arianna.distributions.distributions.Independent.__init__": {"tf": 1}, "arianna.distributions.distributions.Independent.dists": {"tf": 1}, "arianna.distributions.distributions.Independent.is_same_family": {"tf": 1}, "arianna.distributions.distributions.Independent.logpdf": {"tf": 1}, "arianna.distributions.distributions.Independent.sample": {"tf": 1}}, "df": 6, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"arianna.distributions.distributions.IndependentRagged": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"arianna.distributions.distributions.Independent.__init__": {"tf": 1}, "arianna.distributions.distributions.Beta.__init__": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.__init__": {"tf": 1}, "arianna.distributions.distributions.Gamma.__init__": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.__init__": {"tf": 1}, "arianna.distributions.distributions.LogNormal.__init__": {"tf": 1}, "arianna.distributions.distributions.Normal.__init__": {"tf": 1}, "arianna.distributions.distributions.MvNormal.__init__": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.__init__": {"tf": 1}, "arianna.ppl.context.BasicDistribution.__init__": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.__init__": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.__init__": {"tf": 1}, "arianna.ppl.context.Predictive.__init__": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.__init__": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.__init__": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.__init__": {"tf": 1}, "arianna.ppl.inference.Chain.__init__": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.init_state": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.__init__": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.init_state": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.init_state": {"tf": 1}, "arianna.ppl.inference.AIES.__init__": {"tf": 1}, "arianna.ppl.inference.AIES.init_state": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.__init__": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.init_state": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.__init__": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.__init__": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.init_vec_state": {"tf": 1}, "arianna.ppl.shaper.Shaper.__init__": {"tf": 1}}, "df": 29}}, "v": {"docs": {"arianna.distributions.distributions.MvNormal.cov_inv": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"arianna.distributions.distributions.InverseGamma": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.__init__": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.from_mean_std": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.shape": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.scale": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.batch_shape": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.mean": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.var": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.mode": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.logcdf": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.cdf": {"tf": 1}}, "df": 11}}}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"arianna.types.InvalidBoundsError": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.inference": {"tf": 1}, "arianna.ppl.inference.P": {"tf": 1}, "arianna.ppl.inference.Model": {"tf": 1}, "arianna.ppl.inference.Logprob": {"tf": 1}, "arianna.ppl.inference.Chain": {"tf": 1}, "arianna.ppl.inference.Chain.__init__": {"tf": 1}, "arianna.ppl.inference.Chain.states": {"tf": 1}, "arianna.ppl.inference.Chain.names": {"tf": 1}, "arianna.ppl.inference.Chain.get": {"tf": 1}, "arianna.ppl.inference.Chain.bundle": {"tf": 1}, "arianna.ppl.inference.Chain.subset": {"tf": 1}, "arianna.ppl.inference.InferenceEngine": {"tf": 1}, "arianna.ppl.inference.InferenceEngine.rng": {"tf": 1}, "arianna.ppl.inference.InferenceEngine.fit": {"tf": 1}, "arianna.ppl.inference.MCMC": {"tf": 1}, "arianna.ppl.inference.MCMC.model": {"tf": 1}, "arianna.ppl.inference.MCMC.model_data": {"tf": 1}, "arianna.ppl.inference.MCMC.nsamples": {"tf": 1}, "arianna.ppl.inference.MCMC.burn": {"tf": 1}, "arianna.ppl.inference.MCMC.thin": {"tf": 1}, "arianna.ppl.inference.MCMC.mcmc_iteration": {"tf": 1}, "arianna.ppl.inference.MCMC.transform": {"tf": 1}, "arianna.ppl.inference.MCMC.logprob_history": {"tf": 1}, "arianna.ppl.inference.MCMC.step": {"tf": 1}, "arianna.ppl.inference.MCMC.fit": {"tf": 1}, "arianna.ppl.inference.MCMC.logprob": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.init_state": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.mcmc_state": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.transform": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.step": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.__init__": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.mcmc_state": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.init_state": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.model": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.model_data": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.transform": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.rng": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.proposal": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.step": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.nsteps": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.init_state": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.mcmc_state": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.accept_rate": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.accept": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.nwalkers": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.rng": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.a": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.dim": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.logprob": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.step": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.fit": {"tf": 1}, "arianna.ppl.inference.AIES": {"tf": 1}, "arianna.ppl.inference.AIES.__init__": {"tf": 1}, "arianna.ppl.inference.AIES.default_temperature_fn": {"tf": 1}, "arianna.ppl.inference.AIES.model": {"tf": 1}, "arianna.ppl.inference.AIES.nwalkers": {"tf": 1}, "arianna.ppl.inference.AIES.transform": {"tf": 1}, "arianna.ppl.inference.AIES.rng": {"tf": 1}, "arianna.ppl.inference.AIES.accept": {"tf": 1}, "arianna.ppl.inference.AIES.a": {"tf": 1}, "arianna.ppl.inference.AIES.model_data": {"tf": 1}, "arianna.ppl.inference.AIES.temperature_fn": {"tf": 1}, "arianna.ppl.inference.AIES.init_state": {"tf": 1}, "arianna.ppl.inference.AIES.step": {"tf": 1}, "arianna.ppl.inference.ParallelAIES": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.__init__": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.executor": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.model": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.nwalkers": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.transform": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.rng": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.rngs": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.accept": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.a": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.model_data": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.init_state": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.step": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.__init__": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.particles": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.model": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.model_data": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.temperature": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.rng": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.log_weights": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.weights": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.fit": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.__init__": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.rng": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.model": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.model_data": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.transform": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.shaper": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.init_vec_state": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.logprob": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.fit": {"tf": 1}, "arianna.ppl.inference.BayesianOptimization": {"tf": 1}, "arianna.ppl.inference.AdaptiveRandomWalkMetropolis": {"tf": 1}}, "df": 102, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.inference.InferenceEngine": {"tf": 1}, "arianna.ppl.inference.InferenceEngine.rng": {"tf": 1}, "arianna.ppl.inference.InferenceEngine.fit": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}, "s": {"docs": {"arianna.distributions.distributions.Independent.is_same_family": {"tf": 1}}, "df": 1}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"arianna.ppl.inference.MCMC.mcmc_iteration": {"tf": 1}}, "df": 1}}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"arianna.ppl.inference.ImportanceSampling": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.__init__": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.particles": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.model": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.model_data": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.temperature": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.rng": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.log_weights": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.weights": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.fit": {"tf": 1}}, "df": 10}}}}}}}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"arianna.distributions.distributions.Independent.is_same_family": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"arianna.distributions.distributions.Uniform.from_mean_shift": {"tf": 1}, "arianna.distributions.distributions.Gamma.from_mean_std": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.from_mean_std": {"tf": 1}, "arianna.distributions.distributions.LogNormal.from_mean_std": {"tf": 1}, "arianna.ppl.shaper.Shaper.from_state": {"tf": 1}}, "df": 5}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.inference.InferenceEngine.fit": {"tf": 1}, "arianna.ppl.inference.MCMC.fit": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.fit": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.fit": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.fit": {"tf": 1}}, "df": 5}}, "n": {"docs": {"arianna.ppl.inference.AIES.default_temperature_fn": {"tf": 1}, "arianna.ppl.inference.AIES.temperature_fn": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"arianna.distributions.distributions.Gamma": {"tf": 1}, "arianna.distributions.distributions.Gamma.__init__": {"tf": 1}, "arianna.distributions.distributions.Gamma.from_mean_std": {"tf": 1}, "arianna.distributions.distributions.Gamma.shape": {"tf": 1}, "arianna.distributions.distributions.Gamma.scale": {"tf": 1}, "arianna.distributions.distributions.Gamma.batch_shape": {"tf": 1}, "arianna.distributions.distributions.Gamma.logcdf": {"tf": 1}, "arianna.distributions.distributions.Gamma.cdf": {"tf": 1}, "arianna.distributions.distributions.Gamma.survival": {"tf": 1}, "arianna.distributions.distributions.Gamma.mean": {"tf": 1}, "arianna.distributions.distributions.Gamma.var": {"tf": 1}, "arianna.distributions.distributions.Gamma.mode": {"tf": 1}}, "df": 12}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"arianna.distributions.distributions.Gumbel": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.inference.Chain.get": {"tf": 1}}, "df": 1}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"arianna.distributions.distributions.Weibull": {"tf": 1}}, "df": 1}}}}, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.inference.ImportanceSampling.log_weights": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.weights": {"tf": 1}}, "df": 2}}}}}}}, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"arianna.ppl.diagnostics.ess_kish": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"arianna.ppl.inference.MCMC.logprob_history": {"tf": 1}}, "df": 1}}}}}}}}}, "annotation": {"root": {"docs": {"arianna.distributions.abstract.Distribution.mean": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.Distribution.std": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.Distribution.var": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.Multivariate.mean": {"tf": 1}, "arianna.distributions.abstract.Multivariate.std": {"tf": 1}, "arianna.distributions.abstract.Multivariate.var": {"tf": 1}, "arianna.distributions.abstract.Univariate.event_shape": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.Univariate.batch_shape": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Uniform.batch_shape": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Uniform.mode": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Uniform.median": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Uniform.mean": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Uniform.var": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Beta.mode": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Beta.batch_shape": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Beta.mean": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.ScaledBeta.batch_shape": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.ScaledBeta.mean": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.ScaledBeta.var": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Gamma.batch_shape": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Gamma.mean": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Gamma.var": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Gamma.mode": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.InverseGamma.batch_shape": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.InverseGamma.mean": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.InverseGamma.var": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.InverseGamma.mode": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.LogNormal.batch_shape": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.LogNormal.mean": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.LogNormal.var": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.LogNormal.mode": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.LogNormal.median": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Normal.batch_shape": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Normal.mean": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Normal.std": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Normal.var": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Normal.mode": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Normal.median": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.MvNormal.mean": {"tf": 1}, "arianna.distributions.distributions.MvNormal.cov": {"tf": 1}, "arianna.distributions.distributions.MvNormal.cov_inv": {"tf": 1}, "arianna.distributions.distributions.MvNormal.L": {"tf": 1}, "arianna.distributions.distributions.MvNormal.event_shape": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.MvNormal.batch_shape": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.MvNormal.batch_plus_event_shape": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.MvNormal.log_det_cov": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.MvNormal.var": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.cov": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.mean": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.var": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.std": {"tf": 1}, "arianna.ppl.context.Context.result": {"tf": 1}, "arianna.ppl.context.Context.state": {"tf": 1.4142135623730951}, "arianna.ppl.inference.Chain.bundle": {"tf": 1}, "arianna.ppl.inference.InferenceEngine.rng": {"tf": 1}, "arianna.ppl.inference.MCMC.model": {"tf": 1}, "arianna.ppl.inference.MCMC.model_data": {"tf": 1}, "arianna.ppl.inference.MCMC.nsamples": {"tf": 1}, "arianna.ppl.inference.MCMC.burn": {"tf": 1}, "arianna.ppl.inference.MCMC.thin": {"tf": 1}, "arianna.ppl.inference.MCMC.mcmc_iteration": {"tf": 1}, "arianna.ppl.inference.MCMC.transform": {"tf": 1}, "arianna.ppl.inference.MCMC.logprob_history": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.init_state": {"tf": 1.4142135623730951}, "arianna.ppl.inference.SingleWalkerMCMC.mcmc_state": {"tf": 1.4142135623730951}, "arianna.ppl.inference.SingleWalkerMCMC.transform": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.mcmc_state": {"tf": 1.4142135623730951}, "arianna.ppl.inference.RandomWalkMetropolis.init_state": {"tf": 1.4142135623730951}, "arianna.ppl.inference.AffineInvariantMCMC.nsteps": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.init_state": {"tf": 1.4142135623730951}, "arianna.ppl.inference.AffineInvariantMCMC.mcmc_state": {"tf": 1.4142135623730951}, "arianna.ppl.inference.AffineInvariantMCMC.accept_rate": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.accept": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.nwalkers": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.rng": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.a": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.dim": {"tf": 1}, "arianna.ppl.inference.AIES.model": {"tf": 1}, "arianna.ppl.inference.AIES.nwalkers": {"tf": 1}, "arianna.ppl.inference.AIES.transform": {"tf": 1}, "arianna.ppl.inference.AIES.a": {"tf": 1}, "arianna.ppl.inference.AIES.temperature_fn": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.model": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.nwalkers": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.transform": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.a": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.particles": {"tf": 1.4142135623730951}, "arianna.ppl.inference.LaplaceApproximation.rng": {"tf": 1}}, "df": 88, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"arianna.distributions.abstract.Distribution.mean": {"tf": 1}, "arianna.distributions.abstract.Distribution.std": {"tf": 1}, "arianna.distributions.abstract.Distribution.var": {"tf": 1}, "arianna.distributions.distributions.Uniform.mode": {"tf": 1}, "arianna.distributions.distributions.Uniform.median": {"tf": 1}, "arianna.distributions.distributions.Uniform.mean": {"tf": 1}, "arianna.distributions.distributions.Uniform.var": {"tf": 1}, "arianna.distributions.distributions.Beta.mode": {"tf": 1}, "arianna.distributions.distributions.Beta.mean": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.mean": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.var": {"tf": 1}, "arianna.distributions.distributions.Gamma.mean": {"tf": 1}, "arianna.distributions.distributions.Gamma.var": {"tf": 1}, "arianna.distributions.distributions.Gamma.mode": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.mean": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.var": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.mode": {"tf": 1}, "arianna.distributions.distributions.LogNormal.mean": {"tf": 1}, "arianna.distributions.distributions.LogNormal.var": {"tf": 1}, "arianna.distributions.distributions.LogNormal.mode": {"tf": 1}, "arianna.distributions.distributions.LogNormal.median": {"tf": 1}, "arianna.distributions.distributions.Normal.mean": {"tf": 1}, "arianna.distributions.distributions.Normal.std": {"tf": 1}, "arianna.distributions.distributions.Normal.var": {"tf": 1}, "arianna.distributions.distributions.Normal.mode": {"tf": 1}, "arianna.distributions.distributions.Normal.median": {"tf": 1}, "arianna.distributions.distributions.MvNormal.log_det_cov": {"tf": 1}, "arianna.ppl.context.Context.state": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.init_state": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.mcmc_state": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.mcmc_state": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.init_state": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.init_state": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.mcmc_state": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.a": {"tf": 1}, "arianna.ppl.inference.AIES.a": {"tf": 1}, "arianna.ppl.inference.AIES.temperature_fn": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.a": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.particles": {"tf": 1}}, "df": 39}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"arianna.distributions.abstract.Distribution.mean": {"tf": 1}, "arianna.distributions.abstract.Distribution.std": {"tf": 1}, "arianna.distributions.abstract.Distribution.var": {"tf": 1}, "arianna.distributions.abstract.Multivariate.mean": {"tf": 1}, "arianna.distributions.abstract.Multivariate.std": {"tf": 1}, "arianna.distributions.abstract.Multivariate.var": {"tf": 1}, "arianna.distributions.distributions.Uniform.mode": {"tf": 1}, "arianna.distributions.distributions.Uniform.median": {"tf": 1}, "arianna.distributions.distributions.Uniform.mean": {"tf": 1}, "arianna.distributions.distributions.Uniform.var": {"tf": 1}, "arianna.distributions.distributions.Beta.mode": {"tf": 1}, "arianna.distributions.distributions.Beta.mean": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.mean": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.var": {"tf": 1}, "arianna.distributions.distributions.Gamma.mean": {"tf": 1}, "arianna.distributions.distributions.Gamma.var": {"tf": 1}, "arianna.distributions.distributions.Gamma.mode": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.mean": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.var": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.mode": {"tf": 1}, "arianna.distributions.distributions.LogNormal.mean": {"tf": 1}, "arianna.distributions.distributions.LogNormal.var": {"tf": 1}, "arianna.distributions.distributions.LogNormal.mode": {"tf": 1}, "arianna.distributions.distributions.LogNormal.median": {"tf": 1}, "arianna.distributions.distributions.Normal.mean": {"tf": 1}, "arianna.distributions.distributions.Normal.std": {"tf": 1}, "arianna.distributions.distributions.Normal.var": {"tf": 1}, "arianna.distributions.distributions.Normal.mode": {"tf": 1}, "arianna.distributions.distributions.Normal.median": {"tf": 1}, "arianna.distributions.distributions.MvNormal.mean": {"tf": 1}, "arianna.distributions.distributions.MvNormal.cov": {"tf": 1}, "arianna.distributions.distributions.MvNormal.cov_inv": {"tf": 1}, "arianna.distributions.distributions.MvNormal.L": {"tf": 1}, "arianna.distributions.distributions.MvNormal.log_det_cov": {"tf": 1}, "arianna.distributions.distributions.MvNormal.var": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.cov": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.mean": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.var": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.std": {"tf": 1}, "arianna.ppl.context.Context.state": {"tf": 1}, "arianna.ppl.inference.Chain.bundle": {"tf": 1}, "arianna.ppl.inference.InferenceEngine.rng": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.init_state": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.mcmc_state": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.mcmc_state": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.init_state": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.init_state": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.mcmc_state": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.accept_rate": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.rng": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.particles": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.rng": {"tf": 1}}, "df": 52}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"arianna.distributions.abstract.Distribution.mean": {"tf": 1}, "arianna.distributions.abstract.Distribution.std": {"tf": 1}, "arianna.distributions.abstract.Distribution.var": {"tf": 1}, "arianna.distributions.abstract.Multivariate.mean": {"tf": 1}, "arianna.distributions.abstract.Multivariate.std": {"tf": 1}, "arianna.distributions.abstract.Multivariate.var": {"tf": 1}, "arianna.distributions.distributions.Uniform.mode": {"tf": 1}, "arianna.distributions.distributions.Uniform.median": {"tf": 1}, "arianna.distributions.distributions.Uniform.mean": {"tf": 1}, "arianna.distributions.distributions.Uniform.var": {"tf": 1}, "arianna.distributions.distributions.Beta.mode": {"tf": 1}, "arianna.distributions.distributions.Beta.mean": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.mean": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.var": {"tf": 1}, "arianna.distributions.distributions.Gamma.mean": {"tf": 1}, "arianna.distributions.distributions.Gamma.var": {"tf": 1}, "arianna.distributions.distributions.Gamma.mode": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.mean": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.var": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.mode": {"tf": 1}, "arianna.distributions.distributions.LogNormal.mean": {"tf": 1}, "arianna.distributions.distributions.LogNormal.var": {"tf": 1}, "arianna.distributions.distributions.LogNormal.mode": {"tf": 1}, "arianna.distributions.distributions.LogNormal.median": {"tf": 1}, "arianna.distributions.distributions.Normal.mean": {"tf": 1}, "arianna.distributions.distributions.Normal.std": {"tf": 1}, "arianna.distributions.distributions.Normal.var": {"tf": 1}, "arianna.distributions.distributions.Normal.mode": {"tf": 1}, "arianna.distributions.distributions.Normal.median": {"tf": 1}, "arianna.distributions.distributions.MvNormal.mean": {"tf": 1}, "arianna.distributions.distributions.MvNormal.cov": {"tf": 1}, "arianna.distributions.distributions.MvNormal.cov_inv": {"tf": 1}, "arianna.distributions.distributions.MvNormal.L": {"tf": 1}, "arianna.distributions.distributions.MvNormal.log_det_cov": {"tf": 1}, "arianna.distributions.distributions.MvNormal.var": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.cov": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.mean": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.var": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.std": {"tf": 1}, "arianna.ppl.context.Context.state": {"tf": 1}, "arianna.ppl.inference.Chain.bundle": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.init_state": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.mcmc_state": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.mcmc_state": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.init_state": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.init_state": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.mcmc_state": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.accept_rate": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.particles": {"tf": 1}}, "df": 49}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.inference.MCMC.model": {"tf": 1}, "arianna.ppl.inference.AIES.model": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.model": {"tf": 1}}, "df": 3}}}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"arianna.distributions.abstract.Univariate.event_shape": {"tf": 1}, "arianna.distributions.abstract.Univariate.batch_shape": {"tf": 1}, "arianna.distributions.distributions.Uniform.batch_shape": {"tf": 1}, "arianna.distributions.distributions.Beta.batch_shape": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.batch_shape": {"tf": 1}, "arianna.distributions.distributions.Gamma.batch_shape": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.batch_shape": {"tf": 1}, "arianna.distributions.distributions.LogNormal.batch_shape": {"tf": 1}, "arianna.distributions.distributions.Normal.batch_shape": {"tf": 1}, "arianna.distributions.distributions.MvNormal.event_shape": {"tf": 1}, "arianna.distributions.distributions.MvNormal.batch_shape": {"tf": 1}, "arianna.distributions.distributions.MvNormal.batch_plus_event_shape": {"tf": 1}}, "df": 12}}}}}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"arianna.ppl.inference.MCMC.model_data": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "y": {"docs": {"arianna.ppl.context.Context.result": {"tf": 1}, "arianna.ppl.inference.MCMC.model_data": {"tf": 1}}, "df": 2}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"arianna.ppl.context.Context.state": {"tf": 1}, "arianna.ppl.inference.Chain.bundle": {"tf": 1}, "arianna.ppl.inference.MCMC.model_data": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.init_state": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.mcmc_state": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.mcmc_state": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.init_state": {"tf": 1}}, "df": 7}}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"arianna.ppl.inference.InferenceEngine.rng": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.rng": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.rng": {"tf": 1}}, "df": 3}}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"arianna.ppl.inference.InferenceEngine.rng": {"tf": 1.4142135623730951}, "arianna.ppl.inference.AffineInvariantMCMC.rng": {"tf": 1.4142135623730951}, "arianna.ppl.inference.LaplaceApproximation.rng": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {"arianna.ppl.inference.MCMC.model": {"tf": 1}, "arianna.ppl.inference.AIES.model": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.model": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}}}}}}, "[": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.inference.AIES.temperature_fn": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.inference.MCMC.model": {"tf": 1.4142135623730951}, "arianna.ppl.inference.AIES.model": {"tf": 1.4142135623730951}, "arianna.ppl.inference.ParallelAIES.model": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}, "p": {"docs": {"arianna.ppl.inference.MCMC.model": {"tf": 1}, "arianna.ppl.inference.AIES.model": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.model": {"tf": 1}}, "df": 3, "p": {"docs": {}, "df": 0, "l": {"docs": {"arianna.ppl.inference.MCMC.model": {"tf": 1}, "arianna.ppl.inference.AIES.model": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.model": {"tf": 1}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.inference.MCMC.nsamples": {"tf": 1}, "arianna.ppl.inference.MCMC.burn": {"tf": 1}, "arianna.ppl.inference.MCMC.thin": {"tf": 1}, "arianna.ppl.inference.MCMC.mcmc_iteration": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.nsteps": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.nwalkers": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.dim": {"tf": 1}, "arianna.ppl.inference.AIES.nwalkers": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.nwalkers": {"tf": 1}}, "df": 9}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"arianna.ppl.inference.MCMC.transform": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.transform": {"tf": 1}, "arianna.ppl.inference.AIES.transform": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.transform": {"tf": 1}}, "df": 4}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.inference.MCMC.logprob_history": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"arianna.ppl.inference.AffineInvariantMCMC.init_state": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.mcmc_state": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.particles": {"tf": 1}}, "df": 3}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.inference.AffineInvariantMCMC.accept": {"tf": 1}}, "df": 1}}}}}}}}}}, "default_value": {"root": {"docs": {"arianna.ppl.inference.Logprob": {"tf": 1.4142135623730951}, "arianna.types.Numeric": {"tf": 1}, "arianna.types.Shape": {"tf": 1}, "arianna.types.State": {"tf": 1}}, "df": 4, "p": {"docs": {"arianna.ppl.inference.P": {"tf": 1}, "arianna.ppl.inference.Model": {"tf": 1}}, "df": 2, "p": {"docs": {}, "df": 0, "l": {"docs": {"arianna.ppl.inference.Model": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"arianna.ppl.inference.Model": {"tf": 1}, "arianna.ppl.inference.Logprob": {"tf": 1}}, "df": 2}}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.inference.Logprob": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"arianna.types.Shape": {"tf": 1}}, "df": 1}}}}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"arianna.ppl.inference.Model": {"tf": 1}}, "df": 1}}}}}}, "[": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"arianna.ppl.inference.Logprob": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {"arianna.ppl.inference.Model": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.inference.Model": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.inference.Model": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"arianna.ppl.inference.Logprob": {"tf": 1.4142135623730951}, "arianna.types.Numeric": {"tf": 1}, "arianna.types.State": {"tf": 1}}, "df": 3}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"arianna.ppl.inference.Logprob": {"tf": 1.4142135623730951}, "arianna.types.Numeric": {"tf": 1}, "arianna.types.State": {"tf": 1}}, "df": 3}}}}}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.inference.Logprob": {"tf": 1.4142135623730951}, "arianna.types.Numeric": {"tf": 1}, "arianna.types.State": {"tf": 1}}, "df": 3}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"arianna.ppl.inference.Logprob": {"tf": 1}, "arianna.types.State": {"tf": 1}}, "df": 2}}}}}}}}}}, "signature": {"root": {"0": {"docs": {"arianna.distributions.distributions.Normal.__init__": {"tf": 1.7320508075688772}, "arianna.ppl.inference.Chain.subset": {"tf": 1}, "arianna.ppl.inference.AIES.__init__": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.__init__": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.__init__": {"tf": 1}}, "df": 5, "x": {"1": {"0": {"3": {"docs": {}, "df": 0, "f": {"8": {"docs": {}, "df": 0, "e": {"9": {"6": {"0": {"docs": {"arianna.distributions.abstract.Distribution.sample": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "c": {"0": {"docs": {"arianna.distributions.abstract.Univariate.sample": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}, "f": {"docs": {}, "df": 0, "d": {"8": {"0": {"docs": {"arianna.distributions.distributions.MvNormal.sample": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}}, "4": {"0": {"1": {"docs": {}, "df": 0, "c": {"0": {"4": {"0": {"docs": {"arianna.distributions.distributions.Dirichlet.sample": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"docs": {}, "df": 0, "c": {"0": {"docs": {"arianna.ppl.context.BasicDistribution.sample": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"8": {"6": {"1": {"0": {"0": {"0": {"docs": {"arianna.ppl.inference.AIES.__init__": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"docs": {}, "df": 0, "c": {"0": {"docs": {"arianna.ppl.inference.ParallelAIES.__init__": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "1": {"0": {"docs": {"arianna.ppl.inference.AIES.__init__": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.__init__": {"tf": 1}}, "df": 2}, "docs": {"arianna.distributions.distributions.Normal.__init__": {"tf": 1}, "arianna.ppl.inference.Chain.subset": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.__init__": {"tf": 1}}, "df": 3}, "2": {"docs": {"arianna.ppl.inference.AIES.__init__": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.__init__": {"tf": 1}}, "df": 2}, "docs": {"arianna.distributions.abstract.Distribution.logpdf": {"tf": 6.164414002968976}, "arianna.distributions.abstract.Distribution.sample": {"tf": 9.219544457292887}, "arianna.distributions.abstract.Distribution.pdf": {"tf": 6.164414002968976}, "arianna.distributions.abstract.Continuous.to_real": {"tf": 6.164414002968976}, "arianna.distributions.abstract.Continuous.to_native": {"tf": 6.164414002968976}, "arianna.distributions.abstract.Continuous.logdetjac": {"tf": 6.164414002968976}, "arianna.distributions.abstract.Univariate.sample": {"tf": 9.219544457292887}, "arianna.distributions.abstract.UnivariateContinuous.logpdf_plus_logdetjac": {"tf": 6.164414002968976}, "arianna.distributions.abstract.UnivariateContinuous.logcdf": {"tf": 6.164414002968976}, "arianna.distributions.abstract.UnivariateContinuous.cdf": {"tf": 6.164414002968976}, "arianna.distributions.abstract.UnivariateContinuous.survival": {"tf": 6.164414002968976}, "arianna.distributions.abstract.UnivariateContinuous.logsurvival": {"tf": 6.164414002968976}, "arianna.distributions.abstract.Positive.to_real": {"tf": 6.164414002968976}, "arianna.distributions.abstract.Positive.to_native": {"tf": 6.164414002968976}, "arianna.distributions.abstract.Positive.logdetjac": {"tf": 6.164414002968976}, "arianna.distributions.abstract.Positive.logpdf": {"tf": 6.164414002968976}, "arianna.distributions.abstract.LowerUpperBounded.to_real": {"tf": 6.164414002968976}, "arianna.distributions.abstract.LowerUpperBounded.to_native": {"tf": 6.164414002968976}, "arianna.distributions.abstract.LowerUpperBounded.logdetjac": {"tf": 6.164414002968976}, "arianna.distributions.abstract.LowerUpperBounded.logpdf": {"tf": 6.164414002968976}, "arianna.distributions.abstract.MultivariateContinuous.logpdf_plus_logdetjac": {"tf": 5.744562646538029}, "arianna.distributions.abstract.MultivariateContinuous.cov": {"tf": 4}, "arianna.distributions.abstract.MultivariateContinuous.mean": {"tf": 4}, "arianna.distributions.abstract.Real.to_real": {"tf": 6.164414002968976}, "arianna.distributions.abstract.Real.to_native": {"tf": 6.164414002968976}, "arianna.distributions.abstract.Real.logdetjac": {"tf": 6.164414002968976}, "arianna.distributions.distributions.Independent.__init__": {"tf": 5.385164807134504}, "arianna.distributions.distributions.Independent.is_same_family": {"tf": 6.082762530298219}, "arianna.distributions.distributions.Independent.logpdf": {"tf": 6.557438524302}, "arianna.distributions.distributions.Independent.sample": {"tf": 5}, "arianna.distributions.distributions.Uniform.from_mean_shift": {"tf": 4.242640687119285}, "arianna.distributions.distributions.Uniform.logcdf": {"tf": 6.164414002968976}, "arianna.distributions.distributions.Uniform.cdf": {"tf": 6.164414002968976}, "arianna.distributions.distributions.Beta.__init__": {"tf": 7.416198487095663}, "arianna.distributions.distributions.Beta.logcdf": {"tf": 6.164414002968976}, "arianna.distributions.distributions.Beta.cdf": {"tf": 6.164414002968976}, "arianna.distributions.distributions.ScaledBeta.__init__": {"tf": 9.539392014169456}, "arianna.distributions.distributions.ScaledBeta.cdf": {"tf": 6.164414002968976}, "arianna.distributions.distributions.ScaledBeta.logcdf": {"tf": 6.164414002968976}, "arianna.distributions.distributions.Gamma.__init__": {"tf": 7.416198487095663}, "arianna.distributions.distributions.Gamma.from_mean_std": {"tf": 5.656854249492381}, "arianna.distributions.distributions.Gamma.logcdf": {"tf": 6.164414002968976}, "arianna.distributions.distributions.Gamma.cdf": {"tf": 6.164414002968976}, "arianna.distributions.distributions.Gamma.survival": {"tf": 6.164414002968976}, "arianna.distributions.distributions.InverseGamma.__init__": {"tf": 7.416198487095663}, "arianna.distributions.distributions.InverseGamma.from_mean_std": {"tf": 5.656854249492381}, "arianna.distributions.distributions.InverseGamma.logcdf": {"tf": 6.164414002968976}, "arianna.distributions.distributions.InverseGamma.cdf": {"tf": 6.164414002968976}, "arianna.distributions.distributions.LogNormal.__init__": {"tf": 7.416198487095663}, "arianna.distributions.distributions.LogNormal.from_mean_std": {"tf": 5.656854249492381}, "arianna.distributions.distributions.LogNormal.logcdf": {"tf": 6.164414002968976}, "arianna.distributions.distributions.LogNormal.cdf": {"tf": 6.164414002968976}, "arianna.distributions.distributions.Normal.__init__": {"tf": 8.18535277187245}, "arianna.distributions.distributions.Normal.logpdf": {"tf": 6.164414002968976}, "arianna.distributions.distributions.Normal.logcdf": {"tf": 6.164414002968976}, "arianna.distributions.distributions.Normal.cdf": {"tf": 6.164414002968976}, "arianna.distributions.distributions.Normal.survival": {"tf": 6.164414002968976}, "arianna.distributions.distributions.MvNormal.__init__": {"tf": 7.681145747868608}, "arianna.distributions.distributions.MvNormal.logpdf": {"tf": 3.7416573867739413}, "arianna.distributions.distributions.MvNormal.sample": {"tf": 9.219544457292887}, "arianna.distributions.distributions.Dirichlet.__init__": {"tf": 5.477225575051661}, "arianna.distributions.distributions.Dirichlet.logpdf": {"tf": 5.744562646538029}, "arianna.distributions.distributions.Dirichlet.sample": {"tf": 9.219544457292887}, "arianna.distributions.distributions.Dirichlet.to_real": {"tf": 5.744562646538029}, "arianna.distributions.distributions.Dirichlet.to_native": {"tf": 5.744562646538029}, "arianna.distributions.distributions.Dirichlet.logdetjac": {"tf": 5.744562646538029}, "arianna.ppl.context.BasicDistribution.__init__": {"tf": 4}, "arianna.ppl.context.BasicDistribution.logpdf": {"tf": 6.164414002968976}, "arianna.ppl.context.BasicDistribution.sample": {"tf": 9.219544457292887}, "arianna.ppl.context.TransformableDistribution.logdetjac": {"tf": 6.164414002968976}, "arianna.ppl.context.TransformableDistribution.logpdf_plus_logdetjac": {"tf": 6.164414002968976}, "arianna.ppl.context.TransformableDistribution.to_real": {"tf": 6.164414002968976}, "arianna.ppl.context.TransformableDistribution.to_native": {"tf": 6.164414002968976}, "arianna.ppl.context.TransformableDistribution.logpdf": {"tf": 6.164414002968976}, "arianna.ppl.context.Context.run": {"tf": 3.1622776601683795}, "arianna.ppl.context.Context.rv": {"tf": 9.273618495495704}, "arianna.ppl.context.Context.cached": {"tf": 6.782329983125268}, "arianna.ppl.context.LogprobAndPriorSample.__init__": {"tf": 6}, "arianna.ppl.context.LogprobAndPriorSample.run": {"tf": 9.219544457292887}, "arianna.ppl.context.LogprobAndPriorSample.rv": {"tf": 8.660254037844387}, "arianna.ppl.context.LogprobAndPriorSample.cached": {"tf": 6.782329983125268}, "arianna.ppl.context.LogprobAndTrace.__init__": {"tf": 5.5677643628300215}, "arianna.ppl.context.LogprobAndTrace.run": {"tf": 8.94427190999916}, "arianna.ppl.context.LogprobAndTrace.rv": {"tf": 8.660254037844387}, "arianna.ppl.context.LogprobAndTrace.cached": {"tf": 6.782329983125268}, "arianna.ppl.context.Predictive.__init__": {"tf": 9.433981132056603}, "arianna.ppl.context.Predictive.run": {"tf": 11.357816691600547}, "arianna.ppl.context.Predictive.rv": {"tf": 9.273618495495704}, "arianna.ppl.context.Predictive.cached": {"tf": 6.782329983125268}, "arianna.ppl.context.TransformedLogprobAndTrace.__init__": {"tf": 5.5677643628300215}, "arianna.ppl.context.TransformedLogprobAndTrace.run": {"tf": 8.94427190999916}, "arianna.ppl.context.TransformedLogprobAndTrace.rv": {"tf": 8.660254037844387}, "arianna.ppl.context.TransformedLogprobAndTrace.cached": {"tf": 6.782329983125268}, "arianna.ppl.context.TransformedPredictive.__init__": {"tf": 9.433981132056603}, "arianna.ppl.context.TransformedPredictive.run": {"tf": 10.392304845413264}, "arianna.ppl.context.TransformedPredictive.rv": {"tf": 9.273618495495704}, "arianna.ppl.context.TransformedPredictive.cached": {"tf": 6.782329983125268}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.__init__": {"tf": 5.5677643628300215}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.run": {"tf": 9.219544457292887}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.rv": {"tf": 8.660254037844387}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.cached": {"tf": 6.782329983125268}, "arianna.ppl.diagnostics.ess_kish": {"tf": 5.830951894845301}, "arianna.ppl.inference.Chain.__init__": {"tf": 5.830951894845301}, "arianna.ppl.inference.Chain.get": {"tf": 4.898979485566356}, "arianna.ppl.inference.Chain.subset": {"tf": 6.164414002968976}, "arianna.ppl.inference.InferenceEngine.fit": {"tf": 3.1622776601683795}, "arianna.ppl.inference.MCMC.step": {"tf": 3.1622776601683795}, "arianna.ppl.inference.MCMC.fit": {"tf": 6}, "arianna.ppl.inference.MCMC.logprob": {"tf": 8.246211251235321}, "arianna.ppl.inference.SingleWalkerMCMC.step": {"tf": 6.244997998398398}, "arianna.ppl.inference.RandomWalkMetropolis.__init__": {"tf": 12.84523257866513}, "arianna.ppl.inference.RandomWalkMetropolis.step": {"tf": 6.244997998398398}, "arianna.ppl.inference.AffineInvariantMCMC.logprob": {"tf": 8.54400374531753}, "arianna.ppl.inference.AffineInvariantMCMC.step": {"tf": 6.708203932499369}, "arianna.ppl.inference.AffineInvariantMCMC.fit": {"tf": 7.681145747868608}, "arianna.ppl.inference.AIES.__init__": {"tf": 14.2828568570857}, "arianna.ppl.inference.AIES.default_temperature_fn": {"tf": 4}, "arianna.ppl.inference.AIES.step": {"tf": 6.708203932499369}, "arianna.ppl.inference.ParallelAIES.__init__": {"tf": 14.071247279470288}, "arianna.ppl.inference.ParallelAIES.step": {"tf": 6.708203932499369}, "arianna.ppl.inference.ImportanceSampling.__init__": {"tf": 12.649110640673518}, "arianna.ppl.inference.ImportanceSampling.fit": {"tf": 5.656854249492381}, "arianna.ppl.inference.LaplaceApproximation.__init__": {"tf": 10}, "arianna.ppl.inference.LaplaceApproximation.logprob": {"tf": 4.898979485566356}, "arianna.ppl.inference.LaplaceApproximation.fit": {"tf": 4.898979485566356}, "arianna.ppl.shaper.Shaper.__init__": {"tf": 5.656854249492381}, "arianna.ppl.shaper.Shaper.from_state": {"tf": 6.082762530298219}, "arianna.ppl.shaper.Shaper.vec": {"tf": 6.557438524302}, "arianna.ppl.shaper.Shaper.unvec": {"tf": 6.557438524302}}, "df": 129, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"arianna.distributions.abstract.Distribution.logpdf": {"tf": 1}, "arianna.distributions.abstract.Distribution.sample": {"tf": 1}, "arianna.distributions.abstract.Distribution.pdf": {"tf": 1}, "arianna.distributions.abstract.Continuous.to_real": {"tf": 1}, "arianna.distributions.abstract.Continuous.to_native": {"tf": 1}, "arianna.distributions.abstract.Continuous.logdetjac": {"tf": 1}, "arianna.distributions.abstract.Univariate.sample": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous.logpdf_plus_logdetjac": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous.logcdf": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous.cdf": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous.survival": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous.logsurvival": {"tf": 1}, "arianna.distributions.abstract.Positive.to_real": {"tf": 1}, "arianna.distributions.abstract.Positive.to_native": {"tf": 1}, "arianna.distributions.abstract.Positive.logdetjac": {"tf": 1}, "arianna.distributions.abstract.Positive.logpdf": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.to_real": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.to_native": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.logdetjac": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.logpdf": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous.logpdf_plus_logdetjac": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous.cov": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous.mean": {"tf": 1}, "arianna.distributions.abstract.Real.to_real": {"tf": 1}, "arianna.distributions.abstract.Real.to_native": {"tf": 1}, "arianna.distributions.abstract.Real.logdetjac": {"tf": 1}, "arianna.distributions.distributions.Independent.is_same_family": {"tf": 1}, "arianna.distributions.distributions.Independent.logpdf": {"tf": 1}, "arianna.distributions.distributions.Independent.sample": {"tf": 1}, "arianna.distributions.distributions.Uniform.logcdf": {"tf": 1}, "arianna.distributions.distributions.Uniform.cdf": {"tf": 1}, "arianna.distributions.distributions.Beta.logcdf": {"tf": 1}, "arianna.distributions.distributions.Beta.cdf": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.cdf": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.logcdf": {"tf": 1}, "arianna.distributions.distributions.Gamma.logcdf": {"tf": 1}, "arianna.distributions.distributions.Gamma.cdf": {"tf": 1}, "arianna.distributions.distributions.Gamma.survival": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.logcdf": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.cdf": {"tf": 1}, "arianna.distributions.distributions.LogNormal.logcdf": {"tf": 1}, "arianna.distributions.distributions.LogNormal.cdf": {"tf": 1}, "arianna.distributions.distributions.Normal.logpdf": {"tf": 1}, "arianna.distributions.distributions.Normal.logcdf": {"tf": 1}, "arianna.distributions.distributions.Normal.cdf": {"tf": 1}, "arianna.distributions.distributions.Normal.survival": {"tf": 1}, "arianna.distributions.distributions.MvNormal.logpdf": {"tf": 1}, "arianna.distributions.distributions.MvNormal.sample": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.logpdf": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.sample": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.to_real": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.to_native": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.logdetjac": {"tf": 1}, "arianna.ppl.context.BasicDistribution.logpdf": {"tf": 1}, "arianna.ppl.context.BasicDistribution.sample": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.logdetjac": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.logpdf_plus_logdetjac": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.to_real": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.to_native": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.logpdf": {"tf": 1}, "arianna.ppl.context.Context.rv": {"tf": 1}, "arianna.ppl.context.Context.cached": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.cached": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.cached": {"tf": 1}, "arianna.ppl.context.Predictive.rv": {"tf": 1}, "arianna.ppl.context.Predictive.cached": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.rv": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.cached": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.rv": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.cached": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.cached": {"tf": 1}, "arianna.ppl.inference.Chain.get": {"tf": 1}, "arianna.ppl.inference.Chain.subset": {"tf": 1}, "arianna.ppl.inference.InferenceEngine.fit": {"tf": 1}, "arianna.ppl.inference.MCMC.step": {"tf": 1}, "arianna.ppl.inference.MCMC.fit": {"tf": 1}, "arianna.ppl.inference.MCMC.logprob": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.step": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.step": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.logprob": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.step": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.fit": {"tf": 1}, "arianna.ppl.inference.AIES.step": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.step": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.fit": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.logprob": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.fit": {"tf": 1}, "arianna.ppl.shaper.Shaper.vec": {"tf": 1}, "arianna.ppl.shaper.Shaper.unvec": {"tf": 1}}, "df": 92}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"arianna.distributions.abstract.Distribution.sample": {"tf": 1}, "arianna.distributions.abstract.Univariate.sample": {"tf": 1}, "arianna.distributions.distributions.Independent.sample": {"tf": 1}, "arianna.distributions.distributions.MvNormal.sample": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.sample": {"tf": 1}, "arianna.ppl.context.BasicDistribution.sample": {"tf": 1}}, "df": 6, "s": {"docs": {"arianna.ppl.inference.AffineInvariantMCMC.fit": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"arianna.distributions.abstract.Distribution.sample": {"tf": 1}, "arianna.distributions.abstract.Univariate.sample": {"tf": 1}, "arianna.distributions.distributions.Independent.sample": {"tf": 1}, "arianna.distributions.distributions.Gamma.__init__": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.__init__": {"tf": 1}, "arianna.distributions.distributions.MvNormal.sample": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.sample": {"tf": 1}, "arianna.ppl.context.BasicDistribution.sample": {"tf": 1}, "arianna.ppl.shaper.Shaper.__init__": {"tf": 1}}, "df": 9}}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {"arianna.distributions.distributions.Uniform.from_mean_shift": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"arianna.distributions.distributions.Gamma.__init__": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.__init__": {"tf": 1}, "arianna.distributions.distributions.Normal.__init__": {"tf": 1}}, "df": 3}}}}, "t": {"docs": {}, "df": 0, "d": {"docs": {"arianna.distributions.distributions.Gamma.from_mean_std": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.from_mean_std": {"tf": 1}, "arianna.distributions.distributions.LogNormal.from_mean_std": {"tf": 1}}, "df": 3}, "r": {"docs": {"arianna.ppl.context.Context.rv": {"tf": 1}, "arianna.ppl.context.Context.cached": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.run": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.cached": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.__init__": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.run": {"tf": 1.4142135623730951}, "arianna.ppl.context.LogprobAndTrace.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.cached": {"tf": 1}, "arianna.ppl.context.Predictive.__init__": {"tf": 1}, "arianna.ppl.context.Predictive.run": {"tf": 1.4142135623730951}, "arianna.ppl.context.Predictive.rv": {"tf": 1}, "arianna.ppl.context.Predictive.cached": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.__init__": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.run": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformedLogprobAndTrace.rv": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.cached": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.__init__": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.run": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.rv": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.cached": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.__init__": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.run": {"tf": 1.4142135623730951}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.cached": {"tf": 1}, "arianna.ppl.inference.Chain.__init__": {"tf": 1}, "arianna.ppl.inference.Chain.get": {"tf": 1}, "arianna.ppl.inference.MCMC.logprob": {"tf": 1.4142135623730951}, "arianna.ppl.inference.SingleWalkerMCMC.step": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.__init__": {"tf": 1.4142135623730951}, "arianna.ppl.inference.RandomWalkMetropolis.step": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.logprob": {"tf": 1.4142135623730951}, "arianna.ppl.inference.AffineInvariantMCMC.step": {"tf": 1}, "arianna.ppl.inference.AIES.__init__": {"tf": 1}, "arianna.ppl.inference.AIES.step": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.__init__": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.step": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.__init__": {"tf": 1}, "arianna.ppl.shaper.Shaper.__init__": {"tf": 1}, "arianna.ppl.shaper.Shaper.from_state": {"tf": 1}, "arianna.ppl.shaper.Shaper.vec": {"tf": 1}, "arianna.ppl.shaper.Shaper.unvec": {"tf": 1}}, "df": 42}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.context.LogprobAndTrace.__init__": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.run": {"tf": 1}, "arianna.ppl.context.Predictive.__init__": {"tf": 1}, "arianna.ppl.context.Predictive.run": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.__init__": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.run": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.__init__": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.run": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.__init__": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.run": {"tf": 1}, "arianna.ppl.inference.MCMC.logprob": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.__init__": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.logprob": {"tf": 1}, "arianna.ppl.inference.AIES.__init__": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.__init__": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.logprob": {"tf": 1}, "arianna.ppl.shaper.Shaper.from_state": {"tf": 1}, "arianna.ppl.shaper.Shaper.vec": {"tf": 1}, "arianna.ppl.shaper.Shaper.unvec": {"tf": 1}}, "df": 19, "s": {"docs": {"arianna.ppl.inference.Chain.__init__": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"arianna.distributions.distributions.LogNormal.__init__": {"tf": 1}}, "df": 1}}}}}, "x": {"docs": {"arianna.distributions.abstract.Distribution.logpdf": {"tf": 1}, "arianna.distributions.abstract.Distribution.pdf": {"tf": 1}, "arianna.distributions.abstract.Continuous.to_real": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous.logcdf": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous.cdf": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous.survival": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous.logsurvival": {"tf": 1}, "arianna.distributions.abstract.Positive.to_real": {"tf": 1}, "arianna.distributions.abstract.Positive.logpdf": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.to_real": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.logpdf": {"tf": 1}, "arianna.distributions.abstract.Real.to_real": {"tf": 1}, "arianna.distributions.distributions.Independent.logpdf": {"tf": 1}, "arianna.distributions.distributions.Uniform.logcdf": {"tf": 1}, "arianna.distributions.distributions.Uniform.cdf": {"tf": 1}, "arianna.distributions.distributions.Beta.logcdf": {"tf": 1}, "arianna.distributions.distributions.Beta.cdf": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.cdf": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.logcdf": {"tf": 1}, "arianna.distributions.distributions.Gamma.logcdf": {"tf": 1}, "arianna.distributions.distributions.Gamma.cdf": {"tf": 1}, "arianna.distributions.distributions.Gamma.survival": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.logcdf": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.cdf": {"tf": 1}, "arianna.distributions.distributions.LogNormal.logcdf": {"tf": 1}, "arianna.distributions.distributions.LogNormal.cdf": {"tf": 1}, "arianna.distributions.distributions.Normal.logpdf": {"tf": 1}, "arianna.distributions.distributions.Normal.logcdf": {"tf": 1}, "arianna.distributions.distributions.Normal.cdf": {"tf": 1}, "arianna.distributions.distributions.Normal.survival": {"tf": 1}, "arianna.distributions.distributions.MvNormal.logpdf": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.logpdf": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.to_real": {"tf": 1}, "arianna.ppl.context.BasicDistribution.logpdf": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.to_real": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.logpdf": {"tf": 1}}, "df": 36}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"arianna.distributions.abstract.Distribution.logpdf": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.Distribution.pdf": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.Continuous.to_real": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.Continuous.to_native": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.Continuous.logdetjac": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.UnivariateContinuous.logpdf_plus_logdetjac": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.UnivariateContinuous.logcdf": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.UnivariateContinuous.cdf": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.UnivariateContinuous.survival": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.UnivariateContinuous.logsurvival": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.Positive.to_real": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.Positive.to_native": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.Positive.logdetjac": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.Positive.logpdf": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.LowerUpperBounded.to_real": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.LowerUpperBounded.to_native": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.LowerUpperBounded.logdetjac": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.LowerUpperBounded.logpdf": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.MultivariateContinuous.logpdf_plus_logdetjac": {"tf": 1}, "arianna.distributions.abstract.Real.to_real": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.Real.to_native": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.Real.logdetjac": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Independent.logpdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Uniform.logcdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Uniform.cdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Beta.__init__": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Beta.logcdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Beta.cdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.ScaledBeta.__init__": {"tf": 2}, "arianna.distributions.distributions.ScaledBeta.cdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.ScaledBeta.logcdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Gamma.__init__": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Gamma.logcdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Gamma.cdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Gamma.survival": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.InverseGamma.__init__": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.InverseGamma.logcdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.InverseGamma.cdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.LogNormal.__init__": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.LogNormal.logcdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.LogNormal.cdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Normal.__init__": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Normal.logpdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Normal.logcdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Normal.cdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Normal.survival": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Dirichlet.logpdf": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.to_real": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.to_native": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.logdetjac": {"tf": 1}, "arianna.ppl.context.BasicDistribution.logpdf": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformableDistribution.logdetjac": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformableDistribution.logpdf_plus_logdetjac": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformableDistribution.to_real": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformableDistribution.to_native": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformableDistribution.logpdf": {"tf": 1.4142135623730951}, "arianna.ppl.context.Context.rv": {"tf": 1.4142135623730951}, "arianna.ppl.context.Context.cached": {"tf": 1.4142135623730951}, "arianna.ppl.context.LogprobAndPriorSample.run": {"tf": 1.4142135623730951}, "arianna.ppl.context.LogprobAndPriorSample.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.cached": {"tf": 1.4142135623730951}, "arianna.ppl.context.LogprobAndTrace.__init__": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.run": {"tf": 1.7320508075688772}, "arianna.ppl.context.LogprobAndTrace.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.cached": {"tf": 1.4142135623730951}, "arianna.ppl.context.Predictive.__init__": {"tf": 1}, "arianna.ppl.context.Predictive.run": {"tf": 1.4142135623730951}, "arianna.ppl.context.Predictive.rv": {"tf": 1.4142135623730951}, "arianna.ppl.context.Predictive.cached": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformedLogprobAndTrace.__init__": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.run": {"tf": 1.7320508075688772}, "arianna.ppl.context.TransformedLogprobAndTrace.rv": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.cached": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformedPredictive.__init__": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.run": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.rv": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformedPredictive.cached": {"tf": 1.4142135623730951}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.__init__": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.run": {"tf": 2}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.cached": {"tf": 1.4142135623730951}, "arianna.ppl.diagnostics.ess_kish": {"tf": 1}, "arianna.ppl.inference.Chain.__init__": {"tf": 1}, "arianna.ppl.inference.MCMC.logprob": {"tf": 1.7320508075688772}, "arianna.ppl.inference.SingleWalkerMCMC.step": {"tf": 1.4142135623730951}, "arianna.ppl.inference.RandomWalkMetropolis.__init__": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.step": {"tf": 1.4142135623730951}, "arianna.ppl.inference.AffineInvariantMCMC.logprob": {"tf": 2}, "arianna.ppl.inference.AffineInvariantMCMC.step": {"tf": 1.4142135623730951}, "arianna.ppl.inference.AIES.__init__": {"tf": 1.7320508075688772}, "arianna.ppl.inference.AIES.default_temperature_fn": {"tf": 1}, "arianna.ppl.inference.AIES.step": {"tf": 1.4142135623730951}, "arianna.ppl.inference.ParallelAIES.__init__": {"tf": 1.4142135623730951}, "arianna.ppl.inference.ParallelAIES.step": {"tf": 1.4142135623730951}, "arianna.ppl.inference.ImportanceSampling.__init__": {"tf": 1.4142135623730951}, "arianna.ppl.inference.LaplaceApproximation.logprob": {"tf": 1}, "arianna.ppl.shaper.Shaper.from_state": {"tf": 1}, "arianna.ppl.shaper.Shaper.vec": {"tf": 1}, "arianna.ppl.shaper.Shaper.unvec": {"tf": 1}}, "df": 99}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.shaper.Shaper.unvec": {"tf": 1}}, "df": 1}}}, "n": {"docs": {"arianna.ppl.inference.AIES.__init__": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.inference.ParallelAIES.__init__": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"arianna.distributions.abstract.Distribution.logpdf": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.Distribution.sample": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.Distribution.pdf": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.Continuous.to_real": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.Continuous.to_native": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.Continuous.logdetjac": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.Univariate.sample": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.UnivariateContinuous.logpdf_plus_logdetjac": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.UnivariateContinuous.logcdf": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.UnivariateContinuous.cdf": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.UnivariateContinuous.survival": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.UnivariateContinuous.logsurvival": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.Positive.to_real": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.Positive.to_native": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.Positive.logdetjac": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.Positive.logpdf": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.LowerUpperBounded.to_real": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.LowerUpperBounded.to_native": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.LowerUpperBounded.logdetjac": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.LowerUpperBounded.logpdf": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.MultivariateContinuous.logpdf_plus_logdetjac": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.MultivariateContinuous.cov": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous.mean": {"tf": 1}, "arianna.distributions.abstract.Real.to_real": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.Real.to_native": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.Real.logdetjac": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Independent.logpdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Independent.sample": {"tf": 1}, "arianna.distributions.distributions.Uniform.logcdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Uniform.cdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Beta.__init__": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Beta.logcdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Beta.cdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.ScaledBeta.__init__": {"tf": 2}, "arianna.distributions.distributions.ScaledBeta.cdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.ScaledBeta.logcdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Gamma.__init__": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Gamma.logcdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Gamma.cdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Gamma.survival": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.InverseGamma.__init__": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.InverseGamma.logcdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.InverseGamma.cdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.LogNormal.__init__": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.LogNormal.logcdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.LogNormal.cdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Normal.__init__": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Normal.logpdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Normal.logcdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Normal.cdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Normal.survival": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.MvNormal.__init__": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.MvNormal.sample": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Dirichlet.__init__": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.logpdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Dirichlet.sample": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Dirichlet.to_real": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Dirichlet.to_native": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Dirichlet.logdetjac": {"tf": 1.4142135623730951}, "arianna.ppl.context.BasicDistribution.logpdf": {"tf": 1.4142135623730951}, "arianna.ppl.context.BasicDistribution.sample": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformableDistribution.logdetjac": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformableDistribution.logpdf_plus_logdetjac": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformableDistribution.to_real": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformableDistribution.to_native": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformableDistribution.logpdf": {"tf": 1.4142135623730951}, "arianna.ppl.context.Context.rv": {"tf": 1.4142135623730951}, "arianna.ppl.context.Context.cached": {"tf": 1.4142135623730951}, "arianna.ppl.context.LogprobAndPriorSample.__init__": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.run": {"tf": 1.4142135623730951}, "arianna.ppl.context.LogprobAndPriorSample.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.cached": {"tf": 1.4142135623730951}, "arianna.ppl.context.LogprobAndTrace.__init__": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.run": {"tf": 1.4142135623730951}, "arianna.ppl.context.LogprobAndTrace.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.cached": {"tf": 1.4142135623730951}, "arianna.ppl.context.Predictive.__init__": {"tf": 1.4142135623730951}, "arianna.ppl.context.Predictive.run": {"tf": 1.7320508075688772}, "arianna.ppl.context.Predictive.rv": {"tf": 1.4142135623730951}, "arianna.ppl.context.Predictive.cached": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformedLogprobAndTrace.__init__": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.run": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformedLogprobAndTrace.rv": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.cached": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformedPredictive.__init__": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformedPredictive.run": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformedPredictive.rv": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformedPredictive.cached": {"tf": 1.4142135623730951}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.__init__": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.run": {"tf": 1.4142135623730951}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.cached": {"tf": 1.4142135623730951}, "arianna.ppl.diagnostics.ess_kish": {"tf": 1}, "arianna.ppl.inference.Chain.__init__": {"tf": 1}, "arianna.ppl.inference.Chain.get": {"tf": 1}, "arianna.ppl.inference.MCMC.logprob": {"tf": 1.4142135623730951}, "arianna.ppl.inference.SingleWalkerMCMC.step": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.__init__": {"tf": 1.4142135623730951}, "arianna.ppl.inference.RandomWalkMetropolis.step": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.logprob": {"tf": 1.4142135623730951}, "arianna.ppl.inference.AffineInvariantMCMC.step": {"tf": 1}, "arianna.ppl.inference.AIES.__init__": {"tf": 1.4142135623730951}, "arianna.ppl.inference.AIES.step": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.__init__": {"tf": 1.4142135623730951}, "arianna.ppl.inference.ParallelAIES.step": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.__init__": {"tf": 1.4142135623730951}, "arianna.ppl.inference.LaplaceApproximation.__init__": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.logprob": {"tf": 1}, "arianna.ppl.shaper.Shaper.from_state": {"tf": 1}, "arianna.ppl.shaper.Shaper.vec": {"tf": 1.4142135623730951}, "arianna.ppl.shaper.Shaper.unvec": {"tf": 1.4142135623730951}}, "df": 111}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"arianna.distributions.abstract.Distribution.logpdf": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.Distribution.sample": {"tf": 1}, "arianna.distributions.abstract.Distribution.pdf": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.Continuous.to_real": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.Continuous.to_native": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.Continuous.logdetjac": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.Univariate.sample": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous.logpdf_plus_logdetjac": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.UnivariateContinuous.logcdf": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.UnivariateContinuous.cdf": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.UnivariateContinuous.survival": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.UnivariateContinuous.logsurvival": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.Positive.to_real": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.Positive.to_native": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.Positive.logdetjac": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.Positive.logpdf": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.LowerUpperBounded.to_real": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.LowerUpperBounded.to_native": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.LowerUpperBounded.logdetjac": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.LowerUpperBounded.logpdf": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.MultivariateContinuous.logpdf_plus_logdetjac": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.MultivariateContinuous.cov": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous.mean": {"tf": 1}, "arianna.distributions.abstract.Real.to_real": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.Real.to_native": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.Real.logdetjac": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Independent.logpdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Independent.sample": {"tf": 1}, "arianna.distributions.distributions.Uniform.logcdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Uniform.cdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Beta.__init__": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Beta.logcdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Beta.cdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.ScaledBeta.__init__": {"tf": 2}, "arianna.distributions.distributions.ScaledBeta.cdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.ScaledBeta.logcdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Gamma.__init__": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Gamma.logcdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Gamma.cdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Gamma.survival": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.InverseGamma.__init__": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.InverseGamma.logcdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.InverseGamma.cdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.LogNormal.__init__": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.LogNormal.logcdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.LogNormal.cdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Normal.__init__": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Normal.logpdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Normal.logcdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Normal.cdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Normal.survival": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.MvNormal.__init__": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.MvNormal.sample": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.__init__": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.logpdf": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Dirichlet.sample": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.to_real": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Dirichlet.to_native": {"tf": 1.4142135623730951}, "arianna.distributions.distributions.Dirichlet.logdetjac": {"tf": 1.4142135623730951}, "arianna.ppl.context.BasicDistribution.logpdf": {"tf": 1.4142135623730951}, "arianna.ppl.context.BasicDistribution.sample": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.logdetjac": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformableDistribution.logpdf_plus_logdetjac": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformableDistribution.to_real": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformableDistribution.to_native": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformableDistribution.logpdf": {"tf": 1.4142135623730951}, "arianna.ppl.context.Context.rv": {"tf": 1.4142135623730951}, "arianna.ppl.context.Context.cached": {"tf": 1.4142135623730951}, "arianna.ppl.context.LogprobAndPriorSample.run": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.cached": {"tf": 1.4142135623730951}, "arianna.ppl.context.LogprobAndTrace.__init__": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.run": {"tf": 1.4142135623730951}, "arianna.ppl.context.LogprobAndTrace.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.cached": {"tf": 1.4142135623730951}, "arianna.ppl.context.Predictive.__init__": {"tf": 1}, "arianna.ppl.context.Predictive.run": {"tf": 1.4142135623730951}, "arianna.ppl.context.Predictive.rv": {"tf": 1.4142135623730951}, "arianna.ppl.context.Predictive.cached": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformedLogprobAndTrace.__init__": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.run": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformedLogprobAndTrace.rv": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.cached": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformedPredictive.__init__": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.run": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.rv": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformedPredictive.cached": {"tf": 1.4142135623730951}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.__init__": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.run": {"tf": 1.4142135623730951}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.cached": {"tf": 1.4142135623730951}, "arianna.ppl.diagnostics.ess_kish": {"tf": 1}, "arianna.ppl.inference.Chain.__init__": {"tf": 1}, "arianna.ppl.inference.Chain.get": {"tf": 1}, "arianna.ppl.inference.MCMC.logprob": {"tf": 1.4142135623730951}, "arianna.ppl.inference.SingleWalkerMCMC.step": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.__init__": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.step": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.logprob": {"tf": 1.4142135623730951}, "arianna.ppl.inference.AffineInvariantMCMC.step": {"tf": 1}, "arianna.ppl.inference.AIES.__init__": {"tf": 1}, "arianna.ppl.inference.AIES.step": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.__init__": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.step": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.__init__": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.logprob": {"tf": 1}, "arianna.ppl.shaper.Shaper.from_state": {"tf": 1}, "arianna.ppl.shaper.Shaper.vec": {"tf": 1.4142135623730951}, "arianna.ppl.shaper.Shaper.unvec": {"tf": 1.4142135623730951}}, "df": 109}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"arianna.distributions.distributions.MvNormal.__init__": {"tf": 1.4142135623730951}, "arianna.ppl.context.Context.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.__init__": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.run": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.rv": {"tf": 1}, "arianna.ppl.context.Predictive.__init__": {"tf": 1.4142135623730951}, "arianna.ppl.context.Predictive.run": {"tf": 1.4142135623730951}, "arianna.ppl.context.Predictive.rv": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.rv": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.__init__": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformedPredictive.run": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformedPredictive.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.rv": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.__init__": {"tf": 1.7320508075688772}, "arianna.ppl.inference.AffineInvariantMCMC.fit": {"tf": 1}, "arianna.ppl.inference.AIES.__init__": {"tf": 1.4142135623730951}, "arianna.ppl.inference.ParallelAIES.__init__": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.__init__": {"tf": 1.7320508075688772}, "arianna.ppl.inference.LaplaceApproximation.__init__": {"tf": 1}}, "df": 20, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.context.Context.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.rv": {"tf": 1}, "arianna.ppl.context.Predictive.rv": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.rv": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.rv": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.__init__": {"tf": 1}, "arianna.ppl.inference.AIES.__init__": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.__init__": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.__init__": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.__init__": {"tf": 1}}, "df": 12}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.context.Context.rv": {"tf": 1}, "arianna.ppl.context.Context.cached": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.cached": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.cached": {"tf": 1}, "arianna.ppl.context.Predictive.rv": {"tf": 1}, "arianna.ppl.context.Predictive.cached": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.rv": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.cached": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.rv": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.cached": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.cached": {"tf": 1}, "arianna.ppl.inference.Chain.get": {"tf": 1}}, "df": 15}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.inference.AIES.__init__": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.__init__": {"tf": 1}}, "df": 2}}}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.inference.ImportanceSampling.__init__": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.inference.ImportanceSampling.fit": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.fit": {"tf": 1}}, "df": 2}}}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"arianna.distributions.abstract.Distribution.sample": {"tf": 1}, "arianna.distributions.abstract.Univariate.sample": {"tf": 1}, "arianna.distributions.distributions.MvNormal.sample": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.sample": {"tf": 1}, "arianna.ppl.context.BasicDistribution.sample": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.run": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.run": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.run": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.run": {"tf": 1}, "arianna.ppl.inference.MCMC.logprob": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.step": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.step": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.logprob": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.step": {"tf": 1}, "arianna.ppl.inference.AIES.step": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.step": {"tf": 1}, "arianna.ppl.shaper.Shaper.__init__": {"tf": 1}}, "df": 17}}}}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"arianna.distributions.distributions.Beta.__init__": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.__init__": {"tf": 1}, "arianna.distributions.distributions.Gamma.__init__": {"tf": 1}, "arianna.distributions.distributions.Gamma.from_mean_std": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.__init__": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.from_mean_std": {"tf": 1}, "arianna.distributions.distributions.LogNormal.__init__": {"tf": 1}, "arianna.distributions.distributions.LogNormal.from_mean_std": {"tf": 1}, "arianna.distributions.distributions.Normal.__init__": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.__init__": {"tf": 1}, "arianna.ppl.context.Predictive.__init__": {"tf": 1}, "arianna.ppl.context.Predictive.run": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.__init__": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.run": {"tf": 1}, "arianna.ppl.diagnostics.ess_kish": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.__init__": {"tf": 1}, "arianna.ppl.inference.AIES.__init__": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.__init__": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.__init__": {"tf": 1}}, "df": 19}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis.__init__": {"tf": 1}, "arianna.ppl.inference.AIES.__init__": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.__init__": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.__init__": {"tf": 1}}, "df": 4, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"arianna.ppl.context.TransformedLogprobAndTrace.rv": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.rv": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}}}}}}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"arianna.ppl.inference.Chain.subset": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.inference.AIES.__init__": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.__init__": {"tf": 1}}, "df": 2}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"arianna.distributions.abstract.Distribution.sample": {"tf": 1}, "arianna.distributions.abstract.Univariate.sample": {"tf": 1}, "arianna.distributions.distributions.MvNormal.sample": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.sample": {"tf": 1}, "arianna.ppl.context.BasicDistribution.sample": {"tf": 1}, "arianna.ppl.inference.Chain.subset": {"tf": 1.4142135623730951}, "arianna.ppl.inference.AffineInvariantMCMC.fit": {"tf": 1}, "arianna.ppl.inference.AIES.__init__": {"tf": 1.4142135623730951}, "arianna.ppl.inference.AIES.default_temperature_fn": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.__init__": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.__init__": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.fit": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.fit": {"tf": 1}, "arianna.ppl.shaper.Shaper.__init__": {"tf": 1}}, "df": 14}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.inference.MCMC.fit": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.fit": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.fit": {"tf": 1}}, "df": 3}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis.__init__": {"tf": 1}, "arianna.ppl.inference.AIES.__init__": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.__init__": {"tf": 1}}, "df": 3}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"arianna.ppl.inference.AIES.default_temperature_fn": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.inference.Chain.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"arianna.distributions.abstract.Distribution.sample": {"tf": 1}, "arianna.distributions.abstract.Univariate.sample": {"tf": 1}, "arianna.distributions.distributions.MvNormal.sample": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.sample": {"tf": 1}, "arianna.ppl.context.BasicDistribution.sample": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.__init__": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.run": {"tf": 1}, "arianna.ppl.context.Predictive.__init__": {"tf": 1}, "arianna.ppl.context.Predictive.run": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.__init__": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.run": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.__init__": {"tf": 1}, "arianna.ppl.inference.AIES.__init__": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.__init__": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.__init__": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.__init__": {"tf": 1}}, "df": 16}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"arianna.distributions.abstract.Distribution.sample": {"tf": 1}, "arianna.distributions.abstract.Univariate.sample": {"tf": 1}, "arianna.distributions.distributions.MvNormal.sample": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.sample": {"tf": 1}, "arianna.ppl.context.BasicDistribution.sample": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.__init__": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.run": {"tf": 1}, "arianna.ppl.context.Predictive.__init__": {"tf": 1}, "arianna.ppl.context.Predictive.run": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.__init__": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.run": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.__init__": {"tf": 1}, "arianna.ppl.inference.AIES.__init__": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.__init__": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.__init__": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.__init__": {"tf": 1}}, "df": 16}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"arianna.ppl.context.Predictive.__init__": {"tf": 1}, "arianna.ppl.context.Predictive.run": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.__init__": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.run": {"tf": 1}}, "df": 4}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"arianna.ppl.inference.AffineInvariantMCMC.fit": {"tf": 1}}, "df": 1}}}}}}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"arianna.distributions.abstract.Distribution.sample": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.Univariate.sample": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.MvNormal.sample": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Dirichlet.sample": {"tf": 1.7320508075688772}, "arianna.ppl.context.BasicDistribution.sample": {"tf": 1.7320508075688772}, "arianna.ppl.context.LogprobAndPriorSample.__init__": {"tf": 1.4142135623730951}, "arianna.ppl.context.LogprobAndPriorSample.run": {"tf": 1.4142135623730951}, "arianna.ppl.context.Predictive.__init__": {"tf": 1.4142135623730951}, "arianna.ppl.context.Predictive.run": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformedPredictive.__init__": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformedPredictive.run": {"tf": 1.4142135623730951}, "arianna.ppl.inference.RandomWalkMetropolis.__init__": {"tf": 1.4142135623730951}, "arianna.ppl.inference.AIES.__init__": {"tf": 1.7320508075688772}, "arianna.ppl.inference.ParallelAIES.__init__": {"tf": 1.7320508075688772}, "arianna.ppl.inference.ImportanceSampling.__init__": {"tf": 1.4142135623730951}, "arianna.ppl.inference.LaplaceApproximation.__init__": {"tf": 1.4142135623730951}}, "df": 16}}}}}}}}}, "p": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis.__init__": {"tf": 1}, "arianna.ppl.inference.AIES.__init__": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.__init__": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.__init__": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.__init__": {"tf": 1}}, "df": 5, "c": {"docs": {}, "df": 0, "g": {"6": {"4": {"docs": {"arianna.distributions.abstract.Distribution.sample": {"tf": 1}, "arianna.distributions.abstract.Univariate.sample": {"tf": 1}, "arianna.distributions.distributions.MvNormal.sample": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.sample": {"tf": 1}, "arianna.ppl.context.BasicDistribution.sample": {"tf": 1}, "arianna.ppl.inference.AIES.__init__": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.__init__": {"tf": 1}}, "df": 7}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "p": {"docs": {}, "df": 0, "l": {"docs": {"arianna.ppl.context.Context.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.rv": {"tf": 1}, "arianna.ppl.context.Predictive.rv": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.rv": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.rv": {"tf": 1}, "arianna.ppl.inference.MCMC.fit": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.__init__": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.fit": {"tf": 1}, "arianna.ppl.inference.AIES.__init__": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.__init__": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.__init__": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.fit": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.__init__": {"tf": 1}}, "df": 15}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis.__init__": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.inference.ImportanceSampling.__init__": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {"arianna.distributions.distributions.Beta.__init__": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.__init__": {"tf": 1}, "arianna.ppl.inference.AIES.__init__": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.__init__": {"tf": 1}}, "df": 4, "t": {"docs": {"arianna.distributions.abstract.Distribution.sample": {"tf": 1}, "arianna.distributions.abstract.Univariate.sample": {"tf": 1}, "arianna.distributions.distributions.MvNormal.sample": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.sample": {"tf": 1}, "arianna.ppl.context.BasicDistribution.sample": {"tf": 1}, "arianna.ppl.inference.AIES.__init__": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.__init__": {"tf": 1}}, "df": 7}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {"arianna.distributions.distributions.Independent.__init__": {"tf": 1}, "arianna.distributions.distributions.Independent.is_same_family": {"tf": 1}, "arianna.ppl.context.Context.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.rv": {"tf": 1}, "arianna.ppl.context.Predictive.rv": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.rv": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.rv": {"tf": 1}, "arianna.ppl.inference.MCMC.fit": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.__init__": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.fit": {"tf": 1}, "arianna.ppl.inference.AIES.__init__": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.__init__": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.__init__": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.fit": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.__init__": {"tf": 1}}, "df": 17}}}}}, "g": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.context.BasicDistribution.__init__": {"tf": 1}, "arianna.ppl.inference.MCMC.fit": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.fit": {"tf": 1}}, "df": 3}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"arianna.distributions.distributions.Independent.__init__": {"tf": 1}, "arianna.distributions.distributions.Independent.is_same_family": {"tf": 1}}, "df": 2}}}}}}}, "n": {"docs": {}, "df": 0, "y": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis.__init__": {"tf": 1}}, "df": 1}}}, "z": {"docs": {"arianna.distributions.abstract.Continuous.to_native": {"tf": 1}, "arianna.distributions.abstract.Continuous.logdetjac": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous.logpdf_plus_logdetjac": {"tf": 1}, "arianna.distributions.abstract.Positive.to_native": {"tf": 1}, "arianna.distributions.abstract.Positive.logdetjac": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.to_native": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded.logdetjac": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous.logpdf_plus_logdetjac": {"tf": 1}, "arianna.distributions.abstract.Real.to_native": {"tf": 1}, "arianna.distributions.abstract.Real.logdetjac": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.to_native": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.logdetjac": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.logdetjac": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.logpdf_plus_logdetjac": {"tf": 1}, "arianna.ppl.context.TransformableDistribution.to_native": {"tf": 1}}, "df": 15}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.context.Context.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.rv": {"tf": 1}, "arianna.ppl.context.Predictive.rv": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.rv": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.rv": {"tf": 1}}, "df": 7, "s": {"docs": {"arianna.distributions.distributions.Independent.__init__": {"tf": 1}, "arianna.distributions.distributions.Independent.is_same_family": {"tf": 1}}, "df": 2}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"arianna.distributions.distributions.Independent.__init__": {"tf": 1}, "arianna.distributions.distributions.Independent.is_same_family": {"tf": 1}}, "df": 2, "s": {"docs": {"arianna.distributions.distributions.Independent.__init__": {"tf": 1}, "arianna.distributions.distributions.Independent.is_same_family": {"tf": 1}}, "df": 2}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.context.LogprobAndPriorSample.run": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.__init__": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.run": {"tf": 1.4142135623730951}, "arianna.ppl.context.Predictive.__init__": {"tf": 1}, "arianna.ppl.context.Predictive.run": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformedLogprobAndTrace.__init__": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.run": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformedPredictive.__init__": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.run": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.__init__": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.run": {"tf": 1.4142135623730951}, "arianna.ppl.inference.Chain.__init__": {"tf": 1}, "arianna.ppl.inference.MCMC.logprob": {"tf": 1.4142135623730951}, "arianna.ppl.inference.SingleWalkerMCMC.step": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.__init__": {"tf": 1.4142135623730951}, "arianna.ppl.inference.RandomWalkMetropolis.step": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.logprob": {"tf": 1.4142135623730951}, "arianna.ppl.inference.AffineInvariantMCMC.step": {"tf": 1}, "arianna.ppl.inference.AIES.__init__": {"tf": 1}, "arianna.ppl.inference.AIES.step": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.__init__": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.step": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.__init__": {"tf": 1}, "arianna.ppl.shaper.Shaper.__init__": {"tf": 1}, "arianna.ppl.shaper.Shaper.from_state": {"tf": 1}, "arianna.ppl.shaper.Shaper.vec": {"tf": 1}, "arianna.ppl.shaper.Shaper.unvec": {"tf": 1}}, "df": 27}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"arianna.ppl.context.LogprobAndPriorSample.run": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.run": {"tf": 1}, "arianna.ppl.context.Predictive.run": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.run": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.run": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.run": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.__init__": {"tf": 1}, "arianna.ppl.inference.AIES.__init__": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.__init__": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.__init__": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.__init__": {"tf": 1}}, "df": 11}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"arianna.distributions.distributions.Independent.__init__": {"tf": 1}, "arianna.distributions.distributions.Independent.is_same_family": {"tf": 1}, "arianna.distributions.distributions.Independent.logpdf": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.step": {"tf": 1.4142135623730951}, "arianna.ppl.inference.AIES.__init__": {"tf": 1}, "arianna.ppl.inference.AIES.step": {"tf": 1.4142135623730951}, "arianna.ppl.inference.ParallelAIES.__init__": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.step": {"tf": 1.4142135623730951}, "arianna.ppl.inference.ImportanceSampling.__init__": {"tf": 1}}, "df": 9}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"arianna.distributions.distributions.ScaledBeta.__init__": {"tf": 1}}, "df": 1}}}, "c": {"docs": {"arianna.distributions.distributions.Normal.__init__": {"tf": 1}}, "df": 1}, "g": {"docs": {"arianna.ppl.diagnostics.ess_kish": {"tf": 1}}, "df": 1}}}, "b": {"docs": {"arianna.distributions.distributions.Beta.__init__": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.__init__": {"tf": 1}}, "df": 2, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"arianna.distributions.distributions.Independent.is_same_family": {"tf": 1}, "arianna.distributions.distributions.Beta.__init__": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.__init__": {"tf": 1}, "arianna.distributions.distributions.Gamma.__init__": {"tf": 1}, "arianna.distributions.distributions.Gamma.from_mean_std": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.__init__": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.from_mean_std": {"tf": 1}, "arianna.distributions.distributions.LogNormal.__init__": {"tf": 1}, "arianna.distributions.distributions.LogNormal.from_mean_std": {"tf": 1}, "arianna.distributions.distributions.Normal.__init__": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.__init__": {"tf": 1}, "arianna.ppl.context.Predictive.__init__": {"tf": 1}, "arianna.ppl.context.Predictive.run": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.__init__": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.run": {"tf": 1}, "arianna.ppl.diagnostics.ess_kish": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.__init__": {"tf": 1}, "arianna.ppl.inference.AIES.__init__": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.__init__": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.__init__": {"tf": 1}}, "df": 20}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"arianna.ppl.context.Context.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.rv": {"tf": 1}, "arianna.ppl.context.Predictive.rv": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}, "e": {"docs": {"arianna.ppl.inference.ParallelAIES.__init__": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"arianna.ppl.inference.Chain.subset": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"arianna.distributions.distributions.Uniform.from_mean_shift": {"tf": 1}, "arianna.distributions.distributions.Gamma.from_mean_std": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.from_mean_std": {"tf": 1}, "arianna.distributions.distributions.LogNormal.from_mean_std": {"tf": 1}, "arianna.ppl.context.Context.run": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.run": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.run": {"tf": 1}, "arianna.ppl.context.Predictive.run": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.run": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.run": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.run": {"tf": 1}, "arianna.ppl.shaper.Shaper.from_state": {"tf": 1}}, "df": 12}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"arianna.distributions.distributions.Beta.__init__": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta.__init__": {"tf": 1}, "arianna.distributions.distributions.Gamma.__init__": {"tf": 1}, "arianna.distributions.distributions.Gamma.from_mean_std": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.__init__": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.from_mean_std": {"tf": 1}, "arianna.distributions.distributions.LogNormal.__init__": {"tf": 1}, "arianna.distributions.distributions.LogNormal.from_mean_std": {"tf": 1}, "arianna.distributions.distributions.Normal.__init__": {"tf": 1}, "arianna.distributions.distributions.Dirichlet.__init__": {"tf": 1}}, "df": 10}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"arianna.ppl.inference.MCMC.fit": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.fit": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.fit": {"tf": 1}}, "df": 3}}}}, "o": {"docs": {}, "df": 0, "v": {"docs": {"arianna.distributions.distributions.MvNormal.__init__": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"arianna.distributions.distributions.Dirichlet.__init__": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis.__init__": {"tf": 1}, "arianna.ppl.inference.AIES.__init__": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.__init__": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.__init__": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.__init__": {"tf": 1}}, "df": 5}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.inference.ParallelAIES.__init__": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.context.Context.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.rv": {"tf": 1}, "arianna.ppl.context.Predictive.rv": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.rv": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.rv": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.__init__": {"tf": 1.4142135623730951}, "arianna.ppl.inference.AIES.__init__": {"tf": 1.4142135623730951}, "arianna.ppl.inference.ParallelAIES.__init__": {"tf": 1.4142135623730951}, "arianna.ppl.inference.ImportanceSampling.__init__": {"tf": 1.4142135623730951}, "arianna.ppl.inference.LaplaceApproximation.__init__": {"tf": 1.4142135623730951}}, "df": 12}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"arianna.ppl.context.Predictive.__init__": {"tf": 1}, "arianna.ppl.context.Predictive.run": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.__init__": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.run": {"tf": 1}}, "df": 4}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis.__init__": {"tf": 1}, "arianna.ppl.inference.AIES.__init__": {"tf": 1.4142135623730951}, "arianna.ppl.inference.ParallelAIES.__init__": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.__init__": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.__init__": {"tf": 1}}, "df": 5}}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"arianna.distributions.distributions.Uniform.from_mean_shift": {"tf": 1}, "arianna.distributions.distributions.Gamma.from_mean_std": {"tf": 1}, "arianna.distributions.distributions.InverseGamma.from_mean_std": {"tf": 1}, "arianna.distributions.distributions.LogNormal.from_mean_std": {"tf": 1}, "arianna.distributions.distributions.MvNormal.__init__": {"tf": 1}}, "df": 5}}}, "u": {"docs": {"arianna.distributions.distributions.LogNormal.__init__": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"arianna.ppl.context.LogprobAndPriorSample.run": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.run": {"tf": 1}, "arianna.ppl.context.Predictive.run": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.run": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.run": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.run": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.__init__": {"tf": 1.4142135623730951}, "arianna.ppl.inference.AIES.__init__": {"tf": 1.4142135623730951}, "arianna.ppl.inference.ParallelAIES.__init__": {"tf": 1.4142135623730951}, "arianna.ppl.inference.ImportanceSampling.__init__": {"tf": 1.4142135623730951}, "arianna.ppl.inference.LaplaceApproximation.__init__": {"tf": 1.4142135623730951}}, "df": 11}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.inference.LaplaceApproximation.fit": {"tf": 1}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"arianna.distributions.distributions.ScaledBeta.__init__": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"arianna.ppl.context.Context.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.rv": {"tf": 1}, "arianna.ppl.context.Predictive.rv": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.rv": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.rv": {"tf": 1}}, "df": 7}}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"arianna.distributions.distributions.MvNormal.__init__": {"tf": 1.4142135623730951}, "arianna.ppl.context.LogprobAndPriorSample.__init__": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.run": {"tf": 1}, "arianna.ppl.context.Predictive.__init__": {"tf": 1.4142135623730951}, "arianna.ppl.context.Predictive.run": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformedPredictive.__init__": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformedPredictive.run": {"tf": 1.4142135623730951}, "arianna.ppl.inference.RandomWalkMetropolis.__init__": {"tf": 1.7320508075688772}, "arianna.ppl.inference.AffineInvariantMCMC.fit": {"tf": 1}, "arianna.ppl.inference.AIES.__init__": {"tf": 1.4142135623730951}, "arianna.ppl.inference.ParallelAIES.__init__": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.__init__": {"tf": 1.7320508075688772}, "arianna.ppl.inference.LaplaceApproximation.__init__": {"tf": 1}}, "df": 13}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.context.Context.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.rv": {"tf": 1}, "arianna.ppl.context.Predictive.rv": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.rv": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.rv": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.rv": {"tf": 1}}, "df": 7}}}, "k": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"arianna.distributions.distributions.MvNormal.__init__": {"tf": 1}, "arianna.ppl.context.BasicDistribution.__init__": {"tf": 1}, "arianna.ppl.inference.MCMC.fit": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.fit": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.fit": {"tf": 1}}, "df": 5}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.context.Context.cached": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample.cached": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.cached": {"tf": 1}, "arianna.ppl.context.Predictive.cached": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace.cached": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.cached": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.cached": {"tf": 1}}, "df": 7}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {"arianna.ppl.inference.LaplaceApproximation.logprob": {"tf": 1}}, "df": 1}}}, "w": {"docs": {"arianna.ppl.diagnostics.ess_kish": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"arianna.ppl.inference.ParallelAIES.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}, "bases": {"root": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "c": {"docs": {"arianna.distributions.abstract.Distribution": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.LowerUpperBounded": {"tf": 1.4142135623730951}, "arianna.ppl.context.Context": {"tf": 1.4142135623730951}, "arianna.ppl.inference.InferenceEngine": {"tf": 1.4142135623730951}}, "df": 4}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"arianna.distributions.distributions.IndependentRagged": {"tf": 1}, "arianna.distributions.distributions.Independent": {"tf": 1}, "arianna.distributions.distributions.Uniform": {"tf": 1}, "arianna.distributions.distributions.Beta": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta": {"tf": 1}, "arianna.distributions.distributions.Gamma": {"tf": 1}, "arianna.distributions.distributions.InverseGamma": {"tf": 1}, "arianna.distributions.distributions.LogNormal": {"tf": 1}, "arianna.distributions.distributions.Weibull": {"tf": 1}, "arianna.distributions.distributions.Gumbel": {"tf": 1}, "arianna.distributions.distributions.Logistic": {"tf": 1}, "arianna.distributions.distributions.LogLogistic": {"tf": 1}, "arianna.distributions.distributions.Normal": {"tf": 1}, "arianna.distributions.distributions.MvNormal": {"tf": 1}, "arianna.distributions.distributions.Dirichlet": {"tf": 1}}, "df": 15}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {"arianna.distributions.distributions.IndependentRagged": {"tf": 1}, "arianna.distributions.distributions.Independent": {"tf": 1}, "arianna.distributions.distributions.Uniform": {"tf": 1}, "arianna.distributions.distributions.Beta": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta": {"tf": 1}, "arianna.distributions.distributions.Gamma": {"tf": 1}, "arianna.distributions.distributions.InverseGamma": {"tf": 1}, "arianna.distributions.distributions.LogNormal": {"tf": 1}, "arianna.distributions.distributions.Weibull": {"tf": 1}, "arianna.distributions.distributions.Gumbel": {"tf": 1}, "arianna.distributions.distributions.Logistic": {"tf": 1}, "arianna.distributions.distributions.LogLogistic": {"tf": 1}, "arianna.distributions.distributions.Normal": {"tf": 1}, "arianna.distributions.distributions.MvNormal": {"tf": 1}, "arianna.distributions.distributions.Dirichlet": {"tf": 1}}, "df": 15}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "c": {"docs": {"arianna.ppl.inference.AIES": {"tf": 1}, "arianna.ppl.inference.ParallelAIES": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"arianna.distributions.abstract.Continuous": {"tf": 1}, "arianna.distributions.abstract.Discrete": {"tf": 1}, "arianna.distributions.abstract.Multivariate": {"tf": 1}, "arianna.distributions.abstract.Univariate": {"tf": 1}, "arianna.distributions.distributions.IndependentRagged": {"tf": 1}, "arianna.distributions.distributions.Independent": {"tf": 1}}, "df": 6, "s": {"docs": {"arianna.distributions.distributions.IndependentRagged": {"tf": 1}, "arianna.distributions.distributions.Independent": {"tf": 1}, "arianna.distributions.distributions.Uniform": {"tf": 1}, "arianna.distributions.distributions.Beta": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta": {"tf": 1}, "arianna.distributions.distributions.Gamma": {"tf": 1}, "arianna.distributions.distributions.InverseGamma": {"tf": 1}, "arianna.distributions.distributions.LogNormal": {"tf": 1}, "arianna.distributions.distributions.Weibull": {"tf": 1}, "arianna.distributions.distributions.Gumbel": {"tf": 1}, "arianna.distributions.distributions.Logistic": {"tf": 1}, "arianna.distributions.distributions.LogLogistic": {"tf": 1}, "arianna.distributions.distributions.Normal": {"tf": 1}, "arianna.distributions.distributions.MvNormal": {"tf": 1}, "arianna.distributions.distributions.Dirichlet": {"tf": 1}}, "df": 15}}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"arianna.distributions.abstract.UnivariateContinuous": {"tf": 1}}, "df": 1, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"arianna.distributions.abstract.Positive": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded": {"tf": 1}, "arianna.distributions.abstract.UnivariateReal": {"tf": 1}}, "df": 3}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"arianna.distributions.distributions.Gumbel": {"tf": 1}, "arianna.distributions.distributions.LogLogistic": {"tf": 1}, "arianna.distributions.distributions.Normal": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"arianna.distributions.abstract.UnivariateContinuous": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.context.LogprobAndPriorSample": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace": {"tf": 1}, "arianna.ppl.context.Predictive": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace": {"tf": 1}, "arianna.ppl.context.TransformedPredictive": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace": {"tf": 1}}, "df": 6}}}}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"arianna.distributions.abstract.MultivariateContinuous": {"tf": 1}}, "df": 1, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"arianna.distributions.abstract.MultivariateReal": {"tf": 1}, "arianna.distributions.distributions.Dirichlet": {"tf": 1}}, "df": 2}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"arianna.distributions.distributions.MvNormal": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "c": {"docs": {"arianna.ppl.inference.SingleWalkerMCMC": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"arianna.distributions.abstract.UnivariateReal": {"tf": 1}, "arianna.distributions.abstract.MultivariateReal": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"arianna.distributions.distributions.Uniform": {"tf": 1}, "arianna.distributions.distributions.Beta": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"arianna.distributions.distributions.Gamma": {"tf": 1}, "arianna.distributions.distributions.InverseGamma": {"tf": 1}, "arianna.distributions.distributions.LogNormal": {"tf": 1}, "arianna.distributions.distributions.Weibull": {"tf": 1}, "arianna.distributions.distributions.Logistic": {"tf": 1}}, "df": 5}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1}}, "df": 1}}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"arianna.ppl.context.TransformableDistribution": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"arianna.types.NegativeInfinityError": {"tf": 1}, "arianna.types.NegativeParameterError": {"tf": 1}, "arianna.types.InvalidBoundsError": {"tf": 1}}, "df": 3}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.inference.MCMC": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation": {"tf": 1}, "arianna.ppl.inference.BayesianOptimization": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "c": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}, "arianna.ppl.inference.AdaptiveRandomWalkMetropolis": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"arianna.types.NegativeInfinityError": {"tf": 1}, "arianna.types.NegativeParameterError": {"tf": 1}, "arianna.types.InvalidBoundsError": {"tf": 1}}, "df": 3}}}}}}}}}}}, "doc": {"root": {"0": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1}, "arianna.ppl.context.TransformableDistribution": {"tf": 1}, "arianna.ppl.inference.Chain.subset": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1.7320508075688772}, "arianna.ppl.inference.AIES": {"tf": 1}}, "df": 5}, "1": {"0": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}, "arianna.ppl.inference.AIES": {"tf": 1}}, "df": 2}, "docs": {"arianna.ppl.inference.Chain.subset": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 2.23606797749979}, "arianna.ppl.inference.AIES.default_temperature_fn": {"tf": 1}}, "df": 3}, "2": {"docs": {"arianna.ppl.inference.AIES": {"tf": 1}}, "df": 1}, "5": {"4": {"4": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1}, "arianna.ppl.context.TransformableDistribution": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"arianna": {"tf": 1.7320508075688772}, "arianna.distributions": {"tf": 1.7320508075688772}, "arianna.distributions.abstract": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.Distribution": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.Distribution.event_shape": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.Distribution.batch_shape": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.Distribution.logpdf": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.Distribution.sample": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.Distribution.pdf": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.Distribution.mean": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.Distribution.std": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.Distribution.var": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.Continuous": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.Continuous.to_real": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.Continuous.to_native": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.Continuous.logdetjac": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.Discrete": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.Multivariate": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.Multivariate.mean": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.Multivariate.std": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.Multivariate.var": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.Univariate": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.Univariate.event_shape": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.Univariate.batch_shape": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.Univariate.sample": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.UnivariateContinuous": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.UnivariateContinuous.logpdf_plus_logdetjac": {"tf": 2.449489742783178}, "arianna.distributions.abstract.UnivariateContinuous.logcdf": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.UnivariateContinuous.cdf": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.UnivariateContinuous.survival": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.UnivariateContinuous.logsurvival": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.Positive": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.Positive.to_real": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.Positive.to_native": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.Positive.logdetjac": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.Positive.logpdf": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.LowerUpperBounded": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.LowerUpperBounded.lower": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.LowerUpperBounded.upper": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.LowerUpperBounded.range": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.LowerUpperBounded.to_real": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.LowerUpperBounded.to_native": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.LowerUpperBounded.logdetjac": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.LowerUpperBounded.logpdf": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.MultivariateContinuous": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.MultivariateContinuous.logpdf_plus_logdetjac": {"tf": 2.449489742783178}, "arianna.distributions.abstract.MultivariateContinuous.cov": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.MultivariateContinuous.mean": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.Real": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.Real.to_real": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.Real.to_native": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.Real.logdetjac": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.UnivariateReal": {"tf": 1.7320508075688772}, "arianna.distributions.abstract.MultivariateReal": {"tf": 1.7320508075688772}, "arianna.distributions.distributions": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.IndependentRagged": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Independent": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Independent.__init__": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Independent.dists": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Independent.is_same_family": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Independent.logpdf": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Independent.sample": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Uniform": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Uniform.from_mean_shift": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Uniform.batch_shape": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Uniform.logcdf": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Uniform.cdf": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Uniform.mode": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Uniform.median": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Uniform.mean": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Uniform.var": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Beta": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Beta.__init__": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Beta.a": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Beta.b": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Beta.mode": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Beta.batch_shape": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Beta.logcdf": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Beta.cdf": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Beta.mean": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Beta.var": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.ScaledBeta": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.ScaledBeta.__init__": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.ScaledBeta.a": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.ScaledBeta.b": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.ScaledBeta.base_dist": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.ScaledBeta.batch_shape": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.ScaledBeta.cdf": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.ScaledBeta.logcdf": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.ScaledBeta.mean": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.ScaledBeta.var": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Gamma": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Gamma.__init__": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Gamma.from_mean_std": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Gamma.shape": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Gamma.scale": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Gamma.batch_shape": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Gamma.logcdf": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Gamma.cdf": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Gamma.survival": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Gamma.mean": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Gamma.var": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Gamma.mode": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.InverseGamma": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.InverseGamma.__init__": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.InverseGamma.from_mean_std": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.InverseGamma.shape": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.InverseGamma.scale": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.InverseGamma.batch_shape": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.InverseGamma.mean": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.InverseGamma.var": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.InverseGamma.mode": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.InverseGamma.logcdf": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.InverseGamma.cdf": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.LogNormal": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.LogNormal.__init__": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.LogNormal.from_mean_std": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.LogNormal.mu": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.LogNormal.sigma": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.LogNormal.batch_shape": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.LogNormal.mean": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.LogNormal.var": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.LogNormal.mode": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.LogNormal.median": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.LogNormal.logcdf": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.LogNormal.cdf": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Weibull": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Gumbel": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Logistic": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.LogLogistic": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Normal": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Normal.__init__": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Normal.loc": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Normal.scale": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Normal.batch_shape": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Normal.logpdf": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Normal.logcdf": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Normal.cdf": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Normal.survival": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Normal.mean": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Normal.std": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Normal.var": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Normal.mode": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Normal.median": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.MvNormal": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.MvNormal.__init__": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.MvNormal.mean": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.MvNormal.cov": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.MvNormal.cov_inv": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.MvNormal.L": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.MvNormal.event_shape": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.MvNormal.batch_shape": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.MvNormal.batch_plus_event_shape": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.MvNormal.log_det_cov": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.MvNormal.var": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.MvNormal.logpdf": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.MvNormal.sample": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Dirichlet": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Dirichlet.__init__": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Dirichlet.concentration": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Dirichlet.concentration_sum": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Dirichlet.event_shape": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Dirichlet.batch_plus_event_shape": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Dirichlet.batch_shape": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Dirichlet.logpdf": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Dirichlet.sample": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Dirichlet.to_real": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Dirichlet.to_native": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Dirichlet.logdetjac": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Dirichlet.cov": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Dirichlet.mean": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Dirichlet.var": {"tf": 1.7320508075688772}, "arianna.distributions.distributions.Dirichlet.std": {"tf": 1.7320508075688772}, "arianna.ppl": {"tf": 1.7320508075688772}, "arianna.ppl.context": {"tf": 1.7320508075688772}, "arianna.ppl.context.BasicDistribution": {"tf": 5.196152422706632}, "arianna.ppl.context.BasicDistribution.__init__": {"tf": 1.7320508075688772}, "arianna.ppl.context.BasicDistribution.logpdf": {"tf": 1.7320508075688772}, "arianna.ppl.context.BasicDistribution.sample": {"tf": 1.7320508075688772}, "arianna.ppl.context.TransformableDistribution": {"tf": 5.196152422706632}, "arianna.ppl.context.TransformableDistribution.logdetjac": {"tf": 1.7320508075688772}, "arianna.ppl.context.TransformableDistribution.logpdf_plus_logdetjac": {"tf": 1.7320508075688772}, "arianna.ppl.context.TransformableDistribution.to_real": {"tf": 1.7320508075688772}, "arianna.ppl.context.TransformableDistribution.to_native": {"tf": 1.7320508075688772}, "arianna.ppl.context.TransformableDistribution.logpdf": {"tf": 1.7320508075688772}, "arianna.ppl.context.Context": {"tf": 1.7320508075688772}, "arianna.ppl.context.Context.result": {"tf": 1.7320508075688772}, "arianna.ppl.context.Context.state": {"tf": 1.7320508075688772}, "arianna.ppl.context.Context.run": {"tf": 1.7320508075688772}, "arianna.ppl.context.Context.rv": {"tf": 1.7320508075688772}, "arianna.ppl.context.Context.cached": {"tf": 1.7320508075688772}, "arianna.ppl.context.LogprobAndPriorSample": {"tf": 1.7320508075688772}, "arianna.ppl.context.LogprobAndPriorSample.__init__": {"tf": 1.7320508075688772}, "arianna.ppl.context.LogprobAndPriorSample.run": {"tf": 1.7320508075688772}, "arianna.ppl.context.LogprobAndPriorSample.result": {"tf": 1.7320508075688772}, "arianna.ppl.context.LogprobAndPriorSample.rng": {"tf": 1.7320508075688772}, "arianna.ppl.context.LogprobAndPriorSample.rv": {"tf": 1.7320508075688772}, "arianna.ppl.context.LogprobAndPriorSample.cached": {"tf": 1.7320508075688772}, "arianna.ppl.context.LogprobAndTrace": {"tf": 1.7320508075688772}, "arianna.ppl.context.LogprobAndTrace.__init__": {"tf": 1.7320508075688772}, "arianna.ppl.context.LogprobAndTrace.run": {"tf": 5.916079783099616}, "arianna.ppl.context.LogprobAndTrace.state": {"tf": 1.7320508075688772}, "arianna.ppl.context.LogprobAndTrace.result": {"tf": 1.7320508075688772}, "arianna.ppl.context.LogprobAndTrace.rv": {"tf": 1.7320508075688772}, "arianna.ppl.context.LogprobAndTrace.cached": {"tf": 1.7320508075688772}, "arianna.ppl.context.Predictive": {"tf": 1.7320508075688772}, "arianna.ppl.context.Predictive.__init__": {"tf": 1.7320508075688772}, "arianna.ppl.context.Predictive.run": {"tf": 1.7320508075688772}, "arianna.ppl.context.Predictive.state": {"tf": 1.7320508075688772}, "arianna.ppl.context.Predictive.rng": {"tf": 1.7320508075688772}, "arianna.ppl.context.Predictive.return_cached": {"tf": 1.7320508075688772}, "arianna.ppl.context.Predictive.result": {"tf": 1.7320508075688772}, "arianna.ppl.context.Predictive.rv": {"tf": 1.7320508075688772}, "arianna.ppl.context.Predictive.cached": {"tf": 6.855654600401044}, "arianna.ppl.context.TransformedLogprobAndTrace": {"tf": 4.123105625617661}, "arianna.ppl.context.TransformedLogprobAndTrace.__init__": {"tf": 1.7320508075688772}, "arianna.ppl.context.TransformedLogprobAndTrace.run": {"tf": 1.7320508075688772}, "arianna.ppl.context.TransformedLogprobAndTrace.state": {"tf": 1.7320508075688772}, "arianna.ppl.context.TransformedLogprobAndTrace.result": {"tf": 1.7320508075688772}, "arianna.ppl.context.TransformedLogprobAndTrace.rv": {"tf": 1.7320508075688772}, "arianna.ppl.context.TransformedLogprobAndTrace.cached": {"tf": 1.7320508075688772}, "arianna.ppl.context.TransformedPredictive": {"tf": 7.681145747868608}, "arianna.ppl.context.TransformedPredictive.__init__": {"tf": 1.7320508075688772}, "arianna.ppl.context.TransformedPredictive.run": {"tf": 1.7320508075688772}, "arianna.ppl.context.TransformedPredictive.state": {"tf": 1.7320508075688772}, "arianna.ppl.context.TransformedPredictive.rng": {"tf": 1.7320508075688772}, "arianna.ppl.context.TransformedPredictive.return_cached": {"tf": 1.7320508075688772}, "arianna.ppl.context.TransformedPredictive.result": {"tf": 1.7320508075688772}, "arianna.ppl.context.TransformedPredictive.rv": {"tf": 1.7320508075688772}, "arianna.ppl.context.TransformedPredictive.cached": {"tf": 6.855654600401044}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace": {"tf": 1.7320508075688772}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.__init__": {"tf": 1.7320508075688772}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.run": {"tf": 1.7320508075688772}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.state": {"tf": 1.7320508075688772}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.result": {"tf": 1.7320508075688772}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.rv": {"tf": 1.7320508075688772}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace.cached": {"tf": 1.7320508075688772}, "arianna.ppl.diagnostics": {"tf": 1.7320508075688772}, "arianna.ppl.diagnostics.ess_kish": {"tf": 3.605551275463989}, "arianna.ppl.inference": {"tf": 1.7320508075688772}, "arianna.ppl.inference.P": {"tf": 1.7320508075688772}, "arianna.ppl.inference.Model": {"tf": 1.7320508075688772}, "arianna.ppl.inference.Logprob": {"tf": 1.7320508075688772}, "arianna.ppl.inference.Chain": {"tf": 5.196152422706632}, "arianna.ppl.inference.Chain.__init__": {"tf": 1.7320508075688772}, "arianna.ppl.inference.Chain.states": {"tf": 1.7320508075688772}, "arianna.ppl.inference.Chain.names": {"tf": 1.7320508075688772}, "arianna.ppl.inference.Chain.get": {"tf": 5.0990195135927845}, "arianna.ppl.inference.Chain.bundle": {"tf": 3.7416573867739413}, "arianna.ppl.inference.Chain.subset": {"tf": 6.164414002968976}, "arianna.ppl.inference.InferenceEngine": {"tf": 1.7320508075688772}, "arianna.ppl.inference.InferenceEngine.rng": {"tf": 1.7320508075688772}, "arianna.ppl.inference.InferenceEngine.fit": {"tf": 1.7320508075688772}, "arianna.ppl.inference.MCMC": {"tf": 1.7320508075688772}, "arianna.ppl.inference.MCMC.model": {"tf": 1.7320508075688772}, "arianna.ppl.inference.MCMC.model_data": {"tf": 1.7320508075688772}, "arianna.ppl.inference.MCMC.nsamples": {"tf": 1.7320508075688772}, "arianna.ppl.inference.MCMC.burn": {"tf": 1.7320508075688772}, "arianna.ppl.inference.MCMC.thin": {"tf": 1.7320508075688772}, "arianna.ppl.inference.MCMC.mcmc_iteration": {"tf": 1.7320508075688772}, "arianna.ppl.inference.MCMC.transform": {"tf": 1.7320508075688772}, "arianna.ppl.inference.MCMC.logprob_history": {"tf": 1.7320508075688772}, "arianna.ppl.inference.MCMC.step": {"tf": 1.7320508075688772}, "arianna.ppl.inference.MCMC.fit": {"tf": 3.7416573867739413}, "arianna.ppl.inference.MCMC.logprob": {"tf": 5.0990195135927845}, "arianna.ppl.inference.SingleWalkerMCMC": {"tf": 1.7320508075688772}, "arianna.ppl.inference.SingleWalkerMCMC.init_state": {"tf": 1.7320508075688772}, "arianna.ppl.inference.SingleWalkerMCMC.mcmc_state": {"tf": 1.7320508075688772}, "arianna.ppl.inference.SingleWalkerMCMC.transform": {"tf": 1.7320508075688772}, "arianna.ppl.inference.SingleWalkerMCMC.step": {"tf": 3.7416573867739413}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 15.716233645501712}, "arianna.ppl.inference.RandomWalkMetropolis.__init__": {"tf": 1.7320508075688772}, "arianna.ppl.inference.RandomWalkMetropolis.mcmc_state": {"tf": 1.7320508075688772}, "arianna.ppl.inference.RandomWalkMetropolis.init_state": {"tf": 1.7320508075688772}, "arianna.ppl.inference.RandomWalkMetropolis.model": {"tf": 1.7320508075688772}, "arianna.ppl.inference.RandomWalkMetropolis.model_data": {"tf": 1.7320508075688772}, "arianna.ppl.inference.RandomWalkMetropolis.transform": {"tf": 1.7320508075688772}, "arianna.ppl.inference.RandomWalkMetropolis.rng": {"tf": 1.7320508075688772}, "arianna.ppl.inference.RandomWalkMetropolis.proposal": {"tf": 1.7320508075688772}, "arianna.ppl.inference.RandomWalkMetropolis.step": {"tf": 3.7416573867739413}, "arianna.ppl.inference.AffineInvariantMCMC": {"tf": 1.7320508075688772}, "arianna.ppl.inference.AffineInvariantMCMC.nsteps": {"tf": 1.7320508075688772}, "arianna.ppl.inference.AffineInvariantMCMC.init_state": {"tf": 1.7320508075688772}, "arianna.ppl.inference.AffineInvariantMCMC.mcmc_state": {"tf": 1.7320508075688772}, "arianna.ppl.inference.AffineInvariantMCMC.accept_rate": {"tf": 1.7320508075688772}, "arianna.ppl.inference.AffineInvariantMCMC.accept": {"tf": 1.7320508075688772}, "arianna.ppl.inference.AffineInvariantMCMC.nwalkers": {"tf": 1.7320508075688772}, "arianna.ppl.inference.AffineInvariantMCMC.rng": {"tf": 1.7320508075688772}, "arianna.ppl.inference.AffineInvariantMCMC.a": {"tf": 1.7320508075688772}, "arianna.ppl.inference.AffineInvariantMCMC.dim": {"tf": 1.7320508075688772}, "arianna.ppl.inference.AffineInvariantMCMC.logprob": {"tf": 5.0990195135927845}, "arianna.ppl.inference.AffineInvariantMCMC.step": {"tf": 3.7416573867739413}, "arianna.ppl.inference.AffineInvariantMCMC.fit": {"tf": 1.7320508075688772}, "arianna.ppl.inference.AIES": {"tf": 8.06225774829855}, "arianna.ppl.inference.AIES.__init__": {"tf": 1.7320508075688772}, "arianna.ppl.inference.AIES.default_temperature_fn": {"tf": 1.7320508075688772}, "arianna.ppl.inference.AIES.model": {"tf": 1.7320508075688772}, "arianna.ppl.inference.AIES.nwalkers": {"tf": 1.7320508075688772}, "arianna.ppl.inference.AIES.transform": {"tf": 1.7320508075688772}, "arianna.ppl.inference.AIES.rng": {"tf": 1.7320508075688772}, "arianna.ppl.inference.AIES.accept": {"tf": 1.7320508075688772}, "arianna.ppl.inference.AIES.a": {"tf": 1.7320508075688772}, "arianna.ppl.inference.AIES.model_data": {"tf": 1.7320508075688772}, "arianna.ppl.inference.AIES.temperature_fn": {"tf": 1.7320508075688772}, "arianna.ppl.inference.AIES.init_state": {"tf": 1.7320508075688772}, "arianna.ppl.inference.AIES.step": {"tf": 3.7416573867739413}, "arianna.ppl.inference.ParallelAIES": {"tf": 4.123105625617661}, "arianna.ppl.inference.ParallelAIES.__init__": {"tf": 1.7320508075688772}, "arianna.ppl.inference.ParallelAIES.executor": {"tf": 1.7320508075688772}, "arianna.ppl.inference.ParallelAIES.model": {"tf": 1.7320508075688772}, "arianna.ppl.inference.ParallelAIES.nwalkers": {"tf": 1.7320508075688772}, "arianna.ppl.inference.ParallelAIES.transform": {"tf": 1.7320508075688772}, "arianna.ppl.inference.ParallelAIES.rng": {"tf": 1.7320508075688772}, "arianna.ppl.inference.ParallelAIES.rngs": {"tf": 1.7320508075688772}, "arianna.ppl.inference.ParallelAIES.accept": {"tf": 1.7320508075688772}, "arianna.ppl.inference.ParallelAIES.a": {"tf": 1.7320508075688772}, "arianna.ppl.inference.ParallelAIES.model_data": {"tf": 1.7320508075688772}, "arianna.ppl.inference.ParallelAIES.init_state": {"tf": 1.7320508075688772}, "arianna.ppl.inference.ParallelAIES.step": {"tf": 3.7416573867739413}, "arianna.ppl.inference.ImportanceSampling": {"tf": 1.7320508075688772}, "arianna.ppl.inference.ImportanceSampling.__init__": {"tf": 1.7320508075688772}, "arianna.ppl.inference.ImportanceSampling.particles": {"tf": 1.7320508075688772}, "arianna.ppl.inference.ImportanceSampling.model": {"tf": 1.7320508075688772}, "arianna.ppl.inference.ImportanceSampling.model_data": {"tf": 1.7320508075688772}, "arianna.ppl.inference.ImportanceSampling.temperature": {"tf": 1.7320508075688772}, "arianna.ppl.inference.ImportanceSampling.rng": {"tf": 1.7320508075688772}, "arianna.ppl.inference.ImportanceSampling.log_weights": {"tf": 1.7320508075688772}, "arianna.ppl.inference.ImportanceSampling.weights": {"tf": 1.7320508075688772}, "arianna.ppl.inference.ImportanceSampling.fit": {"tf": 1.7320508075688772}, "arianna.ppl.inference.LaplaceApproximation": {"tf": 1.7320508075688772}, "arianna.ppl.inference.LaplaceApproximation.__init__": {"tf": 1.7320508075688772}, "arianna.ppl.inference.LaplaceApproximation.rng": {"tf": 1.7320508075688772}, "arianna.ppl.inference.LaplaceApproximation.model": {"tf": 1.7320508075688772}, "arianna.ppl.inference.LaplaceApproximation.model_data": {"tf": 1.7320508075688772}, "arianna.ppl.inference.LaplaceApproximation.transform": {"tf": 1.7320508075688772}, "arianna.ppl.inference.LaplaceApproximation.shaper": {"tf": 1.7320508075688772}, "arianna.ppl.inference.LaplaceApproximation.init_vec_state": {"tf": 1.7320508075688772}, "arianna.ppl.inference.LaplaceApproximation.logprob": {"tf": 5.0990195135927845}, "arianna.ppl.inference.LaplaceApproximation.fit": {"tf": 1.7320508075688772}, "arianna.ppl.inference.BayesianOptimization": {"tf": 1.7320508075688772}, "arianna.ppl.inference.AdaptiveRandomWalkMetropolis": {"tf": 3.605551275463989}, "arianna.ppl.shaper": {"tf": 1.7320508075688772}, "arianna.ppl.shaper.Shaper": {"tf": 1.7320508075688772}, "arianna.ppl.shaper.Shaper.__init__": {"tf": 1.7320508075688772}, "arianna.ppl.shaper.Shaper.from_state": {"tf": 1.7320508075688772}, "arianna.ppl.shaper.Shaper.shape": {"tf": 1.7320508075688772}, "arianna.ppl.shaper.Shaper.dim": {"tf": 1.7320508075688772}, "arianna.ppl.shaper.Shaper.vec": {"tf": 1.7320508075688772}, "arianna.ppl.shaper.Shaper.unvec": {"tf": 1.7320508075688772}, "arianna.types": {"tf": 1.7320508075688772}, "arianna.types.Numeric": {"tf": 1.7320508075688772}, "arianna.types.Shape": {"tf": 1.7320508075688772}, "arianna.types.State": {"tf": 1.7320508075688772}, "arianna.types.NegativeInfinityError": {"tf": 1.7320508075688772}, "arianna.types.NegativeParameterError": {"tf": 1.7320508075688772}, "arianna.types.InvalidBoundsError": {"tf": 1.7320508075688772}}, "df": 356, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"arianna.distributions.abstract.Distribution": {"tf": 1}, "arianna.distributions.abstract.Continuous": {"tf": 1}, "arianna.distributions.abstract.Discrete": {"tf": 1}, "arianna.distributions.abstract.Multivariate": {"tf": 1}, "arianna.distributions.abstract.Univariate": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous": {"tf": 1}, "arianna.distributions.abstract.Positive": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous": {"tf": 1}, "arianna.distributions.abstract.UnivariateReal": {"tf": 1}, "arianna.distributions.abstract.MultivariateReal": {"tf": 1}, "arianna.distributions.distributions.IndependentRagged": {"tf": 1}, "arianna.distributions.distributions.Independent": {"tf": 1}, "arianna.distributions.distributions.Uniform": {"tf": 1}, "arianna.distributions.distributions.Beta": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta": {"tf": 1}, "arianna.distributions.distributions.Gamma": {"tf": 1}, "arianna.distributions.distributions.InverseGamma": {"tf": 1}, "arianna.distributions.distributions.LogNormal": {"tf": 1}, "arianna.distributions.distributions.Weibull": {"tf": 1}, "arianna.distributions.distributions.Gumbel": {"tf": 1}, "arianna.distributions.distributions.Logistic": {"tf": 1}, "arianna.distributions.distributions.LogLogistic": {"tf": 1}, "arianna.distributions.distributions.Normal": {"tf": 1}, "arianna.distributions.distributions.MvNormal": {"tf": 1}, "arianna.distributions.distributions.Dirichlet": {"tf": 1}, "arianna.ppl.context.Context": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace": {"tf": 1}, "arianna.ppl.context.Predictive": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace": {"tf": 1}}, "df": 31}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.context.Predictive.cached": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.cached": {"tf": 1}}, "df": 2}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"arianna.ppl.inference.AIES": {"tf": 1}, "arianna.ppl.inference.ParallelAIES": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"arianna.ppl.diagnostics.ess_kish": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"arianna.ppl.inference.AdaptiveRandomWalkMetropolis": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "c": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformableDistribution": {"tf": 1.4142135623730951}}, "df": 2, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"arianna.distributions.abstract.Distribution": {"tf": 1}, "arianna.distributions.abstract.Continuous": {"tf": 1}, "arianna.distributions.abstract.Discrete": {"tf": 1}, "arianna.distributions.abstract.Multivariate": {"tf": 1}, "arianna.distributions.abstract.Univariate": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous": {"tf": 1}, "arianna.distributions.abstract.Positive": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous": {"tf": 1}, "arianna.distributions.abstract.UnivariateReal": {"tf": 1}, "arianna.distributions.abstract.MultivariateReal": {"tf": 1}, "arianna.distributions.distributions.IndependentRagged": {"tf": 1}, "arianna.distributions.distributions.Independent": {"tf": 1}, "arianna.distributions.distributions.Uniform": {"tf": 1}, "arianna.distributions.distributions.Beta": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta": {"tf": 1}, "arianna.distributions.distributions.Gamma": {"tf": 1}, "arianna.distributions.distributions.InverseGamma": {"tf": 1}, "arianna.distributions.distributions.LogNormal": {"tf": 1}, "arianna.distributions.distributions.Weibull": {"tf": 1}, "arianna.distributions.distributions.Gumbel": {"tf": 1}, "arianna.distributions.distributions.Logistic": {"tf": 1}, "arianna.distributions.distributions.LogLogistic": {"tf": 1}, "arianna.distributions.distributions.Normal": {"tf": 1}, "arianna.distributions.distributions.MvNormal": {"tf": 1}, "arianna.distributions.distributions.Dirichlet": {"tf": 1}, "arianna.ppl.context.BasicDistribution": {"tf": 2}, "arianna.ppl.context.TransformableDistribution": {"tf": 2}, "arianna.ppl.context.Context": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace": {"tf": 1}, "arianna.ppl.context.Predictive": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace": {"tf": 1}, "arianna.ppl.inference.InferenceEngine": {"tf": 1}, "arianna.ppl.inference.MCMC": {"tf": 1}, "arianna.types.NegativeInfinityError": {"tf": 1}, "arianna.types.NegativeParameterError": {"tf": 1}, "arianna.types.InvalidBoundsError": {"tf": 1}}, "df": 38, "e": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 2.23606797749979}, "arianna.ppl.context.TransformableDistribution": {"tf": 2.23606797749979}}, "df": 2}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"arianna.distributions.abstract.Distribution": {"tf": 1}, "arianna.distributions.abstract.Continuous": {"tf": 1}, "arianna.distributions.abstract.Discrete": {"tf": 1}, "arianna.distributions.abstract.Multivariate": {"tf": 1}, "arianna.distributions.abstract.Univariate": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous": {"tf": 1}, "arianna.distributions.abstract.Positive": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous": {"tf": 1}, "arianna.distributions.abstract.UnivariateReal": {"tf": 1}, "arianna.distributions.abstract.MultivariateReal": {"tf": 1}, "arianna.distributions.distributions.IndependentRagged": {"tf": 1}, "arianna.distributions.distributions.Independent": {"tf": 1}, "arianna.distributions.distributions.Uniform": {"tf": 1}, "arianna.distributions.distributions.Beta": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta": {"tf": 1}, "arianna.distributions.distributions.Gamma": {"tf": 1}, "arianna.distributions.distributions.InverseGamma": {"tf": 1}, "arianna.distributions.distributions.LogNormal": {"tf": 1}, "arianna.distributions.distributions.Weibull": {"tf": 1}, "arianna.distributions.distributions.Gumbel": {"tf": 1}, "arianna.distributions.distributions.Logistic": {"tf": 1}, "arianna.distributions.distributions.LogLogistic": {"tf": 1}, "arianna.distributions.distributions.Normal": {"tf": 1}, "arianna.distributions.distributions.MvNormal": {"tf": 1}, "arianna.distributions.distributions.Dirichlet": {"tf": 1}, "arianna.ppl.context.Context": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace": {"tf": 1}, "arianna.ppl.context.Predictive": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace": {"tf": 1}}, "df": 31, "d": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformableDistribution": {"tf": 1.4142135623730951}}, "df": 2, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1}, "arianna.ppl.context.TransformableDistribution": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1}, "arianna.ppl.context.TransformableDistribution": {"tf": 1}}, "df": 2}}}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"arianna.ppl.inference.Chain": {"tf": 1.4142135623730951}, "arianna.ppl.inference.Chain.subset": {"tf": 1.4142135623730951}, "arianna.ppl.inference.MCMC.fit": {"tf": 1.4142135623730951}, "arianna.ppl.inference.SingleWalkerMCMC": {"tf": 1}}, "df": 4}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1}, "arianna.ppl.context.TransformableDistribution": {"tf": 1}, "arianna.ppl.inference.AIES": {"tf": 1}}, "df": 3}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.context.Predictive.cached": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformedPredictive.cached": {"tf": 1.4142135623730951}, "arianna.ppl.inference.SingleWalkerMCMC.step": {"tf": 1.4142135623730951}, "arianna.ppl.inference.AffineInvariantMCMC.step": {"tf": 1.4142135623730951}, "arianna.ppl.inference.AIES.step": {"tf": 1.4142135623730951}, "arianna.ppl.inference.ParallelAIES.step": {"tf": 1.4142135623730951}}, "df": 6, "d": {"docs": {"arianna.ppl.context.LogprobAndTrace.run": {"tf": 1}, "arianna.ppl.context.Predictive.cached": {"tf": 1.7320508075688772}, "arianna.ppl.context.TransformedLogprobAndTrace": {"tf": 1}, "arianna.ppl.context.TransformedPredictive": {"tf": 2}, "arianna.ppl.context.TransformedPredictive.cached": {"tf": 1.7320508075688772}, "arianna.ppl.inference.Chain.get": {"tf": 1.7320508075688772}, "arianna.ppl.inference.MCMC.logprob": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.step": {"tf": 1.4142135623730951}, "arianna.ppl.inference.AffineInvariantMCMC.logprob": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.logprob": {"tf": 1}}, "df": 11}}}}, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.context.TransformedLogprobAndTrace": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {"arianna.ppl.diagnostics.ess_kish": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.inference.AIES": {"tf": 1}}, "df": 1}}}, "/": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"arianna.ppl.inference.AdaptiveRandomWalkMetropolis": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"arianna.ppl.context.TransformedPredictive": {"tf": 1.4142135623730951}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"arianna.ppl.inference.MCMC.logprob": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.logprob": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.logprob": {"tf": 1}}, "df": 4}}}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.inference.AIES": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.shaper.Shaper.from_state": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "r": {"docs": {"arianna.ppl.context.TransformedPredictive": {"tf": null}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": null}}, "df": 2}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.shaper.Shaper.vec": {"tf": 1}, "arianna.ppl.shaper.Shaper.unvec": {"tf": 1}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.inference.MCMC.logprob": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.logprob": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.logprob": {"tf": 1}}, "df": 3}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"arianna.types.NegativeInfinityError": {"tf": 1}, "arianna.types.NegativeParameterError": {"tf": 1}, "arianna.types.InvalidBoundsError": {"tf": 1}}, "df": 3}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "x": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis": {"tf": 2}, "arianna.ppl.inference.AIES": {"tf": 1}}, "df": 2}}}, "t": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1}, "arianna.ppl.context.TransformableDistribution": {"tf": 1}}, "df": 2, "h": {"docs": {"arianna.ppl.inference.Chain.subset": {"tf": 1.4142135623730951}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {"arianna.distributions.abstract.Distribution": {"tf": 1}, "arianna.distributions.abstract.Continuous": {"tf": 1}, "arianna.distributions.abstract.Discrete": {"tf": 1}, "arianna.distributions.abstract.Multivariate": {"tf": 1}, "arianna.distributions.abstract.Univariate": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous": {"tf": 1}, "arianna.distributions.abstract.Positive": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous": {"tf": 1}, "arianna.distributions.abstract.UnivariateReal": {"tf": 1}, "arianna.distributions.abstract.MultivariateReal": {"tf": 1}, "arianna.distributions.distributions.IndependentRagged": {"tf": 1}, "arianna.distributions.distributions.Independent": {"tf": 1}, "arianna.distributions.distributions.Uniform": {"tf": 1}, "arianna.distributions.distributions.Beta": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta": {"tf": 1}, "arianna.distributions.distributions.Gamma": {"tf": 1}, "arianna.distributions.distributions.InverseGamma": {"tf": 1}, "arianna.distributions.distributions.LogNormal": {"tf": 1}, "arianna.distributions.distributions.Weibull": {"tf": 1}, "arianna.distributions.distributions.Gumbel": {"tf": 1}, "arianna.distributions.distributions.Logistic": {"tf": 1}, "arianna.distributions.distributions.LogLogistic": {"tf": 1}, "arianna.distributions.distributions.Normal": {"tf": 1}, "arianna.distributions.distributions.MvNormal": {"tf": 1}, "arianna.distributions.distributions.Dirichlet": {"tf": 1}, "arianna.ppl.context.BasicDistribution": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformableDistribution": {"tf": 1.4142135623730951}, "arianna.ppl.context.Context": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace": {"tf": 1}, "arianna.ppl.context.Predictive": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace": {"tf": 1}, "arianna.ppl.inference.AIES": {"tf": 2}}, "df": 34}}, "e": {"docs": {"arianna.distributions.abstract.UnivariateContinuous.logpdf_plus_logdetjac": {"tf": 2.23606797749979}, "arianna.distributions.abstract.MultivariateContinuous.logpdf_plus_logdetjac": {"tf": 2.23606797749979}, "arianna.ppl.context.BasicDistribution": {"tf": 1}, "arianna.ppl.context.TransformableDistribution": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.run": {"tf": 1.7320508075688772}, "arianna.ppl.context.Predictive.cached": {"tf": 2}, "arianna.ppl.context.TransformedLogprobAndTrace": {"tf": 2}, "arianna.ppl.context.TransformedPredictive": {"tf": 2.449489742783178}, "arianna.ppl.context.TransformedPredictive.cached": {"tf": 2}, "arianna.ppl.diagnostics.ess_kish": {"tf": 1}, "arianna.ppl.inference.Chain.get": {"tf": 1}, "arianna.ppl.inference.Chain.subset": {"tf": 1.4142135623730951}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 3.605551275463989}, "arianna.ppl.inference.AIES": {"tf": 1.7320508075688772}, "arianna.ppl.inference.ParallelAIES": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.step": {"tf": 1.4142135623730951}}, "df": 16, "i": {"docs": {}, "df": 0, "r": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1}, "arianna.ppl.context.TransformableDistribution": {"tf": 1}}, "df": 2}}, "y": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1}, "arianna.ppl.context.TransformableDistribution": {"tf": 1}}, "df": 2}, "n": {"docs": {"arianna.ppl.diagnostics.ess_kish": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 2}}, "df": 2}, "r": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.inference.AIES": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"arianna.ppl.inference.Chain.subset": {"tf": 1.7320508075688772}}, "df": 1, "g": {"docs": {"arianna.ppl.context.Predictive.cached": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.cached": {"tf": 1}}, "df": 2}}, "s": {"docs": {"arianna.ppl.context.TransformedPredictive": {"tf": 1}, "arianna.ppl.inference.AIES": {"tf": 1.4142135623730951}}, "df": 2}}, "u": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}}, "df": 1}}}, "o": {"docs": {"arianna.distributions.abstract.Distribution": {"tf": 1}, "arianna.distributions.abstract.Continuous": {"tf": 1}, "arianna.distributions.abstract.Discrete": {"tf": 1}, "arianna.distributions.abstract.Multivariate": {"tf": 1}, "arianna.distributions.abstract.Univariate": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous": {"tf": 1}, "arianna.distributions.abstract.Positive": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous": {"tf": 1}, "arianna.distributions.abstract.UnivariateReal": {"tf": 1}, "arianna.distributions.abstract.MultivariateReal": {"tf": 1}, "arianna.distributions.distributions.IndependentRagged": {"tf": 1}, "arianna.distributions.distributions.Independent": {"tf": 1}, "arianna.distributions.distributions.Uniform": {"tf": 1}, "arianna.distributions.distributions.Beta": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta": {"tf": 1}, "arianna.distributions.distributions.Gamma": {"tf": 1}, "arianna.distributions.distributions.InverseGamma": {"tf": 1}, "arianna.distributions.distributions.LogNormal": {"tf": 1}, "arianna.distributions.distributions.Weibull": {"tf": 1}, "arianna.distributions.distributions.Gumbel": {"tf": 1}, "arianna.distributions.distributions.Logistic": {"tf": 1}, "arianna.distributions.distributions.LogLogistic": {"tf": 1}, "arianna.distributions.distributions.Normal": {"tf": 1}, "arianna.distributions.distributions.MvNormal": {"tf": 1}, "arianna.distributions.distributions.Dirichlet": {"tf": 1}, "arianna.ppl.context.Context": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace": {"tf": 1}, "arianna.ppl.context.Predictive": {"tf": 1}, "arianna.ppl.context.Predictive.cached": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformedPredictive": {"tf": 2.23606797749979}, "arianna.ppl.context.TransformedPredictive.cached": {"tf": 1.4142135623730951}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace": {"tf": 1}, "arianna.ppl.inference.Chain.subset": {"tf": 1}, "arianna.ppl.inference.MCMC.logprob": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 2.449489742783178}, "arianna.ppl.inference.AffineInvariantMCMC.logprob": {"tf": 1}, "arianna.ppl.inference.AIES": {"tf": 1.7320508075688772}, "arianna.ppl.inference.LaplaceApproximation.logprob": {"tf": 1}, "arianna.ppl.shaper.Shaper.unvec": {"tf": 1}}, "df": 41, "d": {"docs": {}, "df": 0, "o": {"docs": {"arianna.ppl.context.LogprobAndTrace.run": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis": {"tf": 2}, "arianna.ppl.inference.AIES": {"tf": 1.4142135623730951}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"arianna.distributions.abstract.UnivariateContinuous.logpdf_plus_logdetjac": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous.logpdf_plus_logdetjac": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace": {"tf": 1}, "arianna.ppl.context.TransformedPredictive": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.context.LogprobAndPriorSample.run": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.run": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"arianna.ppl.inference.ParallelAIES.step": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.context.Predictive.cached": {"tf": 1}, "arianna.ppl.context.TransformedPredictive": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.cached": {"tf": 1}, "arianna.ppl.diagnostics.ess_kish": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1.4142135623730951}, "arianna.ppl.inference.AIES": {"tf": 1}}, "df": 6}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1.7320508075688772}, "arianna.ppl.context.TransformableDistribution": {"tf": 1.7320508075688772}}, "df": 2}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformableDistribution": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.inference.ParallelAIES.step": {"tf": 1}}, "df": 1, "[": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.context.LogprobAndTrace.run": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace": {"tf": 1}, "arianna.ppl.inference.MCMC.logprob": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.logprob": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.logprob": {"tf": 1}}, "df": 5}}}}}}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"arianna.ppl.inference.AIES": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.inference.Chain.subset": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"arianna.ppl.inference.Chain.subset": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.inference.AIES": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.inference.AIES": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"arianna.distributions.abstract.Distribution": {"tf": 1}, "arianna.distributions.abstract.Continuous": {"tf": 1}, "arianna.distributions.abstract.Discrete": {"tf": 1}, "arianna.distributions.abstract.Multivariate": {"tf": 1}, "arianna.distributions.abstract.Univariate": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous": {"tf": 1}, "arianna.distributions.abstract.Positive": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous": {"tf": 1}, "arianna.distributions.abstract.UnivariateReal": {"tf": 1}, "arianna.distributions.abstract.MultivariateReal": {"tf": 1}, "arianna.distributions.distributions.IndependentRagged": {"tf": 1}, "arianna.distributions.distributions.Independent": {"tf": 1}, "arianna.distributions.distributions.Uniform": {"tf": 1}, "arianna.distributions.distributions.Beta": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta": {"tf": 1}, "arianna.distributions.distributions.Gamma": {"tf": 1}, "arianna.distributions.distributions.InverseGamma": {"tf": 1}, "arianna.distributions.distributions.LogNormal": {"tf": 1}, "arianna.distributions.distributions.Weibull": {"tf": 1}, "arianna.distributions.distributions.Gumbel": {"tf": 1}, "arianna.distributions.distributions.Logistic": {"tf": 1}, "arianna.distributions.distributions.LogLogistic": {"tf": 1}, "arianna.distributions.distributions.Normal": {"tf": 1}, "arianna.distributions.distributions.MvNormal": {"tf": 1}, "arianna.distributions.distributions.Dirichlet": {"tf": 1}, "arianna.ppl.context.Context": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace": {"tf": 1}, "arianna.ppl.context.Predictive": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace": {"tf": 1}}, "df": 31}, "d": {"docs": {"arianna.ppl.context.TransformedPredictive": {"tf": 1.7320508075688772}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformableDistribution": {"tf": 1.4142135623730951}}, "df": 2, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 2.23606797749979}, "arianna.ppl.context.TransformableDistribution": {"tf": 2.23606797749979}}, "df": 2, "s": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1}, "arianna.ppl.context.TransformableDistribution": {"tf": 1}}, "df": 2}, "[": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1}, "arianna.ppl.context.TransformableDistribution": {"tf": 1}}, "df": 2}}}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"arianna.ppl.context.TransformedLogprobAndTrace": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1}, "arianna.ppl.context.TransformableDistribution": {"tf": 1}}, "df": 2}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"arianna.ppl.context.TransformedPredictive": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1}, "arianna.ppl.context.TransformableDistribution": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.context.TransformedPredictive": {"tf": 1.7320508075688772}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}}, "df": 2}}}}}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"arianna.distributions.abstract.UnivariateContinuous.logpdf_plus_logdetjac": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.MultivariateContinuous.logpdf_plus_logdetjac": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformedLogprobAndTrace": {"tf": 1}}, "df": 3}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"arianna.distributions.abstract.UnivariateContinuous.logpdf_plus_logdetjac": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous.logpdf_plus_logdetjac": {"tf": 1}, "arianna.ppl.context.TransformedPredictive": {"tf": 1}, "arianna.ppl.inference.Chain.get": {"tf": 1}, "arianna.ppl.inference.AIES": {"tf": 1}}, "df": 5, "s": {"docs": {"arianna.ppl.context.LogprobAndTrace.run": {"tf": 1}, "arianna.ppl.context.Predictive.cached": {"tf": 1}, "arianna.ppl.context.TransformedPredictive": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.cached": {"tf": 1}, "arianna.ppl.inference.Chain": {"tf": 1}, "arianna.ppl.inference.Chain.get": {"tf": 1}, "arianna.ppl.inference.Chain.subset": {"tf": 1}, "arianna.ppl.inference.MCMC.logprob": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 2.449489742783178}, "arianna.ppl.inference.AffineInvariantMCMC.dim": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.logprob": {"tf": 1}, "arianna.ppl.inference.AIES": {"tf": 1.4142135623730951}, "arianna.ppl.inference.LaplaceApproximation.logprob": {"tf": 1}}, "df": 13}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"arianna.ppl.inference.AIES": {"tf": 1.4142135623730951}, "arianna.ppl.inference.ParallelAIES": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.diagnostics.ess_kish": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1}, "arianna.ppl.context.TransformableDistribution": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1}, "arianna.ppl.context.TransformableDistribution": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"arianna.ppl.inference.LaplaceApproximation": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "f": {"docs": {"arianna.ppl.inference.AdaptiveRandomWalkMetropolis": {"tf": 1}}, "df": 1}}}, "a": {"docs": {"arianna.distributions.abstract.Distribution": {"tf": 1}, "arianna.distributions.abstract.Continuous": {"tf": 1}, "arianna.distributions.abstract.Discrete": {"tf": 1}, "arianna.distributions.abstract.Multivariate": {"tf": 1}, "arianna.distributions.abstract.Univariate": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous": {"tf": 1}, "arianna.distributions.abstract.Positive": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous": {"tf": 1}, "arianna.distributions.abstract.UnivariateReal": {"tf": 1}, "arianna.distributions.abstract.MultivariateReal": {"tf": 1}, "arianna.distributions.distributions.IndependentRagged": {"tf": 1}, "arianna.distributions.distributions.Independent": {"tf": 1}, "arianna.distributions.distributions.Uniform": {"tf": 1}, "arianna.distributions.distributions.Beta": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta": {"tf": 1}, "arianna.distributions.distributions.Gamma": {"tf": 1}, "arianna.distributions.distributions.InverseGamma": {"tf": 1}, "arianna.distributions.distributions.LogNormal": {"tf": 1}, "arianna.distributions.distributions.Weibull": {"tf": 1}, "arianna.distributions.distributions.Gumbel": {"tf": 1}, "arianna.distributions.distributions.Logistic": {"tf": 1}, "arianna.distributions.distributions.LogLogistic": {"tf": 1}, "arianna.distributions.distributions.Normal": {"tf": 1}, "arianna.distributions.distributions.MvNormal": {"tf": 1}, "arianna.distributions.distributions.Dirichlet": {"tf": 1}, "arianna.ppl.context.Context": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.run": {"tf": 1}, "arianna.ppl.context.Predictive": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace": {"tf": 1}, "arianna.ppl.context.TransformedPredictive": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace": {"tf": 1}, "arianna.ppl.inference.Chain.bundle": {"tf": 1}, "arianna.ppl.inference.Chain.subset": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}, "arianna.ppl.inference.AIES": {"tf": 2}, "arianna.ppl.inference.ParallelAIES.step": {"tf": 1.4142135623730951}, "arianna.ppl.shaper.Shaper.from_state": {"tf": 1.4142135623730951}, "arianna.ppl.shaper.Shaper.vec": {"tf": 1.4142135623730951}, "arianna.ppl.shaper.Shaper.unvec": {"tf": 1.4142135623730951}}, "df": 42, "n": {"docs": {"arianna.distributions.abstract.Distribution": {"tf": 1}, "arianna.distributions.abstract.Continuous": {"tf": 1}, "arianna.distributions.abstract.Discrete": {"tf": 1}, "arianna.distributions.abstract.Multivariate": {"tf": 1}, "arianna.distributions.abstract.Univariate": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous": {"tf": 1}, "arianna.distributions.abstract.Positive": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous": {"tf": 1}, "arianna.distributions.abstract.UnivariateReal": {"tf": 1}, "arianna.distributions.abstract.MultivariateReal": {"tf": 1}, "arianna.distributions.distributions.IndependentRagged": {"tf": 1}, "arianna.distributions.distributions.Independent": {"tf": 1}, "arianna.distributions.distributions.Uniform": {"tf": 1}, "arianna.distributions.distributions.Beta": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta": {"tf": 1}, "arianna.distributions.distributions.Gamma": {"tf": 1}, "arianna.distributions.distributions.InverseGamma": {"tf": 1}, "arianna.distributions.distributions.LogNormal": {"tf": 1}, "arianna.distributions.distributions.Weibull": {"tf": 1}, "arianna.distributions.distributions.Gumbel": {"tf": 1}, "arianna.distributions.distributions.Logistic": {"tf": 1}, "arianna.distributions.distributions.LogLogistic": {"tf": 1}, "arianna.distributions.distributions.Normal": {"tf": 1}, "arianna.distributions.distributions.MvNormal": {"tf": 1}, "arianna.distributions.distributions.Dirichlet": {"tf": 1}, "arianna.ppl.context.Context": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace": {"tf": 1}, "arianna.ppl.context.Predictive": {"tf": 1}, "arianna.ppl.context.TransformedPredictive": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1.4142135623730951}}, "df": 33, "d": {"docs": {"arianna.ppl.context.LogprobAndTrace.run": {"tf": 1}, "arianna.ppl.context.Predictive.cached": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.cached": {"tf": 1}, "arianna.ppl.inference.Chain.subset": {"tf": 1}, "arianna.ppl.inference.MCMC.logprob": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.step": {"tf": 2.23606797749979}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1.4142135623730951}, "arianna.ppl.inference.RandomWalkMetropolis.step": {"tf": 1.7320508075688772}, "arianna.ppl.inference.AffineInvariantMCMC.logprob": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.step": {"tf": 1.7320508075688772}, "arianna.ppl.inference.AIES": {"tf": 1}, "arianna.ppl.inference.AIES.step": {"tf": 2}, "arianna.ppl.inference.ParallelAIES.step": {"tf": 2}, "arianna.ppl.inference.LaplaceApproximation.logprob": {"tf": 1}, "arianna.ppl.shaper.Shaper": {"tf": 1}}, "df": 16}, "y": {"docs": {"arianna.ppl.context.LogprobAndTrace.run": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1.7320508075688772}}, "df": 2}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"arianna.ppl.inference.AIES": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"arianna.ppl.inference.AIES": {"tf": 1}}, "df": 1}}}}}}}}, "b": {"docs": {}, "df": 0, "c": {"docs": {"arianna.distributions.abstract.Distribution": {"tf": 1}, "arianna.distributions.abstract.Continuous": {"tf": 1}, "arianna.distributions.abstract.Discrete": {"tf": 1}, "arianna.distributions.abstract.Multivariate": {"tf": 1}, "arianna.distributions.abstract.Univariate": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous": {"tf": 1}, "arianna.distributions.abstract.Positive": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous": {"tf": 1}, "arianna.distributions.abstract.UnivariateReal": {"tf": 1}, "arianna.distributions.abstract.MultivariateReal": {"tf": 1}, "arianna.distributions.distributions.IndependentRagged": {"tf": 1}, "arianna.distributions.distributions.Independent": {"tf": 1}, "arianna.distributions.distributions.Uniform": {"tf": 1}, "arianna.distributions.distributions.Beta": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta": {"tf": 1}, "arianna.distributions.distributions.Gamma": {"tf": 1}, "arianna.distributions.distributions.InverseGamma": {"tf": 1}, "arianna.distributions.distributions.LogNormal": {"tf": 1}, "arianna.distributions.distributions.Weibull": {"tf": 1}, "arianna.distributions.distributions.Gumbel": {"tf": 1}, "arianna.distributions.distributions.Logistic": {"tf": 1}, "arianna.distributions.distributions.LogLogistic": {"tf": 1}, "arianna.distributions.distributions.Normal": {"tf": 1}, "arianna.distributions.distributions.MvNormal": {"tf": 1}, "arianna.distributions.distributions.Dirichlet": {"tf": 1}, "arianna.ppl.context.Context": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace": {"tf": 1}, "arianna.ppl.context.Predictive": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace": {"tf": 1}}, "df": 31}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"arianna.distributions.abstract.UnivariateContinuous.logpdf_plus_logdetjac": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.MultivariateContinuous.logpdf_plus_logdetjac": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.inference.InferenceEngine": {"tf": 1}, "arianna.ppl.inference.MCMC": {"tf": 1}}, "df": 2}}}}}}}, "t": {"docs": {"arianna.distributions.abstract.UnivariateContinuous.logpdf_plus_logdetjac": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous.logpdf_plus_logdetjac": {"tf": 1}}, "df": 2, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.context.Predictive.cached": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.cached": {"tf": 1}}, "df": 2, "s": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1}, "arianna.ppl.context.TransformableDistribution": {"tf": 1}, "arianna.ppl.context.TransformedPredictive": {"tf": 1}, "arianna.ppl.inference.Chain": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}}, "df": 5}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1.7320508075688772}, "arianna.ppl.context.TransformableDistribution": {"tf": 1.7320508075688772}, "arianna.ppl.diagnostics.ess_kish": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}, "arianna.ppl.inference.AIES": {"tf": 1.4142135623730951}}, "df": 5}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.context.Predictive.cached": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.cached": {"tf": 1}}, "df": 2}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"arianna.ppl.shaper.Shaper": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1.7320508075688772}, "arianna.ppl.context.TransformableDistribution": {"tf": 1.7320508075688772}, "arianna.ppl.inference.AIES": {"tf": 1.4142135623730951}}, "df": 3}, "c": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1}, "arianna.ppl.context.TransformableDistribution": {"tf": 1}}, "df": 2}}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"arianna.ppl.context.Predictive.cached": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.cached": {"tf": 1}}, "df": 2}}}}}}}}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.inference.AdaptiveRandomWalkMetropolis": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {"arianna.ppl.context.TransformedLogprobAndTrace": {"tf": 1}}, "df": 1}}, "l": {"docs": {"arianna.ppl.inference.Chain.get": {"tf": 1}, "arianna.types.NegativeInfinityError": {"tf": 1}, "arianna.types.NegativeParameterError": {"tf": 1}, "arianna.types.InvalidBoundsError": {"tf": 1}}, "df": 4}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.inference.AffineInvariantMCMC": {"tf": 1}, "arianna.ppl.inference.AIES": {"tf": 1.4142135623730951}, "arianna.ppl.inference.ParallelAIES": {"tf": 1.4142135623730951}}, "df": 3}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"arianna.ppl.inference.AIES": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.inference.AffineInvariantMCMC.fit": {"tf": 1}, "arianna.ppl.inference.ParallelAIES": {"tf": 1}}, "df": 2}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "x": {"docs": {"arianna.ppl.inference.LaplaceApproximation.fit": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"arianna.ppl.inference.LaplaceApproximation": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "s": {"docs": {"arianna.ppl.context.TransformedPredictive": {"tf": 1.7320508075688772}, "arianna.ppl.diagnostics.ess_kish": {"tf": 1}}, "df": 2, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"arianna.distributions.abstract.Distribution": {"tf": 1}, "arianna.distributions.abstract.Continuous": {"tf": 1}, "arianna.distributions.abstract.Discrete": {"tf": 1}, "arianna.distributions.abstract.Multivariate": {"tf": 1}, "arianna.distributions.abstract.Univariate": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous": {"tf": 1}, "arianna.distributions.abstract.Positive": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous": {"tf": 1}, "arianna.distributions.abstract.UnivariateReal": {"tf": 1}, "arianna.distributions.abstract.MultivariateReal": {"tf": 1}, "arianna.distributions.distributions.IndependentRagged": {"tf": 1}, "arianna.distributions.distributions.Independent": {"tf": 1}, "arianna.distributions.distributions.Uniform": {"tf": 1}, "arianna.distributions.distributions.Beta": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta": {"tf": 1}, "arianna.distributions.distributions.Gamma": {"tf": 1}, "arianna.distributions.distributions.InverseGamma": {"tf": 1}, "arianna.distributions.distributions.LogNormal": {"tf": 1}, "arianna.distributions.distributions.Weibull": {"tf": 1}, "arianna.distributions.distributions.Gumbel": {"tf": 1}, "arianna.distributions.distributions.Logistic": {"tf": 1}, "arianna.distributions.distributions.LogLogistic": {"tf": 1}, "arianna.distributions.distributions.Normal": {"tf": 1}, "arianna.distributions.distributions.MvNormal": {"tf": 1}, "arianna.distributions.distributions.Dirichlet": {"tf": 1}, "arianna.ppl.context.Context": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace": {"tf": 1}, "arianna.ppl.context.Predictive": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace": {"tf": 1}}, "df": 31}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1.7320508075688772}, "arianna.ppl.context.TransformableDistribution": {"tf": 1.7320508075688772}}, "df": 2}}, "e": {"docs": {"arianna.ppl.context.LogprobAndTrace.run": {"tf": 2}, "arianna.ppl.context.TransformedLogprobAndTrace": {"tf": 2}, "arianna.ppl.context.TransformedPredictive": {"tf": 2.449489742783178}, "arianna.ppl.inference.MCMC.step": {"tf": 1}, "arianna.ppl.inference.MCMC.logprob": {"tf": 2}, "arianna.ppl.inference.SingleWalkerMCMC.step": {"tf": 2}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 2.8284271247461903}, "arianna.ppl.inference.RandomWalkMetropolis.step": {"tf": 2}, "arianna.ppl.inference.AffineInvariantMCMC.logprob": {"tf": 2}, "arianna.ppl.inference.AffineInvariantMCMC.step": {"tf": 1.7320508075688772}, "arianna.ppl.inference.AIES.step": {"tf": 1.7320508075688772}, "arianna.ppl.inference.ParallelAIES.step": {"tf": 1.7320508075688772}, "arianna.ppl.inference.LaplaceApproximation.logprob": {"tf": 2}, "arianna.ppl.shaper.Shaper.from_state": {"tf": 1}, "arianna.ppl.shaper.Shaper.vec": {"tf": 1}, "arianna.ppl.shaper.Shaper.unvec": {"tf": 1}}, "df": 16, "s": {"docs": {"arianna.ppl.inference.Chain": {"tf": 1.7320508075688772}, "arianna.ppl.inference.Chain.subset": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {"arianna.ppl.context.Predictive.cached": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.cached": {"tf": 1}, "arianna.ppl.inference.Chain.get": {"tf": 1}}, "df": 3, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1}, "arianna.ppl.context.TransformableDistribution": {"tf": 1}}, "df": 2}}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.context.Predictive.cached": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.cached": {"tf": 1}}, "df": 2}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"arianna.distributions.abstract.UnivariateContinuous.logpdf_plus_logdetjac": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous.logpdf_plus_logdetjac": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.run": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformedPredictive": {"tf": 1.7320508075688772}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 2.23606797749979}, "arianna.ppl.inference.AffineInvariantMCMC.logprob": {"tf": 1}, "arianna.ppl.inference.AIES": {"tf": 1}}, "df": 8}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1.7320508075688772}, "arianna.ppl.context.TransformableDistribution": {"tf": 1.7320508075688772}, "arianna.ppl.context.Predictive.cached": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.cached": {"tf": 1}}, "df": 4}}, "e": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1}, "arianna.ppl.context.TransformableDistribution": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1.4142135623730951}}, "df": 3}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"arianna.ppl.context.Predictive.cached": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.cached": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.step": {"tf": 1}}, "df": 3}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"arianna.ppl.diagnostics.ess_kish": {"tf": 1}, "arianna.ppl.inference.AIES": {"tf": 1}}, "df": 2}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"arianna.ppl.inference.AIES": {"tf": 1}}, "df": 1}}}}}}}}}}}, "t": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}, "arianna.ppl.inference.AIES": {"tf": 1}}, "df": 2}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"arianna.ppl.inference.AIES": {"tf": 1}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1}, "arianna.ppl.context.TransformableDistribution": {"tf": 1}}, "df": 2}}, "b": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1}, "arianna.ppl.context.TransformableDistribution": {"tf": 1}}, "df": 2}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.inference.Chain.subset": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1}, "arianna.ppl.context.TransformableDistribution": {"tf": 1}}, "df": 2}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1}, "arianna.ppl.context.TransformableDistribution": {"tf": 1}}, "df": 2}}}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis": {"tf": 2}}, "df": 1}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.diagnostics.ess_kish": {"tf": 1.7320508075688772}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.diagnostics.ess_kish": {"tf": 1.7320508075688772}, "arianna.ppl.inference.Chain.subset": {"tf": 1.4142135623730951}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling.fit": {"tf": 1}}, "df": 4, "d": {"docs": {"arianna.ppl.context.TransformedPredictive": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}}, "df": 2}, "s": {"docs": {"arianna.ppl.diagnostics.ess_kish": {"tf": 1}, "arianna.ppl.inference.Chain": {"tf": 1}, "arianna.ppl.inference.Chain.get": {"tf": 1.4142135623730951}, "arianna.ppl.inference.Chain.bundle": {"tf": 1}, "arianna.ppl.inference.Chain.subset": {"tf": 1}, "arianna.ppl.inference.MCMC.fit": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1.4142135623730951}}, "df": 7}, "r": {"docs": {"arianna.ppl.inference.AIES": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"arianna.ppl.inference.AIES": {"tf": 1}, "arianna.ppl.inference.ParallelAIES": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"arianna.ppl.diagnostics.ess_kish": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling": {"tf": 1}}, "df": 2}}}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1.4142135623730951}, "arianna.ppl.inference.AIES": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.shaper.Shaper": {"tf": 1}}, "df": 1}, "r": {"docs": {"arianna.ppl.shaper.Shaper.from_state": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {"arianna.ppl.diagnostics.ess_kish": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "y": {"docs": {"arianna.distributions.abstract.Distribution": {"tf": 1}, "arianna.distributions.abstract.Continuous": {"tf": 1}, "arianna.distributions.abstract.Discrete": {"tf": 1}, "arianna.distributions.abstract.Multivariate": {"tf": 1}, "arianna.distributions.abstract.Univariate": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous": {"tf": 1}, "arianna.distributions.abstract.Positive": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous": {"tf": 1}, "arianna.distributions.abstract.UnivariateReal": {"tf": 1}, "arianna.distributions.abstract.MultivariateReal": {"tf": 1}, "arianna.distributions.distributions.IndependentRagged": {"tf": 1}, "arianna.distributions.distributions.Independent": {"tf": 1}, "arianna.distributions.distributions.Uniform": {"tf": 1}, "arianna.distributions.distributions.Beta": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta": {"tf": 1}, "arianna.distributions.distributions.Gamma": {"tf": 1}, "arianna.distributions.distributions.InverseGamma": {"tf": 1}, "arianna.distributions.distributions.LogNormal": {"tf": 1}, "arianna.distributions.distributions.Weibull": {"tf": 1}, "arianna.distributions.distributions.Gumbel": {"tf": 1}, "arianna.distributions.distributions.Logistic": {"tf": 1}, "arianna.distributions.distributions.LogLogistic": {"tf": 1}, "arianna.distributions.distributions.Normal": {"tf": 1}, "arianna.distributions.distributions.MvNormal": {"tf": 1}, "arianna.distributions.distributions.Dirichlet": {"tf": 1}, "arianna.ppl.context.Context": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace": {"tf": 1}, "arianna.ppl.context.Predictive": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace": {"tf": 1}}, "df": 31}, "s": {"docs": {"arianna.ppl.context.TransformedPredictive": {"tf": 1.4142135623730951}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}}, "df": 2}, "l": {"docs": {}, "df": 0, "k": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}, "arianna.ppl.inference.AdaptiveRandomWalkMetropolis": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.inference.AIES": {"tf": 2.23606797749979}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformableDistribution": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformedLogprobAndTrace": {"tf": 1}, "arianna.ppl.inference.Chain.subset": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.fit": {"tf": 1}, "arianna.ppl.inference.AIES": {"tf": 1}, "arianna.ppl.inference.ParallelAIES": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.fit": {"tf": 1}}, "df": 8}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"arianna.ppl.context.TransformedPredictive": {"tf": 1.7320508075688772}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 2.23606797749979}}, "df": 2}}, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {"arianna.ppl.diagnostics.ess_kish": {"tf": 1}}, "df": 1}}}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"arianna.ppl.context.Predictive.cached": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.cached": {"tf": 1}, "arianna.ppl.inference.AIES": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.step": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"arianna.ppl.context.TransformedPredictive": {"tf": 1.4142135623730951}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}, "arianna.ppl.inference.AIES": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.inference.AIES": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.inference.Chain.subset": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"arianna.ppl.diagnostics.ess_kish": {"tf": 1}}, "df": 1}}, "s": {"docs": {"arianna.ppl.diagnostics.ess_kish": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"arianna.distributions.abstract.Distribution": {"tf": 1}, "arianna.distributions.abstract.Continuous": {"tf": 1}, "arianna.distributions.abstract.Discrete": {"tf": 1}, "arianna.distributions.abstract.Multivariate": {"tf": 1}, "arianna.distributions.abstract.Univariate": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous": {"tf": 1}, "arianna.distributions.abstract.Positive": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous": {"tf": 1}, "arianna.distributions.abstract.UnivariateReal": {"tf": 1}, "arianna.distributions.abstract.MultivariateReal": {"tf": 1}, "arianna.distributions.distributions.IndependentRagged": {"tf": 1}, "arianna.distributions.distributions.Independent": {"tf": 1}, "arianna.distributions.distributions.Uniform": {"tf": 1}, "arianna.distributions.distributions.Beta": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta": {"tf": 1}, "arianna.distributions.distributions.Gamma": {"tf": 1}, "arianna.distributions.distributions.InverseGamma": {"tf": 1}, "arianna.distributions.distributions.LogNormal": {"tf": 1}, "arianna.distributions.distributions.Weibull": {"tf": 1}, "arianna.distributions.distributions.Gumbel": {"tf": 1}, "arianna.distributions.distributions.Logistic": {"tf": 1}, "arianna.distributions.distributions.LogLogistic": {"tf": 1}, "arianna.distributions.distributions.Normal": {"tf": 1}, "arianna.distributions.distributions.MvNormal": {"tf": 1}, "arianna.distributions.distributions.Dirichlet": {"tf": 1}, "arianna.ppl.context.Context": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace": {"tf": 1}, "arianna.ppl.context.Predictive": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace": {"tf": 1}}, "df": 31}}}, "e": {"docs": {"arianna.ppl.inference.AIES": {"tf": 1}}, "df": 1, "d": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1}, "arianna.ppl.context.TransformableDistribution": {"tf": 1}, "arianna.ppl.diagnostics.ess_kish": {"tf": 1}}, "df": 3}}}, "p": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.inference.MCMC.step": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.step": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.step": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.step": {"tf": 1}, "arianna.ppl.inference.AIES.step": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.step": {"tf": 1}}, "df": 6, "d": {"docs": {"arianna.ppl.inference.AIES": {"tf": 1}}, "df": 1}, "s": {"docs": {"arianna.ppl.inference.AIES": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {"arianna.ppl.context.TransformedPredictive": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.step": {"tf": 1}}, "df": 2, "n": {"docs": {"arianna.ppl.context.LogprobAndTrace.run": {"tf": 1}, "arianna.ppl.context.Predictive.cached": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformedLogprobAndTrace": {"tf": 1}, "arianna.ppl.context.TransformedPredictive": {"tf": 1.7320508075688772}, "arianna.ppl.context.TransformedPredictive.cached": {"tf": 1.4142135623730951}, "arianna.ppl.inference.Chain": {"tf": 1}, "arianna.ppl.inference.MCMC.step": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 3}, "arianna.ppl.inference.AffineInvariantMCMC.logprob": {"tf": 1}, "arianna.ppl.inference.AIES": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.step": {"tf": 1}}, "df": 11, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"arianna.distributions.abstract.Distribution": {"tf": 1}, "arianna.distributions.abstract.Continuous": {"tf": 1}, "arianna.distributions.abstract.Discrete": {"tf": 1}, "arianna.distributions.abstract.Multivariate": {"tf": 1}, "arianna.distributions.abstract.Univariate": {"tf": 1}, "arianna.distributions.abstract.UnivariateContinuous": {"tf": 1}, "arianna.distributions.abstract.Positive": {"tf": 1}, "arianna.distributions.abstract.LowerUpperBounded": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous": {"tf": 1}, "arianna.distributions.abstract.UnivariateReal": {"tf": 1}, "arianna.distributions.abstract.MultivariateReal": {"tf": 1}, "arianna.distributions.distributions.IndependentRagged": {"tf": 1}, "arianna.distributions.distributions.Independent": {"tf": 1}, "arianna.distributions.distributions.Uniform": {"tf": 1}, "arianna.distributions.distributions.Beta": {"tf": 1}, "arianna.distributions.distributions.ScaledBeta": {"tf": 1}, "arianna.distributions.distributions.Gamma": {"tf": 1}, "arianna.distributions.distributions.InverseGamma": {"tf": 1}, "arianna.distributions.distributions.LogNormal": {"tf": 1}, "arianna.distributions.distributions.Weibull": {"tf": 1}, "arianna.distributions.distributions.Gumbel": {"tf": 1}, "arianna.distributions.distributions.Logistic": {"tf": 1}, "arianna.distributions.distributions.LogLogistic": {"tf": 1}, "arianna.distributions.distributions.Normal": {"tf": 1}, "arianna.distributions.distributions.MvNormal": {"tf": 1}, "arianna.distributions.distributions.Dirichlet": {"tf": 1}, "arianna.ppl.context.Context": {"tf": 1}, "arianna.ppl.context.LogprobAndPriorSample": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace": {"tf": 1}, "arianna.ppl.context.Predictive": {"tf": 1}, "arianna.ppl.context.LogprobAndLogjacobianAndTrace": {"tf": 1}}, "df": 31}}}}}}}}}, "t": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1.7320508075688772}, "arianna.ppl.context.TransformableDistribution": {"tf": 1.7320508075688772}, "arianna.ppl.inference.Chain.subset": {"tf": 1.4142135623730951}, "arianna.ppl.inference.AIES": {"tf": 1}}, "df": 4, "o": {"docs": {"arianna.ppl.inference.Chain.bundle": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}, "arianna.ppl.inference.AIES": {"tf": 1}, "arianna.ppl.shaper.Shaper": {"tf": 1}, "arianna.ppl.shaper.Shaper.vec": {"tf": 1}}, "df": 5}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis": {"tf": 2.449489742783178}}, "df": 1, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"arianna.ppl.inference.Chain.subset": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}}, "df": 2}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.inference.InferenceEngine": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.inference.AffineInvariantMCMC": {"tf": 1}, "arianna.ppl.inference.AIES": {"tf": 1}, "arianna.ppl.inference.ParallelAIES": {"tf": 1}}, "df": 3}, "c": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.inference.AIES": {"tf": 1}, "arianna.ppl.inference.ParallelAIES": {"tf": 1}}, "df": 2}}}}}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1}, "arianna.ppl.context.TransformableDistribution": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {"arianna.ppl.context.LogprobAndTrace.run": {"tf": 1}, "arianna.ppl.context.Predictive.cached": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformedPredictive": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.cached": {"tf": 1.4142135623730951}, "arianna.ppl.diagnostics.ess_kish": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 2}, "arianna.ppl.inference.AIES": {"tf": 2}, "arianna.ppl.inference.ParallelAIES.step": {"tf": 1.4142135623730951}}, "df": 8}, "f": {"docs": {"arianna.ppl.context.Predictive.cached": {"tf": 1}, "arianna.ppl.context.TransformedPredictive": {"tf": 1.7320508075688772}, "arianna.ppl.context.TransformedPredictive.cached": {"tf": 1}, "arianna.ppl.diagnostics.ess_kish": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 2.8284271247461903}}, "df": 5}, "t": {"docs": {"arianna.ppl.context.TransformedPredictive": {"tf": 1.7320508075688772}}, "df": 1, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.context.TransformedLogprobAndTrace": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.inference.Chain": {"tf": 1}}, "df": 1}}}}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"arianna.ppl.inference.MCMC.step": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.diagnostics.ess_kish": {"tf": 1}, "arianna.ppl.inference.ImportanceSampling": {"tf": 1}}, "df": 2}}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"arianna.distributions.abstract.UnivariateContinuous.logpdf_plus_logdetjac": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.MultivariateContinuous.logpdf_plus_logdetjac": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformedLogprobAndTrace": {"tf": 1}, "arianna.ppl.diagnostics.ess_kish": {"tf": 1.4142135623730951}, "arianna.ppl.inference.MCMC.logprob": {"tf": 1.4142135623730951}, "arianna.ppl.inference.AffineInvariantMCMC.logprob": {"tf": 1.7320508075688772}, "arianna.ppl.inference.LaplaceApproximation.logprob": {"tf": 1.4142135623730951}}, "df": 7, "p": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "f": {"docs": {"arianna.distributions.abstract.UnivariateContinuous.logpdf_plus_logdetjac": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.MultivariateContinuous.logpdf_plus_logdetjac": {"tf": 1.4142135623730951}}, "df": 2}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"arianna.ppl.context.LogprobAndPriorSample.run": {"tf": 1}, "arianna.ppl.context.LogprobAndTrace.run": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.step": {"tf": 1.4142135623730951}}, "df": 4, "s": {"docs": {"arianna.ppl.inference.AIES.step": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.step": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {"arianna.ppl.context.TransformedLogprobAndTrace": {"tf": 1}}, "df": 1}}}}}}}, "w": {"docs": {"arianna.ppl.inference.AIES": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.inference.Chain": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.step": {"tf": 1.4142135623730951}, "arianna.ppl.inference.AIES.step": {"tf": 1.7320508075688772}, "arianna.ppl.inference.ParallelAIES.step": {"tf": 1.7320508075688772}}, "df": 4, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.inference.Chain": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.step": {"tf": 1}, "arianna.ppl.inference.AIES.step": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.step": {"tf": 1}}, "df": 4}}}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.inference.AIES.step": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.step": {"tf": 1}}, "df": 2}}}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1.7320508075688772}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.inference.AIES": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.inference.LaplaceApproximation": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.fit": {"tf": 1}}, "df": 2}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"arianna.distributions.abstract.UnivariateContinuous.logpdf_plus_logdetjac": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.MultivariateContinuous.logpdf_plus_logdetjac": {"tf": 1.4142135623730951}, "arianna.ppl.inference.AffineInvariantMCMC.logprob": {"tf": 1}}, "df": 3}}}}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1}, "arianna.ppl.context.TransformableDistribution": {"tf": 1}}, "df": 2}}}}}, "f": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 2}, "arianna.ppl.context.TransformableDistribution": {"tf": 2}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}, "arianna.ppl.inference.AIES": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformableDistribution": {"tf": 1.4142135623730951}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.context.TransformedPredictive": {"tf": 1}, "arianna.ppl.inference.Chain.subset": {"tf": 1.4142135623730951}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}, "arianna.ppl.inference.AIES": {"tf": 2.23606797749979}}, "df": 4, "s": {"docs": {"arianna.ppl.context.TransformedPredictive": {"tf": 1.7320508075688772}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 2}, "arianna.ppl.inference.AIES": {"tf": 1}}, "df": 3}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1}, "arianna.ppl.context.TransformableDistribution": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"arianna.ppl.context.LogprobAndTrace.run": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"arianna.ppl.inference.MCMC.logprob": {"tf": 1.4142135623730951}, "arianna.ppl.inference.AffineInvariantMCMC.logprob": {"tf": 1.4142135623730951}, "arianna.ppl.inference.AIES": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.logprob": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1}, "arianna.ppl.context.TransformableDistribution": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.inference.MCMC.logprob": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.logprob": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.logprob": {"tf": 1}, "arianna.ppl.shaper.Shaper": {"tf": 1}, "arianna.ppl.shaper.Shaper.vec": {"tf": 1}, "arianna.ppl.shaper.Shaper.unvec": {"tf": 1}}, "df": 7, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"arianna.ppl.context.TransformedPredictive": {"tf": 1}, "arianna.ppl.inference.Chain.bundle": {"tf": 1.4142135623730951}, "arianna.ppl.inference.MCMC.logprob": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.step": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1.7320508075688772}, "arianna.ppl.inference.AffineInvariantMCMC.logprob": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.step": {"tf": 1}, "arianna.ppl.inference.AIES.step": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.step": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.logprob": {"tf": 1}}, "df": 10}}}}}}, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"arianna.ppl.inference.Chain.bundle": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}}, "df": 2}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"arianna.ppl.inference.Chain.subset": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.inference.AIES": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"arianna.ppl.inference.AIES": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "f": {"docs": {"arianna.distributions.abstract.UnivariateContinuous.logpdf_plus_logdetjac": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.MultivariateContinuous.logpdf_plus_logdetjac": {"tf": 1.4142135623730951}, "arianna.ppl.context.BasicDistribution": {"tf": 1}, "arianna.ppl.context.TransformableDistribution": {"tf": 1}, "arianna.ppl.context.Predictive.cached": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformedPredictive.cached": {"tf": 1.4142135623730951}, "arianna.ppl.inference.Chain.get": {"tf": 1}, "arianna.ppl.inference.Chain.bundle": {"tf": 1}, "arianna.ppl.inference.Chain.subset": {"tf": 1.4142135623730951}, "arianna.ppl.inference.MCMC.fit": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.dim": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.logprob": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.step": {"tf": 1.4142135623730951}, "arianna.ppl.inference.AIES": {"tf": 1.4142135623730951}, "arianna.ppl.inference.AIES.step": {"tf": 1.7320508075688772}, "arianna.ppl.inference.ParallelAIES.step": {"tf": 1.7320508075688772}, "arianna.ppl.inference.LaplaceApproximation": {"tf": 1}, "arianna.ppl.shaper.Shaper": {"tf": 1}}, "df": 19}, "n": {"docs": {"arianna.distributions.abstract.UnivariateContinuous.logpdf_plus_logdetjac": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous.logpdf_plus_logdetjac": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace": {"tf": 1}, "arianna.ppl.context.TransformedPredictive": {"tf": 1.4142135623730951}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}}, "df": 5, "l": {"docs": {}, "df": 0, "y": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1}, "arianna.ppl.context.TransformableDistribution": {"tf": 1}, "arianna.ppl.inference.Chain.subset": {"tf": 1.4142135623730951}}, "df": 3}}, "e": {"docs": {"arianna.ppl.inference.Chain.get": {"tf": 1}, "arianna.ppl.inference.MCMC.step": {"tf": 1}}, "df": 2}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"arianna.ppl.inference.Chain.subset": {"tf": 1.4142135623730951}, "arianna.ppl.inference.AIES": {"tf": 2.23606797749979}}, "df": 2, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.context.TransformedPredictive": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"arianna.ppl.context.TransformedPredictive": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}}, "df": 2}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.inference.AIES": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"arianna.ppl.inference.BayesianOptimization": {"tf": 1}}, "df": 1}}}}}}}}}}}, "r": {"docs": {"arianna.ppl.context.TransformedPredictive": {"tf": 1.4142135623730951}, "arianna.ppl.inference.Chain.get": {"tf": 1.7320508075688772}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}, "arianna.ppl.inference.AIES": {"tf": 1}, "arianna.ppl.inference.ParallelAIES": {"tf": 1}}, "df": 5, "g": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.diagnostics.ess_kish": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}}, "df": 1}}}, "j": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"arianna.distributions.abstract.UnivariateContinuous.logpdf_plus_logdetjac": {"tf": 1.4142135623730951}, "arianna.distributions.abstract.MultivariateContinuous.logpdf_plus_logdetjac": {"tf": 1.4142135623730951}, "arianna.ppl.inference.AffineInvariantMCMC.logprob": {"tf": 1}}, "df": 3}}}}}}}}, "e": {"docs": {"arianna.ppl.context.TransformedPredictive": {"tf": 1}, "arianna.ppl.diagnostics.ess_kish": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.step": {"tf": 1}}, "df": 3, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"arianna.distributions.abstract.UnivariateContinuous.logpdf_plus_logdetjac": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous.logpdf_plus_logdetjac": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"arianna.ppl.inference.Chain.subset": {"tf": 1.4142135623730951}}, "df": 1}}}}, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1}, "arianna.ppl.context.TransformableDistribution": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"arianna.types.NegativeInfinityError": {"tf": 1}, "arianna.types.NegativeParameterError": {"tf": 1}, "arianna.types.InvalidBoundsError": {"tf": 1}}, "df": 3}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"arianna.types.NegativeInfinityError": {"tf": 1}, "arianna.types.NegativeParameterError": {"tf": 1}, "arianna.types.InvalidBoundsError": {"tf": 1}}, "df": 3}}}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"arianna.ppl.context.TransformedPredictive": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1.4142135623730951}}, "df": 2}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.inference.AIES": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.inference.AIES": {"tf": 1}, "arianna.ppl.inference.ParallelAIES": {"tf": 1}}, "df": 2}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.diagnostics.ess_kish": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.inference.InferenceEngine": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.inference.AIES": {"tf": 1.4142135623730951}, "arianna.ppl.inference.ParallelAIES": {"tf": 1}}, "df": 2}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.inference.ParallelAIES.step": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"arianna.distributions.abstract.UnivariateContinuous.logpdf_plus_logdetjac": {"tf": 1}, "arianna.distributions.abstract.MultivariateContinuous.logpdf_plus_logdetjac": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace": {"tf": 1}, "arianna.ppl.context.TransformedPredictive": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1.4142135623730951}, "arianna.ppl.inference.AIES": {"tf": 1}}, "df": 6}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1}, "arianna.ppl.context.TransformableDistribution": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformableDistribution": {"tf": 1.4142135623730951}, "arianna.ppl.context.Predictive.cached": {"tf": 1}, "arianna.ppl.context.TransformedPredictive": {"tf": 2}, "arianna.ppl.context.TransformedPredictive.cached": {"tf": 1}, "arianna.ppl.inference.Chain.subset": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.step": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.step": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.step": {"tf": 1}, "arianna.ppl.inference.AIES.default_temperature_fn": {"tf": 1}, "arianna.ppl.inference.AIES.step": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.step": {"tf": 1}}, "df": 12, "s": {"docs": {"arianna.ppl.context.LogprobAndTrace.run": {"tf": 1.4142135623730951}, "arianna.ppl.context.Predictive.cached": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformedLogprobAndTrace": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformedPredictive.cached": {"tf": 1.4142135623730951}, "arianna.ppl.inference.Chain.get": {"tf": 1}, "arianna.ppl.inference.Chain.bundle": {"tf": 1}, "arianna.ppl.inference.Chain.subset": {"tf": 1}, "arianna.ppl.inference.MCMC.fit": {"tf": 1}, "arianna.ppl.inference.MCMC.logprob": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.step": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis.step": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.logprob": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.step": {"tf": 1}, "arianna.ppl.inference.AIES.step": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.step": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.logprob": {"tf": 1}}, "df": 16}, "e": {"docs": {}, "df": 0, "d": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.context.Predictive.cached": {"tf": 1}, "arianna.ppl.context.TransformedPredictive.cached": {"tf": 1}}, "df": 2}}}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.inference.AdaptiveRandomWalkMetropolis": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"arianna.ppl.inference.Chain.subset": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.inference.AIES": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.inference.AIES": {"tf": 1}, "arianna.ppl.inference.ParallelAIES": {"tf": 1}}, "df": 2}}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"arianna.ppl.context.TransformedPredictive": {"tf": 1}, "arianna.ppl.inference.MCMC.fit": {"tf": 1}}, "df": 2, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformableDistribution": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"arianna.ppl.context.TransformedPredictive": {"tf": 2}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 3.3166247903554}, "arianna.ppl.inference.AIES": {"tf": 1.7320508075688772}}, "df": 3}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"arianna.ppl.context.TransformedPredictive": {"tf": 1.4142135623730951}, "arianna.ppl.inference.MCMC.logprob": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1.7320508075688772}, "arianna.ppl.inference.AffineInvariantMCMC.logprob": {"tf": 1}, "arianna.ppl.inference.AIES": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.logprob": {"tf": 1}, "arianna.ppl.inference.AdaptiveRandomWalkMetropolis": {"tf": 1}}, "df": 7}}}}}, "v": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1.7320508075688772}}, "df": 1}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1}, "arianna.ppl.context.TransformableDistribution": {"tf": 1}, "arianna.types.NegativeInfinityError": {"tf": 1}, "arianna.types.NegativeParameterError": {"tf": 1}, "arianna.types.InvalidBoundsError": {"tf": 1}}, "df": 5}}, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"arianna.ppl.inference.BayesianOptimization": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {"arianna.ppl.shaper.Shaper": {"tf": 1}, "arianna.ppl.shaper.Shaper.unvec": {"tf": 1}}, "df": 2}}}, "e": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1}, "arianna.ppl.context.TransformableDistribution": {"tf": 1}, "arianna.ppl.context.TransformedPredictive": {"tf": 1.7320508075688772}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1.7320508075688772}}, "df": 4}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"arianna.ppl.context.TransformedPredictive": {"tf": 1.4142135623730951}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1.4142135623730951}, "arianna.ppl.inference.AIES": {"tf": 1}}, "df": 3}}}, "y": {"docs": {"arianna.ppl.inference.Chain.get": {"tf": 1}, "arianna.ppl.inference.Chain.subset": {"tf": 1.4142135623730951}, "arianna.ppl.inference.AIES": {"tf": 2.23606797749979}}, "df": 3}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.inference.Chain.bundle": {"tf": 1.4142135623730951}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "n": {"docs": {"arianna.ppl.inference.Chain.subset": {"tf": 1.4142135623730951}}, "df": 1}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1.7320508075688772}, "arianna.ppl.context.TransformableDistribution": {"tf": 1.7320508075688772}, "arianna.ppl.context.TransformedLogprobAndTrace": {"tf": 1}, "arianna.ppl.diagnostics.ess_kish": {"tf": 1}, "arianna.ppl.inference.Chain.get": {"tf": 1.4142135623730951}, "arianna.ppl.inference.MCMC": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1.4142135623730951}, "arianna.ppl.inference.AIES": {"tf": 1.7320508075688772}, "arianna.types.NegativeInfinityError": {"tf": 1}, "arianna.types.NegativeParameterError": {"tf": 1}, "arianna.types.InvalidBoundsError": {"tf": 1}}, "df": 11, "m": {"docs": {"arianna.ppl.inference.AIES": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.inference.Chain": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformableDistribution": {"tf": 1.4142135623730951}}, "df": 2, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}, "arianna.ppl.inference.AIES": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"arianna.ppl.context.TransformedPredictive": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}, "arianna.ppl.shaper.Shaper.from_state": {"tf": 1}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.diagnostics.ess_kish": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.inference.Chain.subset": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}, "arianna.ppl.inference.ParallelAIES.step": {"tf": 1}}, "df": 3}}}, "t": {"docs": {"arianna.ppl.inference.InferenceEngine.fit": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.fit": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.fit": {"tf": 1}}, "df": 3}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.inference.MCMC.logprob": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.step": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.logprob": {"tf": 1}, "arianna.ppl.inference.AIES": {"tf": 1.4142135623730951}, "arianna.ppl.inference.LaplaceApproximation.logprob": {"tf": 1}}, "df": 5}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1.4142135623730951}}, "df": 1}}}}, "n": {"docs": {"arianna.ppl.inference.AIES": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 2}, "arianna.ppl.context.TransformableDistribution": {"tf": 2}}, "df": 2, "o": {"docs": {}, "df": 0, "d": {"docs": {"arianna.ppl.context.TransformedPredictive": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}, "arianna.ppl.inference.AdaptiveRandomWalkMetropolis": {"tf": 1}}, "df": 2}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1}, "arianna.ppl.context.TransformableDistribution": {"tf": 1}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"arianna.ppl.context.LogprobAndTrace.run": {"tf": 1}, "arianna.ppl.context.TransformedPredictive": {"tf": 1}, "arianna.ppl.inference.Chain.get": {"tf": 1}, "arianna.ppl.inference.InferenceEngine.fit": {"tf": 1}, "arianna.ppl.inference.MCMC.step": {"tf": 1}, "arianna.ppl.inference.MCMC.logprob": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 2.8284271247461903}, "arianna.ppl.inference.AffineInvariantMCMC.dim": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.logprob": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.fit": {"tf": 1}, "arianna.ppl.inference.AIES": {"tf": 2}, "arianna.ppl.inference.LaplaceApproximation.logprob": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.fit": {"tf": 1}}, "df": 13}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.diagnostics.ess_kish": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "c": {"docs": {"arianna.ppl.inference.Chain": {"tf": 1.7320508075688772}, "arianna.ppl.inference.Chain.get": {"tf": 1.4142135623730951}, "arianna.ppl.inference.Chain.bundle": {"tf": 1.4142135623730951}, "arianna.ppl.inference.MCMC": {"tf": 1}, "arianna.ppl.inference.MCMC.step": {"tf": 1}, "arianna.ppl.inference.MCMC.fit": {"tf": 1.4142135623730951}, "arianna.ppl.inference.SingleWalkerMCMC.step": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1.7320508075688772}, "arianna.ppl.inference.RandomWalkMetropolis.step": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.step": {"tf": 1}, "arianna.ppl.inference.AIES": {"tf": 1}, "arianna.ppl.inference.AIES.step": {"tf": 1}, "arianna.ppl.inference.ParallelAIES": {"tf": 1.4142135623730951}, "arianna.ppl.inference.ParallelAIES.step": {"tf": 1}}, "df": 15}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"arianna.ppl.inference.SingleWalkerMCMC": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "y": {"docs": {"arianna.ppl.inference.AIES": {"tf": 1.4142135623730951}}, "df": 1}}}, "u": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis": {"tf": 2}}, "df": 1, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"arianna.ppl.inference.AIES": {"tf": 1}}, "df": 1}}}}}}}}}}, "g": {"docs": {"arianna.ppl.diagnostics.ess_kish": {"tf": 1}}, "df": 1, "t": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 2}, "arianna.ppl.context.TransformableDistribution": {"tf": 2}}, "df": 2}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1}, "arianna.ppl.context.TransformableDistribution": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1}, "arianna.ppl.context.TransformableDistribution": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"arianna.ppl.context.TransformedPredictive": {"tf": 1.4142135623730951}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}, "arianna.ppl.inference.AIES": {"tf": 1}}, "df": 3}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1}, "arianna.ppl.context.TransformableDistribution": {"tf": 1}}, "df": 2}}}}}}, "t": {"docs": {"arianna.ppl.context.LogprobAndPriorSample.run": {"tf": 1}, "arianna.ppl.context.TransformedPredictive": {"tf": 1.4142135623730951}, "arianna.ppl.inference.Chain.get": {"tf": 1}}, "df": 3}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"arianna.ppl.inference.AIES": {"tf": 1.4142135623730951}}, "df": 1}}}}, "x": {"docs": {"arianna.ppl.context.BasicDistribution": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformableDistribution": {"tf": 1.4142135623730951}}, "df": 2}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.context.LogprobAndTrace.run": {"tf": 1}, "arianna.ppl.context.TransformedLogprobAndTrace": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformedPredictive": {"tf": 1.4142135623730951}, "arianna.ppl.inference.MCMC.logprob": {"tf": 1}, "arianna.ppl.inference.SingleWalkerMCMC.step": {"tf": 1.4142135623730951}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1.7320508075688772}, "arianna.ppl.inference.RandomWalkMetropolis.step": {"tf": 1.4142135623730951}, "arianna.ppl.inference.AffineInvariantMCMC.logprob": {"tf": 1.4142135623730951}, "arianna.ppl.inference.AffineInvariantMCMC.step": {"tf": 1.4142135623730951}, "arianna.ppl.inference.AIES.step": {"tf": 1.4142135623730951}, "arianna.ppl.inference.ParallelAIES.step": {"tf": 1.4142135623730951}, "arianna.ppl.inference.LaplaceApproximation.logprob": {"tf": 1}}, "df": 12}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.context.Predictive.cached": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformedPredictive.cached": {"tf": 1.4142135623730951}, "arianna.ppl.inference.Chain.get": {"tf": 1.7320508075688772}}, "df": 3, "d": {"docs": {"arianna.ppl.inference.Chain.get": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"arianna.ppl.inference.AIES": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"arianna.ppl.context.Predictive.cached": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformedPredictive.cached": {"tf": 1.4142135623730951}, "arianna.ppl.shaper.Shaper": {"tf": 1}}, "df": 3}}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"arianna.ppl.context.TransformedPredictive": {"tf": 1.4142135623730951}, "arianna.ppl.inference.Chain.subset": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.dim": {"tf": 1}, "arianna.ppl.inference.AIES": {"tf": 1.4142135623730951}}, "df": 5}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.context.TransformedPredictive": {"tf": 1.7320508075688772}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1.4142135623730951}, "arianna.ppl.inference.AIES": {"tf": 1.4142135623730951}}, "df": 3}, "n": {"docs": {"arianna.types.NegativeInfinityError": {"tf": 1}, "arianna.types.NegativeParameterError": {"tf": 1}, "arianna.types.InvalidBoundsError": {"tf": 1}}, "df": 3, "e": {"docs": {"arianna.ppl.context.TransformedPredictive": {"tf": 2}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 2.6457513110645907}, "arianna.ppl.inference.AIES": {"tf": 1}}, "df": 3}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis": {"tf": 2.23606797749979}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"arianna.ppl.inference.Chain.get": {"tf": 1}, "arianna.ppl.inference.Chain.bundle": {"tf": 1}, "arianna.ppl.shaper.Shaper.vec": {"tf": 1}, "arianna.ppl.shaper.Shaper.unvec": {"tf": 1}}, "df": 4}}}}}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"arianna.ppl.inference.Chain.subset": {"tf": 1}}, "df": 1}}, "p": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}, "arianna.ppl.shaper.Shaper": {"tf": 1}, "arianna.ppl.shaper.Shaper.vec": {"tf": 1}, "arianna.ppl.shaper.Shaper.unvec": {"tf": 1}}, "df": 4}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.context.Predictive.cached": {"tf": 2.6457513110645907}, "arianna.ppl.context.TransformedPredictive": {"tf": 1.4142135623730951}, "arianna.ppl.context.TransformedPredictive.cached": {"tf": 2.6457513110645907}, "arianna.ppl.inference.Chain.get": {"tf": 1.7320508075688772}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 3}}, "df": 5, "s": {"docs": {"arianna.ppl.context.LogprobAndTrace.run": {"tf": 1}, "arianna.ppl.context.Predictive.cached": {"tf": 1}, "arianna.ppl.context.TransformedPredictive": {"tf": 2}, "arianna.ppl.context.TransformedPredictive.cached": {"tf": 1}, "arianna.ppl.inference.Chain.bundle": {"tf": 1}, "arianna.ppl.inference.MCMC.logprob": {"tf": 1}, "arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1.7320508075688772}, "arianna.ppl.inference.RandomWalkMetropolis.step": {"tf": 1.4142135623730951}, "arianna.ppl.inference.AffineInvariantMCMC.logprob": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.logprob": {"tf": 1}, "arianna.ppl.shaper.Shaper": {"tf": 1}}, "df": 11}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"arianna.ppl.inference.Chain.get": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"arianna.ppl.inference.MCMC.logprob": {"tf": 1}, "arianna.ppl.inference.AffineInvariantMCMC.logprob": {"tf": 1}, "arianna.ppl.inference.LaplaceApproximation.logprob": {"tf": 1}}, "df": 3}}}}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {"arianna.ppl.context.TransformedPredictive": {"tf": 1}}, "df": 1}}}, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"arianna.ppl.diagnostics.ess_kish": {"tf": 1.4142135623730951}}, "df": 1}}}}, "y": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1.7320508075688772}}, "df": 1, "o": {"docs": {}, "df": 0, "u": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}, "arianna.ppl.inference.AIES": {"tf": 1.4142135623730951}}, "df": 2, "r": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis": {"tf": 1}}, "df": 1}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"arianna.ppl.inference.RandomWalkMetropolis": {"tf": 2.449489742783178}}, "df": 1}}}}}}}, "pipeline": ["trimmer"], "_isPrebuiltIndex": true}; + + // mirrored in build-search-index.js (part 1) + // Also split on html tags. this is a cheap heuristic, but good enough. + elasticlunr.tokenizer.setSeperator(/[\s\-.;&_'"=,()]+|<[^>]*>/); + + let searchIndex; + if (docs._isPrebuiltIndex) { + console.info("using precompiled search index"); + searchIndex = elasticlunr.Index.load(docs); + } else { + console.time("building search index"); + // mirrored in build-search-index.js (part 2) + searchIndex = elasticlunr(function () { + this.pipeline.remove(elasticlunr.stemmer); + this.pipeline.remove(elasticlunr.stopWordFilter); + this.addField("qualname"); + this.addField("fullname"); + this.addField("annotation"); + this.addField("default_value"); + this.addField("signature"); + this.addField("bases"); + this.addField("doc"); + this.setRef("fullname"); + }); + for (let doc of docs) { + searchIndex.addDoc(doc); + } + console.timeEnd("building search index"); + } + + return (term) => searchIndex.search(term, { + fields: { + qualname: {boost: 4}, + fullname: {boost: 2}, + annotation: {boost: 2}, + default_value: {boost: 2}, + signature: {boost: 2}, + bases: {boost: 2}, + doc: {boost: 1}, + }, + expand: true + }); +})(); \ No newline at end of file diff --git a/justfile b/justfile new file mode 100644 index 0000000..fea0abc --- /dev/null +++ b/justfile @@ -0,0 +1,83 @@ +alias ta := test-all +alias tl := test-lowest-versions +alias th := test-highest-versions +alias tt := test-nogil +alias t := test +alias w := watch +alias p := python +alias d := docs +alias s := serve +alias r := recover-uvlock +alias f := fmt +alias c := clean + +@default: + just -u -l + +watch *flags: + uv run --frozen -- watchmedo shell-command \ + --patterns='*.py' \ + --recursive \ + --command='just test {{ flags }}' \ + --verbose \ + src/ tests/ + +# Disable warnings by adding `--disable-warnings`. +test *flags: + uv run --frozen -- \ + pytest -s tests/ {{ if flags == "-dw" { "--disable-warnings" } else { "" } }} + +test-all *flags: + just test-lowest-versions {{ flags }} + just test-highest-versions {{ flags }} + just test-nogil {{ flags }} + +test-lowest-versions *flags: + uv run --resolution=lowest-direct --python=3.10 --isolated -- \ + pytest -s {{ if flags == "-dw" { "--disable-warnings" } else { "" } }} + just recover-uvlock + +test-highest-versions *flags: + uv run --resolution=highest --python=3.13 --isolated -- \ + pytest -s {{ if flags == "-dw" { "--disable-warnings" } else { "" } }} + just recover-uvlock + +test-nogil *flags: + uv run --resolution=highest --python=3.13t --isolated -- \ + pytest -s {{ if flags == "-dw" { "--disable-warnings" } else { "" } }} + just recover-uvlock + +sync: + uv sync --frozen + +python: + uv run --frozen -- ipython --no-autoindent + +docs: + rm -rf docs/* + uv run --frozen pdoc --math ./src/arianna -o ./docs --docformat numpy + +serve: + # uv run --frozen python -m http.server -d ./docs 8000 + uv run --frozen pdoc --docformat numpy --math -p 8000 ./src/arianna + +fmt-self: + just --fmt --unstable + +recover-uvlock: + git checkout uv.lock + uv sync --frozen + +# uv run --resolution=lowest-direct --python=3.10 --isolated -- pytest -s + +fmt-py: + ruff format + +fmt: fmt-self fmt-py + +lint: + ruff check --fix + +clean: + rm -rf src/*.egg-info src/arianna/__pycache__ src/arianna/*/__pycache__ + rm -rf dist diff --git a/pyproject.toml b/pyproject.toml new file mode 100644 index 0000000..349ff67 --- /dev/null +++ b/pyproject.toml @@ -0,0 +1,72 @@ +[project] +name = "arianna-ppl" +dynamic = ["version"] +description = "Arianna probabilistic programming language" +readme = "README.md" +authors = [ + { name = "Arthur Lui", email = "alui@lanl.gov" } +] +maintainers = [{name="Arthur Lui", email="alui@lanl.gov"}] +classifiers = [ + "Operating System :: OS Independent", + "License :: OSI Approved :: BSD License", + "Programming Language :: Python :: 3.10", + "Programming Language :: Python :: 3.11", + "Programming Language :: Python :: 3.12", + "Programming Language :: Python :: 3.13", + "Programming Language :: Python :: 3.13t", +] +requires-python = ">=3.10" +dependencies = [ + "numpy>=2.2.1", + "scipy>=1.15.0", + "tqdm>=4.65,<5.0.0", +] + +[project.urls] +Homepage = "https://github.com/lanl/arianna" +Documentation = "https://lanl.github.io/arianna" +Repository = "https://github.com/lanl/arianna" +Issues = "https://github.com/lanl/arianna/issues" +Changelog = "https://github.com/me/spam/blob/master/CHANGELOG.md" + +[build-system] +requires = ["setuptools>=74.1", "setuptools-git-versioning>=2.0,<3"] +build-backend = "setuptools.build_meta" + +[dependency-groups] +dev = [ + "emcee>=3.1.6", + "matplotlib>=3.10.0", + "pdoc>=15.0.1", + "pytest>=8.3.4", + "seaborn>=0.13.2", + "watchdog>=6.0.0", + # psutil (notebook dependency) does not yet work with 3.13t. + "notebook>=7.2.2; python_version < '3.13'", +] + +[tool.setuptools-git-versioning] +enabled = true + +[tool.ruff] +line-length = 80 + +[tool.ruff.lint] +ignore = ["D100"] +extend-select = ["I", "D", "W505"] +extend-unsafe-fixes = ["F401"] +pydocstyle.convention = "numpy" +pycodestyle.max-doc-length = 80 + +# Ignore test file documentation linting. +[tool.ruff.lint.extend-per-file-ignores] +"tests/**/*.py" = ["D"] +"demos/**/*.ipynb" = ["D"] + +[tool.pytest.ini_options] +norecursedirs = ["venv", "build", ".git", "docs"] +addopts = "-s" +testpaths = [ + "tests", +] diff --git a/src/arianna/distributions/__init__.py b/src/arianna/distributions/__init__.py new file mode 100644 index 0000000..3a48a32 --- /dev/null +++ b/src/arianna/distributions/__init__.py @@ -0,0 +1 @@ +from .distributions import * # noqa: D104, F403 diff --git a/src/arianna/distributions/abstract.py b/src/arianna/distributions/abstract.py new file mode 100644 index 0000000..9958bdb --- /dev/null +++ b/src/arianna/distributions/abstract.py @@ -0,0 +1,203 @@ +from abc import ABC, abstractmethod +from functools import cached_property + +import numpy as np +from numpy import ndarray +from numpy.random import Generator as RNG +from numpy.random import default_rng +from scipy.special import expit, logit + +from arianna.types import InvalidBoundsError, Numeric, Shape + + +class Distribution(ABC): + @cached_property + @abstractmethod + def event_shape(self): ... + + # TODO: Think about how to implement this. + @cached_property + @abstractmethod + def batch_shape(self): ... + + @abstractmethod + def logpdf(self, x: Numeric) -> Numeric: ... + + @abstractmethod + def sample( + self, sample_shape: Shape = (), rng: RNG = default_rng() + ) -> ndarray: ... + + def pdf(self, x: Numeric) -> Numeric: + return np.exp(self.logpdf(x)) + + @cached_property + @abstractmethod + def mean(self) -> Numeric: ... + + @cached_property + def std(self) -> Numeric: + return np.sqrt(self.var) + + @cached_property + @abstractmethod + def var(self) -> Numeric: ... + + +class Continuous(Distribution): + @abstractmethod + def to_real(self, x: Numeric) -> Numeric: ... + + @abstractmethod + def to_native(self, z: Numeric) -> Numeric: ... + + @abstractmethod + def logdetjac(self, z: Numeric) -> Numeric: ... + + +class Discrete(Distribution): ... + + +class Multivariate(Distribution): + @cached_property + @abstractmethod + def mean(self) -> ndarray: ... + + @cached_property + def std(self) -> ndarray: + return np.sqrt(self.var) + + @cached_property + @abstractmethod + def var(self) -> ndarray: ... + + +class Univariate(Distribution): + @cached_property + def event_shape(self) -> Shape: + return () + + @cached_property + @abstractmethod + def batch_shape(self) -> Shape: ... + + def _reshape(self, sample_shape: Shape) -> Shape: + return sample_shape + self.batch_shape + + @abstractmethod + def _sample(self, size: Shape, rng: RNG) -> ndarray: ... + + def sample( + self, sample_shape: Shape = (), rng: RNG = default_rng() + ) -> ndarray: + shape = self._reshape(sample_shape) + return self._sample(shape, rng) + + +class UnivariateContinuous(Univariate, Continuous): + def logpdf_plus_logdetjac(self, z: Numeric) -> Numeric: + """Logpdf plus the log absolute determinant of the jacobian. + + Logpdf plus the log absolute determinant of the jacobian, evaluated at + parameter on the transformed (real) space. + """ + x = self.to_native(z) + return self.logpdf(x) + self.logdetjac(z) + + @abstractmethod + def logcdf(self, x: Numeric) -> Numeric: ... + + def cdf(self, x: Numeric) -> Numeric: + with np.errstate(divide="ignore"): + return np.exp(self.logcdf(x)) + + def survival(self, x: Numeric) -> Numeric: + return 1 - self.cdf(x) + + def logsurvival(self, x: Numeric) -> Numeric: + return np.log1p(-self.cdf(x)) + + +class Positive(UnivariateContinuous): + @abstractmethod + def _logpdf(self, x: Numeric) -> Numeric: ... + + def to_real(self, x: Numeric) -> Numeric: + return np.log(x) + + def to_native(self, z: Numeric) -> Numeric: + return np.exp(z) + + def logdetjac(self, z: Numeric) -> Numeric: + return z + + def logpdf(self, x: Numeric) -> Numeric: + # ignore divide by zero encountered in log. + with np.errstate(divide="ignore"): + return np.where(x > 0, self._logpdf(np.maximum(0, x)), -np.inf) + + +class LowerUpperBounded(UnivariateContinuous, ABC): + @abstractmethod + def _logpdf(self, x: Numeric) -> Numeric: ... + + def __init__(self, lower: Numeric, upper: Numeric, check: bool = True): + self.lower = lower + self.upper = upper + self.range = self.upper - self.lower + if check and np.any(self.range <= 0): + raise InvalidBoundsError( + "In LowerUpperBounded, lower bound needs to be strictly less than upper bound!" + ) + + def to_real(self, x: Numeric) -> Numeric: + return logit((x - self.lower) / self.range) + + def to_native(self, z: Numeric) -> Numeric: + return expit(z) * self.range + self.lower + + def logdetjac(self, z: Numeric) -> Numeric: + return np.log(self.range) + z - 2 * np.logaddexp(0, z) + + def logpdf(self, x: Numeric) -> Numeric: + # ignore divide by zero encountered in log. + with np.errstate(divide="ignore"): + return np.where( + (self.lower < x) & (x < self.upper), + self._logpdf(np.clip(x, self.lower, self.upper)), + -np.inf, + ) + + +class MultivariateContinuous(Multivariate, Continuous): + def logpdf_plus_logdetjac(self, z: ndarray) -> Numeric: + """Logpdf plus the log absolute determinant of the jacobian. + + Logpdf plus the log absolute determinant of the jacobian, evaluated at + parameter on the transformed (real) space. + """ + x = self.to_native(z) + return self.logpdf(x) + self.logdetjac(z) + + @abstractmethod + def cov(self) -> ndarray: ... + + @abstractmethod + def mean(self) -> ndarray: ... + + +class Real: + def to_real(self, x: Numeric) -> Numeric: + return x + + def to_native(self, z: Numeric) -> Numeric: + return z + + def logdetjac(self, z: Numeric) -> Numeric: + return 0 + + +class UnivariateReal(Real, UnivariateContinuous): ... + + +class MultivariateReal(Real, MultivariateContinuous): ... diff --git a/src/arianna/distributions/distributions.py b/src/arianna/distributions/distributions.py new file mode 100644 index 0000000..65b5693 --- /dev/null +++ b/src/arianna/distributions/distributions.py @@ -0,0 +1,630 @@ +from functools import cached_property +from typing import Optional + +import numpy as np +from numpy import ndarray +from numpy.random import Generator as RNG +from numpy.random import default_rng +from scipy.special import ( + betainc, + betaln, + gammaln, + gdtr, + gdtrc, + log_ndtr, + ndtr, +) + +from arianna.types import NegativeParameterError + +from .abstract import ( + Distribution, + LowerUpperBounded, + MultivariateContinuous, + MultivariateReal, + Numeric, + Positive, + Shape, + UnivariateReal, +) + + +class IndependentRagged(Distribution): ... + + +class Independent(Distribution): + def __init__(self, dists: list[Distribution]): + assert self.is_same_family(dists) + self.dists = dists + + def is_same_family(self, dists: list[Distribution]) -> bool: + first_type = type(dists[0]) + return all(type(d) is first_type for d in dists) + + def logpdf(self, x: list[Numeric]) -> Numeric: + return sum(di.logpdf(xi) for di, xi in zip(self.dists, x)) + + def sample(self, sample_shape=[]) -> ndarray: + # TODO: Check the logic. + return np.stack([di.sample(sample_shape) for di in self.dists]) + + +class Uniform(LowerUpperBounded): + @classmethod + def from_mean_shift(cls, mean, shift): + return cls(mean - shift, mean + shift) + + @cached_property + def batch_shape(self) -> Shape: + return np.broadcast_shapes(np.shape(self.lower), np.shape(self.upper)) + + def _logpdf(self, x: Numeric) -> Numeric: + return -np.log(self.range) + + def logcdf(self, x: Numeric) -> Numeric: + with np.errstate(divide="ignore"): + return np.log(self.cdf(x)) + + def cdf(self, x: Numeric) -> Numeric: + return np.clip((x - self.lower) / self.range, 0, 1) + + def _sample(self, size: Shape, rng: RNG) -> ndarray: + return rng.uniform(self.lower, self.upper, size=size) + + @cached_property + def mode(self) -> Numeric: + # FIXME: Really, it should be anything in [lower, upper]. + return self.mean + + @cached_property + def median(self) -> Numeric: + return self.mean + + @cached_property + def mean(self) -> Numeric: + return (self.lower + self.upper) / 2 + + @cached_property + def var(self) -> Numeric: + return np.square(self.range) / 12 + + +class Beta(LowerUpperBounded): + def __init__(self, a: Numeric, b: Numeric, check: bool = True): + super().__init__(lower=0, upper=1) + if check and np.any(a < 0): + raise NegativeParameterError( + "In Beta(a,b), `a` must be strictly positive!" + ) + if check and np.any(b < 0): + raise NegativeParameterError( + "In Beta(a,b), `b` must be strictly positive!" + ) + self.a = a + self.b = b + + @cached_property + def mode(self) -> Numeric: + # https://en.wikipedia.org/wiki/Beta_distribution + raise NotImplementedError + + @cached_property + def batch_shape(self) -> Shape: + return np.broadcast(self.a, self.b).shape + + def _logpdf(self, x: Numeric) -> Numeric: + # Hide warnings if 0 * inf, which is nan. Should just return -inf. + with np.errstate(invalid="ignore"): + return ( + (self.a - 1) * np.log(x) + + (self.b - 1) * np.log1p(-x) + - betaln(self.a, self.b) + ) + + def logcdf(self, x: Numeric) -> Numeric: + with np.errstate(divide="ignore"): + return np.log(self.cdf(x)) + + def cdf(self, x: Numeric) -> Numeric: + return betainc(self.a, self.b, np.clip(x, 0, 1)) + + def _sample(self, size: Shape, rng: RNG) -> ndarray: + return rng.beta(self.a, self.b, size=size) + + @cached_property + def mean(self) -> Numeric: + return self.a / (self.a + self.b) + + @cached_property + def var(self): + c = self.a + self.b + return self.a * self.b / (np.square(c) * (c + 1)) + + +# TODO (12/4/2024): Write tests for all methods in Scaled Beta. +class ScaledBeta(LowerUpperBounded): + def __init__( + self, + a: Numeric, + b: Numeric, + lower: Numeric, + upper: Numeric, + check: bool = True, + ): + super().__init__(lower=lower, upper=upper) + if check and np.any(a < 0): + raise NegativeParameterError( + "In ScaledBeta(a,b,lower,upper), `a` must be strictly positive!" + ) + if check and np.any(b < 0): + raise NegativeParameterError( + "In ScaledBeta(a,b,lower,upper), `b` must be strictly positive!" + ) + + self.a = a + self.b = b + self.base_dist = Beta(self.a, self.b, check=False) + + @cached_property + def batch_shape(self) -> Shape: + return np.broadcast(self.a, self.b, self.lower, self.upper).shape + + def _broadcast(self, x: Numeric) -> Numeric: + shape = np.broadcast_shapes(np.shape(x), self.batch_shape) + return np.broadcast_to(x, shape) + + def _to_unit_interval(self, x: Numeric) -> Numeric: + return self._broadcast((x - self.lower) / self.range) + + def _from_unit_interval(self, y: Numeric) -> Numeric: + return self._broadcast(y * self.range + self.lower) + + def _sample(self, size: Shape, rng: RNG) -> Numeric: + return self._from_unit_interval( + self.base_dist._sample(size=size, rng=rng) + ) + + def cdf(self, x: Numeric) -> Numeric: + return self.base_dist.cdf(self._to_unit_interval(x)) + + def logcdf(self, x: Numeric) -> Numeric: + with np.errstate(divide="ignore"): + return np.log(self.cdf(x)) + + def _logpdf(self, x: Numeric) -> Numeric: + return self.base_dist._logpdf(self._to_unit_interval(x)) - np.log( + self.range + ) + + @cached_property + def mean(self) -> Numeric: + return self._from_unit_interval(self.base_dist.mean) + + @cached_property + def var(self) -> Numeric: + return self.base_dist.var * self.range**2 + + +class Gamma(Positive): + @classmethod + def from_mean_std(cls, mean, std, check: bool = True): + if check and np.any(mean < 0): + raise NegativeParameterError( + "In Gamma.from_mean_std(mean, std), `mean` must be strictly positive!" + ) + if check and np.any(std < 0): + raise NegativeParameterError( + "In Gamma.from_mean_std(mean, std), `std` must be strictly positive!" + ) + + var = std**2 + return cls(shape=mean**2 / var, scale=var / mean) + + def __init__(self, shape: Numeric, scale: Numeric, check: bool = True): + if check and np.any(shape < 0): + raise NegativeParameterError( + "In Gamma(shape, scale), `shape` must be strictly positive!" + ) + if check and np.any(scale < 0): + raise NegativeParameterError( + "In Gamma(shape, scale), `scale` must be strictly positive!" + ) + + self.shape = shape + self.scale = scale + + @cached_property + def batch_shape(self) -> Shape: + return np.broadcast(self.shape, self.scale).shape + + def _logpdf(self, x: Numeric) -> Numeric: + # Hide warnings if 0 * inf, which is nan. Should just return -inf. + with np.errstate(invalid="ignore"): + return ( + -gammaln(self.shape) + - self.shape * np.log(self.scale) + + (self.shape - 1) * np.log(x) + - x / self.scale + ) + + def logcdf(self, x: Numeric) -> Numeric: + with np.errstate(divide="ignore"): + return np.log(self.cdf(x)) + + def cdf(self, x: Numeric) -> Numeric: + return gdtr(1 / self.scale, self.shape, np.maximum(0, x)) + + def survival(self, x: Numeric) -> Numeric: + return gdtrc(1 / self.scale, self.shape, np.maximum(0, x)) + + def _sample(self, size: Shape, rng: RNG) -> ndarray: + return rng.gamma(shape=self.shape, scale=self.scale, size=size) + + @cached_property + def mean(self) -> Numeric: + return self.shape * self.scale + + @cached_property + def var(self) -> Numeric: + return self.shape * np.square(self.scale) + + @cached_property + def mode(self) -> Numeric: + return np.where(self.shape > 1, self.scale * (self.shape - 1), 0.0) + + +# https://en.wikipedia.org/wiki/Inverse-gamma_distribution +class InverseGamma(Positive): + @classmethod + def from_mean_std(cls, mean, std, check: bool = True): + if check and np.any(mean < 0): + raise NegativeParameterError( + "In InverseGamma.from_mean_std(mean, mean), `mean` must be strictly positive!" + ) + if check and np.any(std < 0): + raise NegativeParameterError( + "In InverseGamma.from_mean_std(mean, mean), `std` must be strictly positive!" + ) + + shape = (mean / std) ** 2 + 2 + scale = mean * (shape - 1) + return cls(shape, scale) + + def __init__(self, shape: Numeric, scale: Numeric, check: bool = True): + if check and np.any(shape < 0): + raise NegativeParameterError( + "In InverseGamma(shape, scale), `shape` must be strictly positive!" + ) + if check and np.any(scale < 0): + raise NegativeParameterError( + "In InverseGamma(shape, scale), `scale` must be strictly positive!" + ) + + self.shape = shape + self.scale = scale + + @cached_property + def batch_shape(self) -> Shape: + return np.broadcast(self.shape, self.scale).shape + + @cached_property + def mean(self) -> Numeric: + return np.where(self.shape > 1, self.scale / (self.shape - 1), np.nan) + + @cached_property + def var(self) -> Numeric: + return np.where(self.shape > 2, self.mean**2 / (self.shape - 2), np.nan) + + @cached_property + def mode(self) -> Numeric: + return self.scale / (self.shape + 1) + + def _logpdf(self, x: Numeric) -> Numeric: + # Hide warnings if 0 * inf, which is nan. Should just return -inf. + with np.errstate(invalid="ignore", divide="ignore"): + return ( + self.shape * np.log(self.scale) + - gammaln(self.shape) + - (self.shape + 1) * np.log(x) + - self.scale / x + ) + + def logcdf(self, x: Numeric) -> Numeric: + with np.errstate(divide="ignore"): + return np.log(self.cdf(x)) + + def cdf(self, x: Numeric) -> Numeric: + with np.errstate(divide="ignore"): + x = np.maximum(0, x) + return gdtrc(self.scale, self.shape, 1 / x) + + def _sample(self, size: Shape, rng: RNG) -> ndarray: + return 1 / rng.gamma(shape=self.shape, scale=1 / self.scale, size=size) + + +class LogNormal(Positive): + @classmethod + def from_mean_std(cls, mean, std, check: bool = True): + if check and np.any(mean < 0): + raise NegativeParameterError( + "In LogNormal.from_mean_std(mean, std), `mean` must be strictly positive!" + ) + if check and np.any(std < 0): + raise NegativeParameterError( + "In LogNormal.from_mean_std(mean, std), `std` must be strictly positive!" + ) + var = std**2 + sigma_squared = np.log1p(var / mean**2) + mu = np.log(mean) - sigma_squared / 2 + sigma = np.sqrt(sigma_squared) + return cls(mu, sigma) + + def __init__(self, mu: Numeric, sigma: Numeric, check: bool = True): + if check and np.any(sigma < 0): + raise NegativeParameterError( + "In LogNormal(mu, sigma), `sigma` must be strictly positive!" + ) + + self.mu = mu + self.sigma = sigma + + @cached_property + def batch_shape(self) -> Shape: + return np.broadcast(self.mu, self.sigma).shape + + @cached_property + def mean(self) -> Numeric: + return np.exp(self.mu + self.sigma**2 / 2) + + @cached_property + def var(self) -> Numeric: + return (np.exp(self.sigma**2) - 1) * np.exp(2 * self.mu + self.sigma**2) + + @cached_property + def mode(self) -> Numeric: + return np.exp(self.mu - self.sigma**2) + + @cached_property + def median(self) -> Numeric: + return np.exp(self.mu) + + def _logpdf(self, x: Numeric) -> Numeric: + # Hide warnings if 0 * inf, which is nan. Should just return -inf. + with np.errstate(divide="ignore", invalid="ignore"): + z = (np.log(x) - self.mu) / self.sigma + return -np.log(x * self.sigma * np.sqrt(2 * np.pi)) - z**2 / 2 + + def logcdf(self, x: Numeric) -> Numeric: + x = np.maximum(0, x) + with np.errstate(divide="ignore"): + z = (np.log(x) - self.mu) / self.sigma + return log_ndtr(z) + + def cdf(self, x: Numeric) -> Numeric: + x = np.maximum(0, x) + with np.errstate(divide="ignore"): + z = (np.log(x) - self.mu) / self.sigma + return ndtr(z) + + def _sample(self, size: Shape, rng: RNG) -> ndarray: + return rng.lognormal(self.mu, self.sigma, size=size) + + +class Weibull(Positive): ... + + +class Gumbel(UnivariateReal): ... + + +class Logistic(Positive): ... + + +class LogLogistic(UnivariateReal): ... + + +class Normal(UnivariateReal): + def __init__( + self, loc: Numeric = 0.0, scale: Numeric = 1.0, check: bool = True + ): + if check and np.any(scale < 0): + raise NegativeParameterError( + "In Normal(loc, scale), `scale` must be strictly positive!" + ) + self.loc = loc + self.scale = scale + + @cached_property + def batch_shape(self) -> Shape: + return np.broadcast(self.loc, self.scale).shape + + def logpdf(self, x: Numeric) -> Numeric: + z = (x - self.loc) / self.scale + return -np.square(z) / 2 - np.log(2 * np.pi) / 2 - np.log(self.scale) + + def logcdf(self, x: Numeric) -> Numeric: + return log_ndtr((x - self.mean) / self.scale) + + def cdf(self, x: Numeric) -> Numeric: + return ndtr((x - self.mean) / self.scale) + + def survival(self, x: Numeric) -> Numeric: + return 1 - self.cdf(x) + + def _sample(self, size: Shape, rng: RNG) -> ndarray: + return rng.normal(loc=self.loc, scale=self.scale, size=size) + + @cached_property + def mean(self) -> Numeric: + return np.broadcast_to(self.loc, self.batch_shape) + + @cached_property + def std(self) -> Numeric: + return np.broadcast_to(self.scale, self.batch_shape) + + @cached_property + def var(self) -> Numeric: + return np.square(self.std) + + @cached_property + def mode(self) -> Numeric: + return self.mean + + @cached_property + def median(self) -> Numeric: + return self.mean + + +class MvNormal(MultivariateReal): + def __init__( + self, + mean: Optional[ndarray] = None, + cov: Optional[ndarray] = None, + **kwargs, + ): + match mean, cov: + case (None, None): + raise ValueError("mean and cov cannot both be None!") + case (None, _): + mean = np.zeros(cov.shape[-1]) + case (_, None): + cov = np.eye(mean.shape[-1]) + + super().__init__(**kwargs) + + self._mean = mean + self._cov = cov + + @cached_property + def mean(self) -> ndarray: + return np.broadcast_to(self._mean, self.batch_plus_event_shape) + + @cached_property + def _icov(self) -> ndarray: + return np.linalg.inv(self._cov) + + @cached_property + def cov(self) -> ndarray: + return np.broadcast_to( + self._cov, self.batch_plus_event_shape + self.event_shape + ) + + @cached_property + def cov_inv(self) -> ndarray: + return np.broadcast_to( + self._icov, self.batch_plus_event_shape + self.event_shape + ) + + @cached_property + def L(self) -> ndarray: + return np.linalg.cholesky(self.cov) + + @cached_property + def event_shape(self) -> Shape: + return self.mean.shape[-1:] + + @cached_property + def batch_shape(self) -> Shape: + return self.batch_plus_event_shape[:-1] + + @cached_property + def batch_plus_event_shape(self) -> Shape: + return np.broadcast_shapes(self._mean.shape, self._cov.shape[:-1]) + + @cached_property + def log_det_cov(self) -> float | ndarray: + _, ldc = np.linalg.slogdet(self.cov) + return ldc + + @cached_property + def var(self) -> ndarray: + return np.diagonal(self.cov, axis1=-2, axis2=-1) + + def logpdf(self, x): + d = x - self.mean + + # Compute quadratic form + quad_form = np.einsum("...i, ...ij, ...j -> ...", d, self.cov_inv, d) # type: ignore + + return -0.5 * ( + self.event_shape[0] * np.log(2 * np.pi) + + self.log_det_cov + + quad_form + ) + + def sample( + self, sample_shape: Shape = (), rng: RNG = default_rng() + ) -> ndarray: + shape = sample_shape + self.batch_shape + self.event_shape + standard_normals = rng.standard_normal(shape) + b = np.einsum("...ij,...j->...i", self.L, standard_normals) + samples = self.mean + b + return samples + + +class Dirichlet(MultivariateContinuous): + def __init__(self, concentration: ndarray, check: bool = True): + if check and np.any(concentration < 0): + raise NegativeParameterError( + "In Dirichlet(concentration), `concentration` must be stricly positive!" + ) + self.concentration = concentration + + @cached_property + def concentration_sum(self): + return self.concentration.sum(-1, keepdims=True) + + @cached_property + def event_shape(self): + return self.concentration.shape[-1] + + @cached_property + def batch_plus_event_shape(self): + return self.concentration.shape + + @cached_property + def batch_shape(self): + return self.batch_plus_event_shape[:-1] + + def logpdf(self, x: ndarray) -> float | ndarray: + # TODO: Test. + return ( + np.sum((self.concentration - 1) * np.log(x), -1) + + gammaln(self.concentration.sum(-1)) + - gammaln(self.concentration).sum(-1) + ) + + def sample( + self, sample_shape: Shape = (), rng: RNG = default_rng() + ) -> ndarray: + shape = sample_shape + self.batch_plus_event_shape + alpha = rng.standard_gamma(shape) + return alpha / alpha.sum(-1, keepdims=True) + + def to_real(self, x: ndarray) -> float | ndarray: + # https://mc-stan.org/docs/2_19/reference-manual/simplex-transform-section.html + raise NotImplementedError + + def to_native(self, z: ndarray) -> float | ndarray: + # https://mc-stan.org/docs/2_19/reference-manual/simplex-transform-section.html + raise NotImplementedError + + def logdetjac(self, z: ndarray) -> float | ndarray: + # https://mc-stan.org/docs/2_19/reference-manual/simplex-transform-section.html + raise NotImplementedError + + @cached_property + def cov(self) -> ndarray: + raise NotImplementedError + + @cached_property + def mean(self) -> ndarray: + return self.concentration / self.concentration_sum + + @cached_property + def var(self) -> ndarray: + m = self.mean + return m * (1 - m) / (1 + self.concentration_sum) + + @cached_property + def std(self) -> ndarray: + return np.sqrt(self.var) diff --git a/src/arianna/ppl/__init__.py b/src/arianna/ppl/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/src/arianna/ppl/context.py b/src/arianna/ppl/context.py new file mode 100644 index 0000000..f73e1fd --- /dev/null +++ b/src/arianna/ppl/context.py @@ -0,0 +1,412 @@ +from abc import ABC, abstractmethod +from typing import Any, Optional, Protocol + +import numpy as np +from numpy import ndarray +from numpy.random import Generator as RNG +from numpy.random import default_rng + +from arianna.types import NegativeInfinityError, Numeric, Shape, State + + +class BasicDistribution(Protocol): + def logpdf(self, x: Numeric) -> Numeric: ... + def sample( + self, sample_shape: Shape = (), rng: RNG = default_rng() + ) -> ndarray: ... + + +class TransformableDistribution(BasicDistribution): + def logdetjac(self, z: Numeric) -> Numeric: ... + + def logpdf_plus_logdetjac(self, z: Numeric) -> Numeric: ... + + def to_real(self, x: Numeric) -> Numeric: + return np.log(x) + + def to_native(self, z: Numeric) -> Numeric: + return np.exp(z) + + def logpdf(self, x: Numeric) -> Numeric: ... + + +# NOTE: Ideally, the name of a child Context class should be what its `run` +# method returns. For example, the LogprobAndTrace Context's `run` method +# returns the model log probability and trace. (Note that a trace is the state +# in the native space and also includes cached values.) +class Context(ABC): + result: Any + state: State + + @classmethod + @abstractmethod + def run(cls): ... + + @abstractmethod + def rv( + self, name: str, dist: BasicDistribution, obs: Optional[Numeric] = None + ) -> Numeric: ... + + @abstractmethod + def cached(self, name: str, value: Numeric) -> Numeric: ... + + def __call__(self): + return self.result + + +class LogprobAndPriorSample(Context): + @classmethod + def run( + cls, model, rng: Optional[RNG] = None, **data + ) -> tuple[float, State]: + """Get (logprob, trace).""" + ctx = cls(rng=rng) + model(ctx, **data) + return ctx.result + + def __init__(self, rng: Optional[RNG] = None): + self.result = [0.0, {}] + self.rng = rng or default_rng() + + def rv( + self, name: str, dist: BasicDistribution, obs: Optional[Numeric] = None + ): + if obs is None: + value = dist.sample() + self.result[1][name] = value + else: + value = obs + + self.result[0] += np.sum(dist.logpdf(value)) + + return value + + def cached(self, name: str, value: Numeric) -> Numeric: + self.result[1][name] = value + return value + + +class LogprobAndTrace(Context): + @classmethod + def run(cls, model, state: State, **data) -> tuple[float, State]: + """TODO. + + Returns (logprob, trace). A trace is the state in the native space and + the cached values. + + Parameters + ---------- + model : Any + _description_ + + state : State + _description_ + + Returns + ------- + tuple[float, State] + _description_ + """ + ctx = cls(state) + + try: + # Accumulate logprob. + model(ctx, **data) + except NegativeInfinityError: + # If -inf anywhere during the accumulation, just end early and + # return -inf and an empty trace. + return -np.inf, {} + + return ctx.result + + def __init__(self, state: State): + self.state = state + self.result = [0.0, {}] + + def rv( + self, name: str, dist: BasicDistribution, obs: Optional[Numeric] = None + ): + if obs is None: + value = self.state[name] + self.result[1][name] = value + else: + value = obs + + self.result[0] += np.sum(dist.logpdf(value)) + if self.result[0] == -np.inf: + raise NegativeInfinityError("Negative infinity in Logprob.") + + return value + + def cached(self, name: str, value: Numeric) -> Numeric: + self.result[1][name] = value + return value + + +class Predictive(Context): + @classmethod + def run( + cls, + model, + state: Optional[State] = None, + rng: Optional[RNG] = None, + return_cached: bool = True, + **data, + ) -> State: + ctx = cls(state=state, rng=rng, return_cached=return_cached) + model(ctx, **data) + return ctx.result + + def __init__( + self, + state: Optional[State] = None, + rng: Optional[RNG] = None, + return_cached: bool = True, + ): + self.state = state or {} + self.rng = rng or default_rng() + self.return_cached = return_cached + self.result = {} + + def rv( + self, name: str, dist: BasicDistribution, obs: Optional[Numeric] = None + ) -> Numeric: + match self.state.get(name), obs: + case None, None: + self.result[name] = dist.sample(rng=self.rng) + return self.result[name] + case _, None: + self.result[name] = self.state[name] + return self.result[name] + case None, _: + return obs + case _: + raise RuntimeError("state and obs cannot both be defined.") + + def cached(self, name: str, value: Numeric) -> Numeric: + """Handle cached values. + + Returns the value `value` and additionally stores `value` in + `self.result[name]` if the `return_cached` attribute is True. + + Parameters + ---------- + name : str + Name of value to cache. + value : Numeric + Value of the thing to cache. + + Returns + ------- + Numeric + `value`, which is the second argument in `cached`. + """ + if self.return_cached: + self.result[name] = value + return value + + +class TransformedLogprobAndTrace(Context): + """TODO. + + Calculates the transformed log probability for a given state (on the real + space) and also returns the state in the native space. + + Returns + ------- + tuple[float, State] + (logprob_plus_logdetjac, native_state_with_cached_items) + """ + + @classmethod + def run(cls, model, state: State, **data) -> tuple[float, State]: + ctx = cls(state) + + try: + model(ctx, **data) + except NegativeInfinityError: + # In case of -inf, just return -inf and an empty trace ({}) early. + # The trace doesn't matter, just need to return something. + return -np.inf, {} + + return ctx.result + + def __init__(self, state: State): + self.state = state + self.result = [0.0, {}] # logprob, native_state + + def rv( + self, + name: str, + dist: TransformableDistribution, + obs: Optional[Numeric] = None, + ): + if obs is None: + real_value = self.state[name] + self.result[0] += np.sum(dist.logpdf_plus_logdetjac(real_value)) + value = dist.to_native(real_value) + self.result[1][name] = value + else: + value = obs + self.result[0] += np.sum(dist.logpdf(value)) + + if self.result[0] == -np.inf: + raise NegativeInfinityError( + "Negative infinity in TransformedLogprob." + ) + + return value + + def cached(self, name: str, value: Numeric) -> Numeric: + self.result[1][name] = value + return value + + +class TransformedPredictive(Context): + """Get transformed predictive state. + + Get transformed predictive state (i.e. state predictive in the real + space) via the `run` method. + + Parameters + ---------- + state: Optional[State] + Contains values on the native space. If a model parameter's + value is not provided, it will be sampled from it's prior. + Defaults to None. + rng: Optional[RNG] + Random number generator. Defaults to None. + return_cached: bool + Whether or not to return cached values. Defaults to True. + + Attributes + ---------- + state: State + Contains values on the native space. If None was provided in the + constructor, it's value will be an empty dictionary. + rng: RNG + Random number generator. If None was provided in the + constructor, this will be `default_rng()`. + return_cached: bool + Whether or not to return cached values. + """ + + @classmethod + def run( + cls, + model, + state: Optional[State] = None, + rng: Optional[RNG] = None, + return_cached: bool = True, + **data, + ): + ctx = cls(state=state, rng=rng, return_cached=return_cached) + model(ctx, **data) + return ctx.result + + def __init__( + self, + state: Optional[State] = None, + rng: Optional[RNG] = None, + return_cached: bool = True, + ): + self.state = state or {} + self.rng = rng or default_rng() + self.return_cached = return_cached + self.result = {} + + def rv( + self, + name: str, + dist: TransformableDistribution, + obs: Optional[Numeric] = None, + ) -> Numeric: + match self.state.get(name), obs: + case None, None: + # Sample from prior. + native_value = dist.sample(rng=self.rng) + self.result[name] = dist.to_real(native_value) + return native_value + case _, None: + # provided state is in native space, so needs to be converted + # to real space. + self.result[name] = dist.to_real(self.state[name]) + return self.result[name] + case None, _: + # Observed values need no transformation. + return obs + case _: + raise RuntimeError("state and obs cannot both be defined.") + + def cached(self, name: str, value: Numeric) -> Numeric: + """Handle cached values. + + Returns the value `value` and additionally stores `value` in + `self.result[name]` if the `return_cached` attribute is True. + + Parameters + ---------- + name : str + Name of value to cache. + value : Numeric + Value of the thing to cache. + + Returns + ------- + Numeric + `value`, which is the second argument in `cached`. + """ + if self.return_cached: + self.result[name] = value + return value + + +class LogprobAndLogjacobianAndTrace(Context): + @classmethod + def run(cls, model, state: State, **data) -> tuple[float, float, State]: + ctx = cls(state) + + try: + model(ctx, **data) + except NegativeInfinityError: + # In case of -inf, just return -inf and an empty trace ({}) early. + # The trace doesn't matter, just need to return something. + return -np.inf, -np.inf, {} + + return ctx.result + + def __init__(self, state: State): + self.state = state + self.result = [0.0, 0.0, {}] # logprob, logdetjac, native_state + + def rv( + self, + name: str, + dist: TransformableDistribution, + obs: Optional[Numeric] = None, + ): + if obs is None: + real_value = self.state[name] + value = dist.to_native(real_value) + self.result[0] += np.sum(dist.logpdf(value)) + self.result[1] += np.sum(dist.logdetjac(real_value)) + self.result[2][name] = value + else: + value = obs + self.result[0] += np.sum(dist.logpdf(value)) + + if self.result[0] == -np.inf: + raise NegativeInfinityError( + "Negative infinity in LogprobAndLogjacobianAndTrace." + ) + + if self.result[1] == -np.inf: + raise NegativeInfinityError( + "Negative infinity in LogprobAndLogjacobianAndTrace." + ) + + return value + + def cached(self, name: str, value: Numeric) -> Numeric: + self.result[2][name] = value + return value diff --git a/src/arianna/ppl/diagnostics.py b/src/arianna/ppl/diagnostics.py new file mode 100644 index 0000000..6f364c7 --- /dev/null +++ b/src/arianna/ppl/diagnostics.py @@ -0,0 +1,17 @@ +import numpy as np + + +def ess_kish(w: np.ndarray, log: bool = True) -> float: + """Kish Effective Sample Size. + + Kish's effective sample size. Used for weighted samples. (e.g. importance + sampling, sequential monte carlo, particle filters.) + + https://en.wikipedia.org/wiki/Effective_sample_size + + If log is True, then the w are log weights. + """ + if log: + return ess_kish(np.exp(w - np.max(w)), log=False) + else: + return sum(w) ** 2 / sum(w**2) diff --git a/src/arianna/ppl/inference.py b/src/arianna/ppl/inference.py new file mode 100644 index 0000000..af25171 --- /dev/null +++ b/src/arianna/ppl/inference.py @@ -0,0 +1,840 @@ +from abc import ABC, abstractmethod +from concurrent.futures import Executor +from copy import deepcopy +from functools import cached_property +from typing import ( + Any, + Callable, + Concatenate, + Generator, + Iterable, + Optional, + ParamSpec, +) + +import numpy as np +from numpy import ndarray +from numpy.random import Generator as RNG +from numpy.random import default_rng +from scipy.optimize import minimize +from scipy.special import log_softmax, softmax +from tqdm import tqdm, trange + +from arianna.distributions import MvNormal +from arianna.ppl.context import ( + Context, + LogprobAndLogjacobianAndTrace, + LogprobAndPriorSample, + LogprobAndTrace, + Predictive, + State, + TransformedLogprobAndTrace, + TransformedPredictive, +) +from arianna.ppl.shaper import Shaper + +P = ParamSpec("P") +Model = Callable[Concatenate[Context, P], None] +Logprob = Callable[[State], tuple[float, State]] + + +class Chain: + """Chain MCMC samples. + + Parameters + ---------- + states : Iterable[State] + MCMC states. + + Attributes + ---------- + chain : list[State] + MCMC states in list format. + """ + + def __init__(self, states: Iterable[State]): + self.states = list(states) + self.names = list(self.states[0].keys()) + + def __iter__(self): + """Iterate over states. + + Yields + ------ + State + MCMC state within chain. + """ + for state in self.states: + yield state + + def __len__(self) -> int: + """Return the number of states.""" + return len(self.states) + + def get(self, name: str) -> ndarray: + """Get all MCMC samples for one variable or cached value by name. + + Parameters + ---------- + name : str + Name of model parameter or cached value. + + Returns + ------- + ndarray + MCMC samples for the variable or cached value named. + """ + return np.stack([c[name] for c in self.states]) + + @cached_property + def bundle(self) -> dict[str, ndarray]: + """Bundle MCMC values into a dictionary. + + Returns + ------- + dict[str, ndarray] + Dictionary bundle of MCMC samples. + """ + return {name: self.get(name) for name in self.names} + + def subset(self, burn: int = 0, thin: int = 1): + """Return subset of the states. + + Parameters + ---------- + burn : int, optional + Number of initial samples to discard, by default 0. + thin : int, optional + Take only every `thin`-th sample, by default 1. + + Returns + ------- + Chain + A whole new chain, with the first `burn` removed, and taking only + every `thin`-th sample. + """ + return Chain(self.states[burn::thin]) + + +class InferenceEngine(ABC): + """Abstract inference engine class.""" + + rng: RNG + + @abstractmethod + def fit(self): + """Fit model.""" + pass + + +class MCMC(InferenceEngine): + """Abstract class for MCMC.""" + + model: Model + model_data: dict[str, Any] + nsamples: int + burn: int + thin: int + mcmc_iteration: int + transform: bool + logprob_history: list[float] + + @abstractmethod + def _fit(self, *args, **kwargs) -> Generator[State, None, None]: + pass + + @abstractmethod + def step(self): + """Update model state in one MCMC iteration.""" + pass + + def fit(self, *args, **kwargs) -> Chain: + """Run MCMC. + + Returns + ------- + Chain + Chain of MCMC samples. + """ + return Chain(self._fit(*args, **kwargs)) + + def logprob(self, state: State) -> tuple[float, State]: + """Compute log density. + + Parameters + ---------- + state : State + Dictionary containing random variables to model. + + Returns + ------- + tuple[float, State] + (Log density (float), native state and cached values (dict)) + """ + if self.transform: + # state is real. + # Returns logprob + log_det_jacobian, native_state. + return TransformedLogprobAndTrace.run( + self.model, state, **self.model_data + ) + else: + # state is native. + # Returns logprob, state (which is already native). + return LogprobAndTrace.run(self.model, state, **self.model_data) + + +class SingleWalkerMCMC(MCMC): + """Markov Chain Monte Carlo.""" + + init_state: State + mcmc_state: State + transform: bool + + @abstractmethod + def step(self) -> tuple[float, State]: + """Update mcmc_state and return logprob and native_state_and_cache. + + Returns + ------- + float, State + Logprob and native state and cache dictionary. + """ + pass + + def _fit( + self, nsamples: int, burn: int = 0, thin: int = 1 + ) -> Generator[State, None, None]: + self.nsamples = nsamples + self.burn = burn + self.thin = thin + self.mcmc_state = deepcopy(self.init_state) + self.logprob_history = [] + + for i in trange(nsamples * thin + burn): + self.mcmc_iteration = i + # NOTE: mcmc_state may not be the returned state, but the state + # that is used in the MCMC (e.g., for computational efficiency). + # trace is the state in its native space appended with any cached + # values. + logprob, trace = self.step() + if i >= burn and (i + 1) % thin == 0: + self.logprob_history.append(logprob) + yield trace + + +class RandomWalkMetropolis(SingleWalkerMCMC): + """Random walk Metropolis. + + Parameters + ---------- + model: Model + model function. + init_state: Optional[State] + Initial state for MCMC. If `transform=True` then `init_state` should + contain values in the real space; if `transform=False`, then + `init_state` should contain values in the native space. If not + provided, `init_state` is sampled from the prior predictive. + Defaults to None. + proposal: Optional[dict[str, Any]] + Dictionary containing proposal functions, dependent on the current + value. Defaults to None. + transform: bool + Whether or not to sample parameters into the real space. If False, + samples parameters in the native space. Regardless, returned samples + are in the native space and will include cached values. Defaults to + True. + rng: Optional[RNG] + Numpy random number generator. Defaults to None. + + Attributes + ---------- + model: Model + See Parameters. + init_state: State + If the constructor received None, `init_state` will be an empty + dictionary. + proposal: dict[str, Any] + If None is received in the constructor, an empty dictionary is first + created. In addition, any model parameters unnamed in the constructor + will have a value of + `lambda value, rng, mcmc_iteration: rng.normal(value, 0.1)`. + Thus, if you supplied in the constructor + `dict(mu=lambda value, rng, mcmc_iteration: rng.normal(value, 1))` + and your model is + ```python + def model(ctx, y=None): + mu = ctx.rv("mu", Normal(0, 10)) + sigma = ctx.rv("sigma", Gamma(1, 1)) + ctx.rv("y", Normal(mu, sigma), obs=y) + ``` + then the value for sigma will be + `lambda value, rng, _: rng.normal(value, 0.1)`. + transform: bool + See Parameters. + rng: RNG + If `None` was supplied in the constructor, then rng will be set to + `np.random.default_rng()`. + """ + + mcmc_state: State + init_state: State + + def __init__( + self, + model: Model, + init_state: Optional[State] = None, + proposal: Optional[dict[str, Any]] = None, + transform: bool = True, + rng: Optional[RNG] = None, + **model_data, + ): + self.model = model + self.model_data = model_data + self.transform = transform + self.rng = rng or default_rng() + + match init_state, transform: + case None, True: + self.init_state = TransformedPredictive.run( + model, rng=rng, return_cached=False, **model_data + ) + case None, False: + self.init_state = Predictive.run( + model, rng=rng, return_cached=False, **model_data + ) + case _: # init_state is provided. + self.init_state = init_state + + self.proposal = proposal or {} + for name in self.init_state: # should not have cached values. + self.proposal.setdefault( + name, lambda value, rng, _: rng.normal(value, 0.1) + ) + + def step(self) -> tuple[float, State]: + """Update mcmc_state and return native state and cached values. + + Returns + ------- + State + Native state and cached values. + """ + proposed_state = { + name: propose(self.mcmc_state[name], self.rng, self.mcmc_iteration) + for name, propose in self.proposal.items() + } + # NOTE: A trace contains the state (i.e., result of rv) in the native + # space AND cached values (i.e., result of cached). + logprob_proposed, proposed_trace = self.logprob(proposed_state) + logprob_current, current_trace = self.logprob(self.mcmc_state) + if logprob_proposed - logprob_current > np.log(self.rng.uniform()): + self.mcmc_state = proposed_state + return logprob_proposed, proposed_trace + else: + return logprob_current, current_trace + + +class AffineInvariantMCMC(MCMC): + """Affine Invariant MCMC.""" + + nsteps: int + init_state: list[State] + mcmc_state: list[State] + accept_rate: ndarray + accept: list[int] + nwalkers: int + rng: RNG + a: float + + @cached_property + def dim(self) -> int: + """Number of model parameters.""" + return int( + sum( + np.prod(np.shape(value)) + for value in self.init_state[0].values() + ) + ) + + def logprob(self, state: State) -> tuple[float, float, State]: + """Compute log density. + + Parameters + ---------- + state : State + Dictionary containing random variables to model. + + Returns + ------- + tuple[float, float, State] + ( + Log density in native space, + Log determinant of jacobian, + native state and cached values (dict) + ) + """ + if self.transform: + # state is real. + # Returns logprob, log_det_jacobian, native_state. + return LogprobAndLogjacobianAndTrace.run( + self.model, state, **self.model_data + ) + else: + # state is native. + # Returns logprob, logprob, state (which is already native). + lp, trace = LogprobAndTrace.run( + self.model, state, **self.model_data + ) + return lp, 0, trace + + @abstractmethod + def step(self) -> tuple[list[float], list[State]]: + """Update mcmc_state and return list of native_state_and_cache. + + Returns + ------- + list[State] + List of native state and cache dictionary. + """ + pass + + def _update_walker(self, i: int) -> tuple[float, State]: + this_walker = self.mcmc_state[i] + z = self._draw_z(i) + other_walker = self._draw_walker(i) + + candidate = { + name: value + (this_walker[name] - value) * z + for name, value in other_walker.items() + } + + cand_logprob, cand_ldj, cand_trace = self.logprob(candidate) + this_logprob, this_ldj, this_trace = self.logprob(this_walker) + log_accept_prob = cand_logprob + cand_ldj - this_logprob - this_ldj + log_accept_prob += (self.dim - 1) * np.log(z) + if log_accept_prob > np.log(self._draw_u(i)): + if self.mcmc_iteration >= self.burn: + self.accept[i] += 1 + for key, value in candidate.items(): + this_walker[key] = value + trace = cand_trace + lp = cand_logprob + else: + trace = this_trace + lp = this_logprob + + return lp, trace + + def fit( + self, *args, rebalanced_samples: Optional[int] = None, **kwargs + ) -> Chain: + """Fit model with AIES.""" + chain = Chain(self._fit(*args, **kwargs)) + + if rebalanced_samples is None: + rebalanced_samples = self.nsteps + + if rebalanced_samples > 0: + # Reweight with importance sampling. + weights = softmax(self.logprob_history) + index = self.rng.choice( + len(weights), rebalanced_samples, replace=True, p=weights + ) + self.resampled_logprob_history = np.array( + [self.logprob_history[i] for i in index] + ) + chain = Chain(chain.states[i] for i in index) + + return chain + + def _fit( + self, nsteps: int, burn: int = 0, thin: int = 1 + ) -> Generator[State, None, None]: + self.nsteps = nsteps + self.nsamples = nsteps * self.nwalkers + self.burn = burn + self.thin = thin + self.mcmc_state = deepcopy(self.init_state) + self.logprob_history = [] + + for i in trange(nsteps * thin + burn): + self.mcmc_iteration = i + # NOTE: mcmc_state may not be the returned state, but the state + # that is used in the MCMC (e.g., for computational efficiency). + # trace is the state in its native space appended with any cached + # values. + logprob, trace = self.step() + if i >= burn and (i + 1) % thin == 0: + self.logprob_history.extend(logprob) + yield from trace + + self.accept_rate = np.array(self.accept) / (self.nsteps * self.thin) + + @cached_property + def _root_a(self) -> float: + return np.sqrt(self.a) + + @cached_property + def _invroot_a(self) -> float: + return 1 / self._root_a + + @abstractmethod + def _draw_walker(self, i: int) -> State: ... + + @abstractmethod + def _draw_u(self, i: int) -> float: ... + + def _compute_z_given_u(self, u: float) -> float: + return (u * (self._root_a - self._invroot_a) + self._invroot_a) ** 2 + + def _draw_z(self, i: int) -> float: + u = self._draw_u(i) + return self._compute_z_given_u(u) + + +# https://arxiv.org/abs/1202.3665 +class AIES(AffineInvariantMCMC): + """Sequential Affine Invariant Ensemble Sampler. + + This sampler is good for target distributions that are not multimodal and + separated by large low density regions. You should use as many walkers as + you can afford. Whereas this sampler employs walkers that are sequeutnailly + updated. there is a parallel analog that updates walkers in parallel. + + Parameters + ---------- + model : Model + A model function of the form `def model(ctx: Context, **data)`. + num_walkers : int, optional + Number of walkers. Defaults to 10. + transform : bool, optional + Whether or not to transform parameters into the real space, by default + True. + rng : RNG, optional + Random number generator, by default default_rng() + a : float, optional + Tuning parameter that is set, by default, to 2.0, which is good for many + cases. + temperature_fn : Optional[Callable[[int], float]], optional + A temperature function for annealing, by default None. + + References + ---------- + - [emcee: The MCMC Hammer](https://arxiv.org/pdf/1202.3665) + - [Ensemble Samplers with Affine Invariance](https://msp.org/camcos/2010/5-1/camcos-v5-n1-p04-s.pdf) + """ + + @staticmethod + def default_temperature_fn(iter: int) -> float: + """Return 1.""" + return 1.0 + + def __init__( + self, + model: Model, + nwalkers: int = 10, + transform: bool = True, + rng: RNG = default_rng(), + a: float = 2.0, + temperature_fn: Optional[Callable[[int], float]] = None, + init_state: Optional[list[State]] = None, + **model_data, + ): + self.model: Model = model + self.nwalkers: int = nwalkers + self.transform: bool = transform + self.rng = rng + self.accept = [0] * nwalkers + if a <= 1: + raise ValueError("Tuning parameter `a` must be larger than 1.") + + self.a: float = a + self.model_data = model_data + self.temperature_fn: Callable[[int], float] = ( + temperature_fn or self.default_temperature_fn + ) + predictive = TransformedPredictive if transform else Predictive + if init_state is None: + init_state = [ + predictive.run( + model, rng=rng, return_cached=False, **model_data + ) + for _ in range(self.nwalkers) + ] + self.init_state = init_state + + def step(self) -> tuple[list[float], list[State]]: + """Update mcmc_state and return list of native_state_and_cache. + + Returns + ------- + list[float], list[State] + List of logprobs and list of native state and cache dictionary. + """ + trace = [] + lp = [] + for i, _ in enumerate(self.mcmc_state): + lp_i, trace_i = self._update_walker(i) + lp.append(lp_i) + trace.append(trace_i) + + return lp, trace + + def _draw_u(self, _: int) -> float: + return self.rng.uniform() + + def _draw_walker(self, i: int) -> State: + # Draw anything but the current walker (i). + if (j := self.rng.integers(self.nwalkers)) == i: + return self._draw_walker(i) + else: + return self.mcmc_state[j] + + +class ParallelAIES(AffineInvariantMCMC): + """Parallel Affine Invariant MCMC (or Parallel AIES). + + References + ---------- + - [emcee: The MCMC Hammer](https://arxiv.org/pdf/1202.3665) + - [Ensemble Samplers with Affine Invariance](https://msp.org/camcos/2010/5-1/camcos-v5-n1-p04-s.pdf) + """ + + def __init__( + self, + model: Model, + executor: Executor, + nwalkers: int = 10, + transform: bool = True, + rng: RNG = default_rng(), + a: float = 2.0, + init_state: Optional[list[State]] = None, + **model_data, + ): + if nwalkers < 4 or nwalkers % 2 == 1: + raise ValueError( + "num_walkers needs to be an even integer greater than 3, " + f"but got {nwalkers}!" + ) + + self.executor = executor + self.model: Model = model + self.nwalkers: int = nwalkers + self.transform: bool = transform + self.rng = rng + self.rngs = self.rng.spawn(self.nwalkers) + self.accept = [0] * nwalkers + if a <= 1: + raise ValueError("Tuning parameter `a` must be larger than 1.") + + self.a: float = a + self.model_data = model_data + predictive = TransformedPredictive if transform else Predictive + if init_state is None: + init_state = [ + predictive.run( + model, rng=self.rng, return_cached=False, **model_data + ) + for _ in range(self.nwalkers) + ] + self.init_state = init_state + + def _draw_u(self, i: int) -> float: + return self.rngs[i].uniform() + + def step(self) -> tuple[list[float], list[State]]: + """Update mcmc_state and return list of native_state_and_cache. + + Returns + ------- + list[float], list[State] + Tuple in which the first element is a list of logprobs, and the + second element is a list of traces (i.e., native state and cache + dictionary). + """ + mid = self.nwalkers // 2 + out_first_half = list( + self.executor.map(self._update_walker, range(mid)) + ) + out_second_half = list( + self.executor.map(self._update_walker, range(mid, self.nwalkers)) + ) + logprob_first_half, trace_first_half = zip(*out_first_half) + logprob_second_half, trace_second_half = zip(*out_second_half) + + logprob = logprob_first_half + logprob_second_half + trace = trace_first_half + trace_second_half + return logprob, trace + + def _draw_walker(self, i: int) -> State: + other_walkers = self._get_other_walkers(i) + j = self.rngs[i].integers(len(other_walkers)) + return other_walkers[j] + + def _get_other_walkers(self, i: int) -> list[State]: + mid = self.nwalkers // 2 + if i < mid: + return self.mcmc_state[mid:] + else: + return self.mcmc_state[:mid] + + +class ImportanceSampling(InferenceEngine): + """Importance Sampling.""" + + particles: list[State] + + def __init__( + self, + model: Model, + rng: Optional[RNG] = None, + particles: Optional[list[State]] = None, + nparticles: Optional[int] = None, + temperature: float = 1.0, + **model_data, + ): + self.model = model + self.model_data = model_data + self.temperature = temperature + self.rng = rng or default_rng() + match nparticles, particles: + case None, None: + raise ValueError( + "nparticles and particles cannot both be None!" + ) + case _, None: + self.nparticles = nparticles + logprobs_and_samples = [ + LogprobAndPriorSample.run( + model=self.model, rng=self.rng, **self.model_data + ) + for _ in trange(self.nparticles) + ] + self.logprobs, self.particles = zip(*logprobs_and_samples) + case None, _: + self.particles = particles + self.nparticles = len(particles) + self.logprobs = [ + LogprobAndTrace.run( + model=self.model, state=particle, **self.model_data + )[0] + for particle in tqdm(self.particles) + ] + case _: + raise ValueError( + "nparticles and particles cannot both be specified!" + ) + + self.log_weights = log_softmax(self.logprobs) + self.weights = softmax(self.logprobs) + # self.ess = ess_kish(self.weights) + + def fit(self, nsamples: int) -> Chain: + """Sample.""" + indices = self.rng.choice(self.nparticles, nsamples, p=self.weights) + return Chain(self.particles[i] for i in indices) + + +class LaplaceApproximation(InferenceEngine): + """Laplace Approximation of Posterior.""" + + rng: RNG + + def __init__( + self, + model: Model, + transform: bool = True, + rng: Optional[RNG] = None, + **model_data, + ): + self.model = model + self.model_data = model_data + self.rng = rng or default_rng() + self.transform = transform + + if self.transform: + self.init_state = TransformedPredictive.run( + model, rng=rng, return_cached=False, **self.model_data + ) + else: + self.init_state = Predictive.run( + model, rng=rng, return_cached=False, **self.model_data + ) + + self.shaper = Shaper.from_state(self.init_state) + self.init_vec_state = self.shaper.vec(self.init_state) + + def logprob(self, vec_state: np.ndarray) -> float: + """Compute log density. + + Parameters + ---------- + state : State + Dictionary containing random variables to model. + + Returns + ------- + tuple[float, State] + (Log density (float), native state and cached values (dict)) + """ + state = self.shaper.unvec(vec_state) + if self.transform: + # state is real. + # Returns logprob + log_det_jacobian, native_state. + return TransformedLogprobAndTrace.run( + self.model, state, **self.model_data + )[0] + else: + # state is native. + # Returns logprob, state (which is already native). + return LogprobAndTrace.run(self.model, state, **self.model_data)[0] + + def _negative_logprob(self, vec_state) -> float: + return -self.logprob(vec_state) + + def fit(self, nsamples: int, **minimize_kwargs): + """Fit model with laplace approx.""" + self.result = minimize( + self._negative_logprob, x0=self.init_vec_state, **minimize_kwargs + ) + mean = self.result.x + cov = self.result.hess_inv + samples = MvNormal(mean, cov).sample((nsamples,), rng=self.rng) + + # Return native state and cache. + if self.transform: + return Chain( + TransformedLogprobAndTrace.run( + self.model, + self.shaper.unvec(vec_state), + **self.model_data, + )[1] + for vec_state in samples + ) + else: + return Chain( + Predictive.run( + self.model, + self.shaper.unvec(vec_state), + return_cached=True, + **self.model_data, + ) + for vec_state in samples + ) + + +class BayesianOptimization(InferenceEngine): + """Bayesian Optimization.""" + + ... + + +class AdaptiveRandomWalkMetropolis(SingleWalkerMCMC): + """Adaptive Random Walk Metropolis. + + Resources + --------- + - https://probability.ca/jeff/ftpdir/adaptex.pdf + """ + + ... diff --git a/src/arianna/ppl/shaper.py b/src/arianna/ppl/shaper.py new file mode 100644 index 0000000..3c6879d --- /dev/null +++ b/src/arianna/ppl/shaper.py @@ -0,0 +1,35 @@ +import numpy as np + +from arianna.types import State + + +class Shaper: + """Shapes dict of numeric values into np.array and back.""" + + @classmethod + def from_state(cls, state: State): + """Construct a Shaper from a state.""" + return cls({name: np.shape(value) for name, value in state.items()}) + + def __init__(self, shape: dict[str, tuple[int, ...]]): + self.shape = shape + self.dim = int(sum(np.prod(s) for s in self.shape.values())) + + def vec(self, state: State) -> np.ndarray: + """Convert a state dict into a np.ndarray.""" + flat_state = [] + for _, value in state.items(): + value = np.array(value) + flat_state.extend(value.flatten()) + return np.array(flat_state) + + def unvec(self, flat_state: np.ndarray) -> State: + """Convert a np.ndarray back to a state dict.""" + state = {} + start = 0 + for name, shapes in self.shape.items(): + num_elems = int(np.prod(shapes)) + value = np.reshape(flat_state[start : start + num_elems], shapes) + state[name] = value + start += num_elems + return state diff --git a/src/arianna/types.py b/src/arianna/types.py new file mode 100644 index 0000000..515d9a1 --- /dev/null +++ b/src/arianna/types.py @@ -0,0 +1,15 @@ +from numpy import ndarray + +Numeric = float | ndarray +Shape = tuple[int, ...] +State = dict[str, Numeric] + + +class NegativeInfinityError(Exception): + pass + + +class NegativeParameterError(Exception): ... + + +class InvalidBoundsError(Exception): ... diff --git a/tests/distributions/__init__.py b/tests/distributions/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/tests/distributions/test_mv_real.py b/tests/distributions/test_mv_real.py new file mode 100644 index 0000000..32e2d02 --- /dev/null +++ b/tests/distributions/test_mv_real.py @@ -0,0 +1,96 @@ +from abc import ABC, abstractmethod +from functools import cached_property + +import numpy as np +from numpy import ndarray +from numpy.random import Generator +from numpy.testing import assert_allclose +from scipy import stats + +import arianna.distributions as dist +from arianna.distributions.abstract import MultivariateContinuous + + +def make_stacked_diag_cov( + batch_shape: tuple[int, ...], dim: int, rng: Generator +): + cov = np.empty(batch_shape + (dim, dim)) + for indices in np.ndindex(batch_shape): + cov[indices] = np.diag(np.abs(rng.normal(0, 3, dim))) + return cov + + +class AbstractTestMulivariateContinuous(ABC): + @cached_property + @abstractmethod + def d(self) -> MultivariateContinuous: ... + + @cached_property + @abstractmethod + def x(self) -> ndarray: ... + + @cached_property + @abstractmethod + def logpdf_truth(self) -> ndarray: ... + + @property + def event_shape(self): + return (2,) + + @property + def batch_shape(self): + return (3,) + + @property + def sample_shape(self): + return (7, 5) + + @cached_property + def rng(self): + return np.random.default_rng(1) + + def test_sample(self): + assert ( + np.shape(self.d.sample(rng=self.rng)) + == self.batch_shape + self.event_shape + ) + assert ( + np.shape(self.d.sample(self.sample_shape, rng=self.rng)) + == self.sample_shape + self.batch_shape + self.event_shape + ) + + samples = self.d.sample((100_000,), rng=self.rng) + assert_allclose(samples.mean(0), self.d.mean, rtol=0.05) + assert_allclose(samples.std(0), self.d.std, rtol=0.05) + + def test_logpdf(self): + lpdf = self.d.logpdf(self.x) + assert_allclose(self.logpdf_truth, lpdf, rtol=1e-6) + + pdf = self.d.pdf(self.x) + assert_allclose(np.exp(lpdf), pdf, rtol=1e-6) + + +class TestMvNormal(AbstractTestMulivariateContinuous): + @cached_property + def d(self): + return dist.MvNormal( + mean=self.rng.normal(0, 1, (self.batch_shape + self.event_shape)), + cov=make_stacked_diag_cov( + self.batch_shape, self.event_shape[0], self.rng + ), + ) + + @cached_property + def x(self): + return self.rng.normal( + 0.0, 1.0, (self.sample_shape + self.batch_shape + self.event_shape) + ) + + @cached_property + def logpdf_truth(self): + return stats.norm.logpdf( + self.x, + self.d.mean, + np.sqrt(np.diagonal(self.d.cov, axis1=-2, axis2=-1)), + ).sum(-1) diff --git a/tests/distributions/test_uni_real.py b/tests/distributions/test_uni_real.py new file mode 100644 index 0000000..11bbf44 --- /dev/null +++ b/tests/distributions/test_uni_real.py @@ -0,0 +1,257 @@ +from abc import ABC, abstractmethod +from functools import cached_property + +import numpy as np +from matplotlib.pylab import Generator +from numpy import ndarray +from numpy.testing import assert_allclose +from scipy import stats + +import arianna.distributions as dist +from arianna.distributions.abstract import UnivariateContinuous + + +# @pytest.mark.filterwarnings("ignore") +class AbstractTestUnivariateContinuous(ABC): + @cached_property + @abstractmethod + def d(self) -> UnivariateContinuous: ... + + @cached_property + @abstractmethod + def x(self) -> ndarray: ... + + @cached_property + @abstractmethod + def pdf_truth(self) -> ndarray: ... + + @cached_property + @abstractmethod + def cdf_truth(self) -> ndarray: ... + + @cached_property + def rng(self) -> Generator: + return np.random.default_rng(0) + + def test_sample(self): + m = (2,) + assert np.shape(self.d.sample()) == m + + n = (7, 5) + assert np.shape(self.d.sample(n)) == n + m + + samples = self.d.sample((100_000,), rng=self.rng) + assert np.allclose(samples.mean(0), self.d.mean, rtol=0.02) + assert np.allclose(samples.std(0), self.d.std, rtol=0.02) + + def test_logpdf(self): + pdf = self.d.pdf(self.x) + assert_allclose(self.pdf_truth, pdf, rtol=1e-6) + + lpdf = self.d.logpdf(self.x) + assert_allclose(np.exp(lpdf), pdf, rtol=1e-6) + + def test_logcdf(self): + cdf = self.d.cdf(self.x) + assert_allclose(self.cdf_truth, cdf, rtol=1e-6) + + lcdf = self.d.logcdf(self.x) + assert_allclose(np.exp(lcdf), cdf, rtol=1e-6) + + survival = self.d.survival(self.x) + assert_allclose(1 - cdf, survival, rtol=1e-6) + + +class TestUniform(AbstractTestUnivariateContinuous): + @cached_property + def d(self): + return dist.Uniform(lower=np.array([0, -5]), upper=np.array([1, 11])) + + @cached_property + def x(self): + return np.array([[0.6, 6], [0, 11], [-1, 12]]) + + @cached_property + def pdf_truth(self): + return np.where( + (self.d.lower < self.x) & (self.x < self.d.upper), + stats.uniform.pdf(self.x, loc=self.d.lower, scale=self.d.range), + 0, + ) + + @cached_property + def cdf_truth(self): + return stats.uniform.cdf(self.x, loc=self.d.lower, scale=self.d.range) + + def test_from_mean_shift(self): + d = dist.Uniform.from_mean_shift(3, 1) + assert d.lower == 2 + assert d.upper == 4 + + def _test_logjacdet(self): + # TODO. + + # Case 1: + # Uniform(0 ,1) + # Beta(2,4) + + # Can we 2: + # Uniform(-2, 3) + + # Case 3: + # X ~ Uniform(1, 3) + # Y|X ~ Uniform(X, 5) + # Compare against analytic marginal distribution for Y. + + # def case1(ctx: Context): + # alpha = ctx.rv("alpha", dist.Uniform(0, 1)) + # beta = ctx.rv("beta", dist.Beta(2, 4)) + + # def case2(ctx: Context): + # alpha = ctx.rv("alpha", dist.Uniform(-2, 3)) + + # def case3(ctx: Context): + # alpha = ctx.rv("alpha", dist.Uniform(1, 3)) + # beta = ctx.rv("beta", dist.Uniform(alpha, 5)) + + # cases = [case1, case2, case3] + # result = {} + # for case in cases: + # for transform in (True, False): + # emcee = Emcee(case, transform=transform) + # result[case.__name__, transform] = emcee.fit(1000, burn=1000, + # thin=10) + + # for (case_name, transform), value in result.items(): + # sns.pairplot( + # pd.DataFrame(value.bundle), + # ) + # plt.suptitle(f"{case_name}, {transform}") + # plt.show() + pass + + +class TestBeta(AbstractTestUnivariateContinuous): + @cached_property + def d(self): + return dist.Beta(np.array([1, 2]), np.array([1, 3])) + + @cached_property + def x(self): + return np.array([[0.6, 0.6], [-10, 10], [0, 1]]) + + @cached_property + def pdf_truth(self): + return np.where( + (0 < self.x) & (self.x < 1), + stats.beta.pdf(self.x, a=self.d.a, b=self.d.b), + 0, + ) + + @cached_property + def cdf_truth(self): + return stats.beta.cdf(self.x, a=self.d.a, b=self.d.b) + + +class TestGamma(AbstractTestUnivariateContinuous): + @cached_property + def d(self): + return dist.Gamma(shape=np.array([3, 7]), scale=np.array([2, 4])) + + @cached_property + def x(self): + return np.array([[0.6, 6], [0, 11], [-1, 12]]) + + @cached_property + def pdf_truth(self): + return stats.gamma.pdf(self.x, a=self.d.shape, scale=self.d.scale) + + @cached_property + def cdf_truth(self): + return stats.gamma.cdf(self.x, a=self.d.shape, scale=self.d.scale) + + def test_from_mean_std(self): + d = dist.Gamma(3, 5) + assert d.mean == 15 + assert d.var == 3 * 5**2 + + m = self.rng.uniform(0, 10, 100) + s = self.rng.uniform(0, 10, 100) + d = dist.Gamma.from_mean_std(mean=m, std=s) + assert_allclose(d.mean, m) + assert_allclose(d.std, s) + + +class TestInverseGamma(AbstractTestUnivariateContinuous): + @cached_property + def d(self): + return dist.InverseGamma(shape=np.array([3, 4]), scale=np.array([2, 3])) + + @cached_property + def x(self): + return np.array([[0.6, 6], [0, 5], [-1, 3]]) + + @cached_property + def pdf_truth(self): + return stats.invgamma.pdf(self.x, a=self.d.shape, scale=self.d.scale) + + @cached_property + def cdf_truth(self): + return stats.invgamma(self.d.shape, scale=self.d.scale).cdf(self.x) + + def test_from_mean_std(self): + m = self.rng.uniform(0, 5, 10) + s = self.rng.uniform(0, 5, 10) + d = dist.InverseGamma.from_mean_std(mean=m, std=s) + assert_allclose(d.mean, m) + assert_allclose(d.std, s) + + +class TestLogNormal(AbstractTestUnivariateContinuous): + def test_sample(self): + pass + + @cached_property + def d(self): + return dist.LogNormal(mu=np.array([3, 4]), sigma=np.array([2, 3])) + + @cached_property + def x(self): + return np.array([[0.6, 6], [0, 5], [-1, 3]]) + + @cached_property + def pdf_truth(self): + return stats.lognorm.pdf( + self.x, s=self.d.sigma, scale=np.exp(self.d.mu) + ) + + @cached_property + def cdf_truth(self): + return stats.lognorm(s=self.d.sigma, scale=np.exp(self.d.mu)).cdf( + self.x + ) + + def test_from_mean_std(self): + m = self.rng.uniform(0, 5, 10) + s = self.rng.uniform(0, 5, 10) + d = dist.LogNormal.from_mean_std(mean=m, std=s) + assert_allclose(d.mean, m) + assert_allclose(d.std, s) + + +class TestNormal(AbstractTestUnivariateContinuous): + @cached_property + def d(self): + return dist.Normal(loc=np.array([-1, 2]), scale=np.array([2, 4])) + + @cached_property + def x(self): + return np.array([[0.6, 6], [0, 1], [-1, 5]]) + + @cached_property + def pdf_truth(self): + return stats.norm.pdf(self.x, loc=self.d.loc, scale=self.d.scale) + + @cached_property + def cdf_truth(self): + return stats.norm.cdf(self.x, loc=self.d.loc, scale=self.d.scale) diff --git a/tests/ppl/__init__.py b/tests/ppl/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/tests/ppl/test_context.py b/tests/ppl/test_context.py new file mode 100644 index 0000000..e71c020 --- /dev/null +++ b/tests/ppl/test_context.py @@ -0,0 +1,27 @@ +import numpy as np +from numpy import array, ndarray +from numpy.random import default_rng + +from arianna.distributions import Normal +from arianna.ppl.context import Context, LogprobAndTrace, Predictive + + +class TestContext: + def test_gaussian_model(self): + def model(ctx: Context, y: ndarray): + mu = ctx.rv("mu", Normal(0, 10)) + log_sigma = ctx.rv("log_sigma", Normal(array(0), array(3))) + sigma = ctx.cached("sigma", np.exp(log_sigma)) + ctx.rv("y", Normal(mu, sigma), obs=y) + + np.random.seed(0) + state = {"mu": 0.0, "log_sigma": 0.0} + y = np.random.normal(3, 2, 50) + + state = Predictive.run(model, rng=default_rng(0), y=y) + lpdf, state_and_cache = LogprobAndTrace.run(model, state=state, y=y) + assert lpdf > -np.inf + assert "sigma" in state_and_cache + + for name in ("mu", "log_sigma", "sigma"): + assert name in state diff --git a/tests/ppl/test_linear_regression.py b/tests/ppl/test_linear_regression.py new file mode 100644 index 0000000..edd54fc --- /dev/null +++ b/tests/ppl/test_linear_regression.py @@ -0,0 +1,141 @@ +from concurrent.futures import ThreadPoolExecutor +from typing import Optional + +import numpy as np +from numpy.random import default_rng + +from arianna.distributions import Gamma, Normal +from arianna.ppl.context import Context, Predictive +from arianna.ppl.inference import ( + AIES, + AffineInvariantMCMC, + Chain, + LaplaceApproximation, + ParallelAIES, + RandomWalkMetropolis, +) + +print("numpy version:", np.__version__) + + +def linear_regression( + ctx: Context, X: np.ndarray, y: Optional[np.ndarray], bias=True +): + _, p = X.shape + beta = ctx.rv("beta", Normal(np.zeros(p), 10)) + sigma = ctx.rv("sigma", Gamma(1, 1)) + mu = ctx.cached("mu", X @ beta) + if bias: + alpha = ctx.rv("alpha", Normal(0, 10)) + mu += alpha + + ctx.rv("y", Normal(mu, sigma), obs=y) + + +def test_linear_regression(): + rng = np.random.default_rng(0) + X = rng.normal(0, 1, (100, 1)) + sim_truth = Predictive.run( + linear_regression, + state=dict(sigma=0.7), + rng=rng, + X=X, + y=None, + return_cached=False, + ) + y = sim_truth.pop("y") + + for transform in (True, False): + proposal = { + name: ( + lambda value, rng, mcmc_iteration: rng.normal( + value, np.clip(10 * np.exp(-mcmc_iteration / 100), 0.1, 5) + ) + ) + for name in sim_truth + } + rwm = RandomWalkMetropolis( + linear_regression, + proposal=proposal, + rng=default_rng(0), + X=X, + y=y, + transform=transform, + ) + aies = AIES( + linear_regression, + rng=default_rng(0), + X=X, + y=y, + transform=transform, + ) + paies = ParallelAIES( + linear_regression, + ThreadPoolExecutor(4), + rng=default_rng(0), + X=X, + y=y, + transform=transform, + ) + laplace = LaplaceApproximation( + linear_regression, + rng=default_rng(2), + X=X, + y=y, + transform=transform, + ) + + samplers = dict(laplace=laplace, rwm=rwm, aies=aies, paies=paies) + + for name, sampler in samplers.items(): + print(f"Transformed: {transform}, Sampler: {name}") + n, burn = 3000, 3000 + match sampler: + case AffineInvariantMCMC(): + samples = sampler.fit(n, burn=burn, thin=1) + case LaplaceApproximation(): + samples = sampler.fit(n) + case _: + thin = aies.nwalkers + samples = sampler.fit(n, burn=burn * thin, thin=thin) + + match sampler: + case AffineInvariantMCMC(): + print(f"{name} acceptance rates:", sampler.accept_rate) + # Authors say that acceptance rates in (0.2, 0.5) is best. + # Increase `a` to decrease acceptance frequency (bigger + # steps). + # Decrease `a` to increase acceptance frequency (smaller + # steps). + np.testing.assert_array_less(sampler.accept_rate, 1) + np.testing.assert_array_less(0, sampler.accept_rate) + + xnew = np.linspace(-3, 3, 50) + Xnew = xnew.reshape(-1, 1) + _ = Chain( + Predictive.run( + linear_regression, state=c, rng=rng, X=Xnew, y=None + ) + for c in samples + ).get("y") # ynew + + for name, value in samples.bundle.items(): + if name in sim_truth: + value = value.squeeze() + + match name, transform, sampler: + case "sigma", False, LaplaceApproximation(): + rtol = 0.1 + case _: + rtol = 0.05 + + # Test that the posterior mean is near the truth. + np.testing.assert_allclose( + np.squeeze(sim_truth[name]), + samples.get(name).mean(), + rtol=rtol, + ) + + # Test that the 95% credible interval contains the truth. + assert np.all(np.quantile(value, 0.025) < sim_truth[name]) + assert np.all(np.quantile(value, 0.975) > sim_truth[name]) diff --git a/uv.lock b/uv.lock new file mode 100644 index 0000000..bdc6e9d --- /dev/null +++ b/uv.lock @@ -0,0 +1,2206 @@ +version = 1 +requires-python = ">=3.10" +resolution-markers = [ + "python_full_version >= '3.12'", + "python_full_version == '3.11.*'", + "python_full_version < '3.11'", +] + +[[package]] +name = "anyio" +version = "4.8.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "exceptiongroup", marker = "python_full_version < '3.11'" }, + { name = "idna" }, + { name = "sniffio" }, + { name = "typing-extensions", marker = "python_full_version < '3.13'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/a3/73/199a98fc2dae33535d6b8e8e6ec01f8c1d76c9adb096c6b7d64823038cde/anyio-4.8.0.tar.gz", hash = "sha256:1d9fe889df5212298c0c0723fa20479d1b94883a2df44bd3897aa91083316f7a", size = 181126 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/46/eb/e7f063ad1fec6b3178a3cd82d1a3c4de82cccf283fc42746168188e1cdd5/anyio-4.8.0-py3-none-any.whl", hash = "sha256:b5011f270ab5eb0abf13385f851315585cc37ef330dd88e27ec3d34d651fd47a", size = 96041 }, +] + +[[package]] +name = "appnope" +version = "0.1.4" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/35/5d/752690df9ef5b76e169e68d6a129fa6d08a7100ca7f754c89495db3c6019/appnope-0.1.4.tar.gz", hash = "sha256:1de3860566df9caf38f01f86f65e0e13e379af54f9e4bee1e66b48f2efffd1ee", size = 4170 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/81/29/5ecc3a15d5a33e31b26c11426c45c501e439cb865d0bff96315d86443b78/appnope-0.1.4-py2.py3-none-any.whl", hash = "sha256:502575ee11cd7a28c0205f379b525beefebab9d161b7c964670864014ed7213c", size = 4321 }, +] + +[[package]] +name = "argon2-cffi" +version = "23.1.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "argon2-cffi-bindings" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/31/fa/57ec2c6d16ecd2ba0cf15f3c7d1c3c2e7b5fcb83555ff56d7ab10888ec8f/argon2_cffi-23.1.0.tar.gz", hash = "sha256:879c3e79a2729ce768ebb7d36d4609e3a78a4ca2ec3a9f12286ca057e3d0db08", size = 42798 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a4/6a/e8a041599e78b6b3752da48000b14c8d1e8a04ded09c88c714ba047f34f5/argon2_cffi-23.1.0-py3-none-any.whl", hash = "sha256:c670642b78ba29641818ab2e68bd4e6a78ba53b7eff7b4c3815ae16abf91c7ea", size = 15124 }, +] + +[[package]] +name = "argon2-cffi-bindings" +version = "21.2.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "cffi" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/b9/e9/184b8ccce6683b0aa2fbb7ba5683ea4b9c5763f1356347f1312c32e3c66e/argon2-cffi-bindings-21.2.0.tar.gz", hash = "sha256:bb89ceffa6c791807d1305ceb77dbfacc5aa499891d2c55661c6459651fc39e3", size = 1779911 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d4/13/838ce2620025e9666aa8f686431f67a29052241692a3dd1ae9d3692a89d3/argon2_cffi_bindings-21.2.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:ccb949252cb2ab3a08c02024acb77cfb179492d5701c7cbdbfd776124d4d2367", size = 29658 }, + { url = "https://files.pythonhosted.org/packages/b3/02/f7f7bb6b6af6031edb11037639c697b912e1dea2db94d436e681aea2f495/argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9524464572e12979364b7d600abf96181d3541da11e23ddf565a32e70bd4dc0d", size = 80583 }, + { url = "https://files.pythonhosted.org/packages/ec/f7/378254e6dd7ae6f31fe40c8649eea7d4832a42243acaf0f1fff9083b2bed/argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b746dba803a79238e925d9046a63aa26bf86ab2a2fe74ce6b009a1c3f5c8f2ae", size = 86168 }, + { url = "https://files.pythonhosted.org/packages/74/f6/4a34a37a98311ed73bb80efe422fed95f2ac25a4cacc5ae1d7ae6a144505/argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:58ed19212051f49a523abb1dbe954337dc82d947fb6e5a0da60f7c8471a8476c", size = 82709 }, + { url = "https://files.pythonhosted.org/packages/74/2b/73d767bfdaab25484f7e7901379d5f8793cccbb86c6e0cbc4c1b96f63896/argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:bd46088725ef7f58b5a1ef7ca06647ebaf0eb4baff7d1d0d177c6cc8744abd86", size = 83613 }, + { url = "https://files.pythonhosted.org/packages/4f/fd/37f86deef67ff57c76f137a67181949c2d408077e2e3dd70c6c42912c9bf/argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_i686.whl", hash = "sha256:8cd69c07dd875537a824deec19f978e0f2078fdda07fd5c42ac29668dda5f40f", size = 84583 }, + { url = "https://files.pythonhosted.org/packages/6f/52/5a60085a3dae8fded8327a4f564223029f5f54b0cb0455a31131b5363a01/argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:f1152ac548bd5b8bcecfb0b0371f082037e47128653df2e8ba6e914d384f3c3e", size = 88475 }, + { url = "https://files.pythonhosted.org/packages/8b/95/143cd64feb24a15fa4b189a3e1e7efbaeeb00f39a51e99b26fc62fbacabd/argon2_cffi_bindings-21.2.0-cp36-abi3-win32.whl", hash = "sha256:603ca0aba86b1349b147cab91ae970c63118a0f30444d4bc80355937c950c082", size = 27698 }, + { url = "https://files.pythonhosted.org/packages/37/2c/e34e47c7dee97ba6f01a6203e0383e15b60fb85d78ac9a15cd066f6fe28b/argon2_cffi_bindings-21.2.0-cp36-abi3-win_amd64.whl", hash = "sha256:b2ef1c30440dbbcba7a5dc3e319408b59676e2e039e2ae11a8775ecf482b192f", size = 30817 }, + { url = "https://files.pythonhosted.org/packages/5a/e4/bf8034d25edaa495da3c8a3405627d2e35758e44ff6eaa7948092646fdcc/argon2_cffi_bindings-21.2.0-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:e415e3f62c8d124ee16018e491a009937f8cf7ebf5eb430ffc5de21b900dad93", size = 53104 }, +] + +[[package]] +name = "arianna-ppl" +version = "0.1.0" +source = { editable = "." } +dependencies = [ + { name = "numpy" }, + { name = "scipy" }, + { name = "tqdm" }, +] + +[package.dev-dependencies] +dev = [ + { name = "emcee" }, + { name = "matplotlib" }, + { name = "notebook", marker = "python_full_version < '3.13'" }, + { name = "pdoc" }, + { name = "pytest" }, + { name = "seaborn" }, + { name = "watchdog" }, +] + +[package.metadata] +requires-dist = [ + { name = "numpy", specifier = ">=2.2.1" }, + { name = "scipy", specifier = ">=1.15.0" }, + { name = "tqdm", specifier = ">=4.65,<5.0.0" }, +] + +[package.metadata.requires-dev] +dev = [ + { name = "emcee", specifier = ">=3.1.6" }, + { name = "matplotlib", specifier = ">=3.10.0" }, + { name = "notebook", marker = "python_full_version < '3.13'", specifier = ">=7.2.2" }, + { name = "pdoc", specifier = ">=15.0.1" }, + { name = "pytest", specifier = ">=8.3.4" }, + { name = "seaborn", specifier = ">=0.13.2" }, + { name = "watchdog", specifier = ">=6.0.0" }, +] + +[[package]] +name = "arrow" +version = "1.3.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "python-dateutil" }, + { name = "types-python-dateutil" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/2e/00/0f6e8fcdb23ea632c866620cc872729ff43ed91d284c866b515c6342b173/arrow-1.3.0.tar.gz", hash = "sha256:d4540617648cb5f895730f1ad8c82a65f2dad0166f57b75f3ca54759c4d67a85", size = 131960 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f8/ed/e97229a566617f2ae958a6b13e7cc0f585470eac730a73e9e82c32a3cdd2/arrow-1.3.0-py3-none-any.whl", hash = "sha256:c728b120ebc00eb84e01882a6f5e7927a53960aa990ce7dd2b10f39005a67f80", size = 66419 }, +] + +[[package]] +name = "asttokens" +version = "3.0.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/4a/e7/82da0a03e7ba5141f05cce0d302e6eed121ae055e0456ca228bf693984bc/asttokens-3.0.0.tar.gz", hash = "sha256:0dcd8baa8d62b0c1d118b399b2ddba3c4aff271d0d7a9e0d4c1681c79035bbc7", size = 61978 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/25/8a/c46dcc25341b5bce5472c718902eb3d38600a903b14fa6aeecef3f21a46f/asttokens-3.0.0-py3-none-any.whl", hash = "sha256:e3078351a059199dd5138cb1c706e6430c05eff2ff136af5eb4790f9d28932e2", size = 26918 }, +] + +[[package]] +name = "async-lru" +version = "2.0.4" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "typing-extensions", marker = "python_full_version < '3.11'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/80/e2/2b4651eff771f6fd900d233e175ddc5e2be502c7eb62c0c42f975c6d36cd/async-lru-2.0.4.tar.gz", hash = "sha256:b8a59a5df60805ff63220b2a0c5b5393da5521b113cd5465a44eb037d81a5627", size = 10019 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/fa/9f/3c3503693386c4b0f245eaf5ca6198e3b28879ca0a40bde6b0e319793453/async_lru-2.0.4-py3-none-any.whl", hash = "sha256:ff02944ce3c288c5be660c42dbcca0742b32c3b279d6dceda655190240b99224", size = 6111 }, +] + +[[package]] +name = "attrs" +version = "24.3.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/48/c8/6260f8ccc11f0917360fc0da435c5c9c7504e3db174d5a12a1494887b045/attrs-24.3.0.tar.gz", hash = "sha256:8f5c07333d543103541ba7be0e2ce16eeee8130cb0b3f9238ab904ce1e85baff", size = 805984 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/89/aa/ab0f7891a01eeb2d2e338ae8fecbe57fcebea1a24dbb64d45801bfab481d/attrs-24.3.0-py3-none-any.whl", hash = "sha256:ac96cd038792094f438ad1f6ff80837353805ac950cd2aa0e0625ef19850c308", size = 63397 }, +] + +[[package]] +name = "babel" +version = "2.16.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/2a/74/f1bc80f23eeba13393b7222b11d95ca3af2c1e28edca18af487137eefed9/babel-2.16.0.tar.gz", hash = "sha256:d1f3554ca26605fe173f3de0c65f750f5a42f924499bf134de6423582298e316", size = 9348104 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ed/20/bc79bc575ba2e2a7f70e8a1155618bb1301eaa5132a8271373a6903f73f8/babel-2.16.0-py3-none-any.whl", hash = "sha256:368b5b98b37c06b7daf6696391c3240c938b37767d4584413e8438c5c435fa8b", size = 9587599 }, +] + +[[package]] +name = "beautifulsoup4" +version = "4.12.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "soupsieve" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/b3/ca/824b1195773ce6166d388573fc106ce56d4a805bd7427b624e063596ec58/beautifulsoup4-4.12.3.tar.gz", hash = "sha256:74e3d1928edc070d21748185c46e3fb33490f22f52a3addee9aee0f4f7781051", size = 581181 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/b1/fe/e8c672695b37eecc5cbf43e1d0638d88d66ba3a44c4d321c796f4e59167f/beautifulsoup4-4.12.3-py3-none-any.whl", hash = "sha256:b80878c9f40111313e55da8ba20bdba06d8fa3969fc68304167741bbf9e082ed", size = 147925 }, +] + +[[package]] +name = "bleach" +version = "6.2.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "webencodings" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/76/9a/0e33f5054c54d349ea62c277191c020c2d6ef1d65ab2cb1993f91ec846d1/bleach-6.2.0.tar.gz", hash = "sha256:123e894118b8a599fd80d3ec1a6d4cc7ce4e5882b1317a7e1ba69b56e95f991f", size = 203083 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/fc/55/96142937f66150805c25c4d0f31ee4132fd33497753400734f9dfdcbdc66/bleach-6.2.0-py3-none-any.whl", hash = "sha256:117d9c6097a7c3d22fd578fcd8d35ff1e125df6736f554da4e432fdd63f31e5e", size = 163406 }, +] + +[package.optional-dependencies] +css = [ + { name = "tinycss2" }, +] + +[[package]] +name = "certifi" +version = "2024.12.14" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/0f/bd/1d41ee578ce09523c81a15426705dd20969f5abf006d1afe8aeff0dd776a/certifi-2024.12.14.tar.gz", hash = "sha256:b650d30f370c2b724812bee08008be0c4163b163ddaec3f2546c1caf65f191db", size = 166010 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a5/32/8f6669fc4798494966bf446c8c4a162e0b5d893dff088afddf76414f70e1/certifi-2024.12.14-py3-none-any.whl", hash = "sha256:1275f7a45be9464efc1173084eaa30f866fe2e47d389406136d332ed4967ec56", size = 164927 }, +] + +[[package]] +name = "cffi" +version = "1.17.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "pycparser" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/fc/97/c783634659c2920c3fc70419e3af40972dbaf758daa229a7d6ea6135c90d/cffi-1.17.1.tar.gz", hash = "sha256:1c39c6016c32bc48dd54561950ebd6836e1670f2ae46128f67cf49e789c52824", size = 516621 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/90/07/f44ca684db4e4f08a3fdc6eeb9a0d15dc6883efc7b8c90357fdbf74e186c/cffi-1.17.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:df8b1c11f177bc2313ec4b2d46baec87a5f3e71fc8b45dab2ee7cae86d9aba14", size = 182191 }, + { url = "https://files.pythonhosted.org/packages/08/fd/cc2fedbd887223f9f5d170c96e57cbf655df9831a6546c1727ae13fa977a/cffi-1.17.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8f2cdc858323644ab277e9bb925ad72ae0e67f69e804f4898c070998d50b1a67", size = 178592 }, + { url = "https://files.pythonhosted.org/packages/de/cc/4635c320081c78d6ffc2cab0a76025b691a91204f4aa317d568ff9280a2d/cffi-1.17.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:edae79245293e15384b51f88b00613ba9f7198016a5948b5dddf4917d4d26382", size = 426024 }, + { url = "https://files.pythonhosted.org/packages/b6/7b/3b2b250f3aab91abe5f8a51ada1b717935fdaec53f790ad4100fe2ec64d1/cffi-1.17.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45398b671ac6d70e67da8e4224a065cec6a93541bb7aebe1b198a61b58c7b702", size = 448188 }, + { url = "https://files.pythonhosted.org/packages/d3/48/1b9283ebbf0ec065148d8de05d647a986c5f22586b18120020452fff8f5d/cffi-1.17.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ad9413ccdeda48c5afdae7e4fa2192157e991ff761e7ab8fdd8926f40b160cc3", size = 455571 }, + { url = "https://files.pythonhosted.org/packages/40/87/3b8452525437b40f39ca7ff70276679772ee7e8b394934ff60e63b7b090c/cffi-1.17.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5da5719280082ac6bd9aa7becb3938dc9f9cbd57fac7d2871717b1feb0902ab6", size = 436687 }, + { url = "https://files.pythonhosted.org/packages/8d/fb/4da72871d177d63649ac449aec2e8a29efe0274035880c7af59101ca2232/cffi-1.17.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2bb1a08b8008b281856e5971307cc386a8e9c5b625ac297e853d36da6efe9c17", size = 446211 }, + { url = "https://files.pythonhosted.org/packages/ab/a0/62f00bcb411332106c02b663b26f3545a9ef136f80d5df746c05878f8c4b/cffi-1.17.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:045d61c734659cc045141be4bae381a41d89b741f795af1dd018bfb532fd0df8", size = 461325 }, + { url = "https://files.pythonhosted.org/packages/36/83/76127035ed2e7e27b0787604d99da630ac3123bfb02d8e80c633f218a11d/cffi-1.17.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:6883e737d7d9e4899a8a695e00ec36bd4e5e4f18fabe0aca0efe0a4b44cdb13e", size = 438784 }, + { url = "https://files.pythonhosted.org/packages/21/81/a6cd025db2f08ac88b901b745c163d884641909641f9b826e8cb87645942/cffi-1.17.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:6b8b4a92e1c65048ff98cfe1f735ef8f1ceb72e3d5f0c25fdb12087a23da22be", size = 461564 }, + { url = "https://files.pythonhosted.org/packages/f8/fe/4d41c2f200c4a457933dbd98d3cf4e911870877bd94d9656cc0fcb390681/cffi-1.17.1-cp310-cp310-win32.whl", hash = "sha256:c9c3d058ebabb74db66e431095118094d06abf53284d9c81f27300d0e0d8bc7c", size = 171804 }, + { url = "https://files.pythonhosted.org/packages/d1/b6/0b0f5ab93b0df4acc49cae758c81fe4e5ef26c3ae2e10cc69249dfd8b3ab/cffi-1.17.1-cp310-cp310-win_amd64.whl", hash = "sha256:0f048dcf80db46f0098ccac01132761580d28e28bc0f78ae0d58048063317e15", size = 181299 }, + { url = "https://files.pythonhosted.org/packages/6b/f4/927e3a8899e52a27fa57a48607ff7dc91a9ebe97399b357b85a0c7892e00/cffi-1.17.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:a45e3c6913c5b87b3ff120dcdc03f6131fa0065027d0ed7ee6190736a74cd401", size = 182264 }, + { url = "https://files.pythonhosted.org/packages/6c/f5/6c3a8efe5f503175aaddcbea6ad0d2c96dad6f5abb205750d1b3df44ef29/cffi-1.17.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:30c5e0cb5ae493c04c8b42916e52ca38079f1b235c2f8ae5f4527b963c401caf", size = 178651 }, + { url = "https://files.pythonhosted.org/packages/94/dd/a3f0118e688d1b1a57553da23b16bdade96d2f9bcda4d32e7d2838047ff7/cffi-1.17.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f75c7ab1f9e4aca5414ed4d8e5c0e303a34f4421f8a0d47a4d019ceff0ab6af4", size = 445259 }, + { url = "https://files.pythonhosted.org/packages/2e/ea/70ce63780f096e16ce8588efe039d3c4f91deb1dc01e9c73a287939c79a6/cffi-1.17.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a1ed2dd2972641495a3ec98445e09766f077aee98a1c896dcb4ad0d303628e41", size = 469200 }, + { url = "https://files.pythonhosted.org/packages/1c/a0/a4fa9f4f781bda074c3ddd57a572b060fa0df7655d2a4247bbe277200146/cffi-1.17.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:46bf43160c1a35f7ec506d254e5c890f3c03648a4dbac12d624e4490a7046cd1", size = 477235 }, + { url = "https://files.pythonhosted.org/packages/62/12/ce8710b5b8affbcdd5c6e367217c242524ad17a02fe5beec3ee339f69f85/cffi-1.17.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a24ed04c8ffd54b0729c07cee15a81d964e6fee0e3d4d342a27b020d22959dc6", size = 459721 }, + { url = "https://files.pythonhosted.org/packages/ff/6b/d45873c5e0242196f042d555526f92aa9e0c32355a1be1ff8c27f077fd37/cffi-1.17.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:610faea79c43e44c71e1ec53a554553fa22321b65fae24889706c0a84d4ad86d", size = 467242 }, + { url = "https://files.pythonhosted.org/packages/1a/52/d9a0e523a572fbccf2955f5abe883cfa8bcc570d7faeee06336fbd50c9fc/cffi-1.17.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:a9b15d491f3ad5d692e11f6b71f7857e7835eb677955c00cc0aefcd0669adaf6", size = 477999 }, + { url = "https://files.pythonhosted.org/packages/44/74/f2a2460684a1a2d00ca799ad880d54652841a780c4c97b87754f660c7603/cffi-1.17.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:de2ea4b5833625383e464549fec1bc395c1bdeeb5f25c4a3a82b5a8c756ec22f", size = 454242 }, + { url = "https://files.pythonhosted.org/packages/f8/4a/34599cac7dfcd888ff54e801afe06a19c17787dfd94495ab0c8d35fe99fb/cffi-1.17.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fc48c783f9c87e60831201f2cce7f3b2e4846bf4d8728eabe54d60700b318a0b", size = 478604 }, + { url = "https://files.pythonhosted.org/packages/34/33/e1b8a1ba29025adbdcda5fb3a36f94c03d771c1b7b12f726ff7fef2ebe36/cffi-1.17.1-cp311-cp311-win32.whl", hash = "sha256:85a950a4ac9c359340d5963966e3e0a94a676bd6245a4b55bc43949eee26a655", size = 171727 }, + { url = "https://files.pythonhosted.org/packages/3d/97/50228be003bb2802627d28ec0627837ac0bf35c90cf769812056f235b2d1/cffi-1.17.1-cp311-cp311-win_amd64.whl", hash = "sha256:caaf0640ef5f5517f49bc275eca1406b0ffa6aa184892812030f04c2abf589a0", size = 181400 }, + { url = "https://files.pythonhosted.org/packages/5a/84/e94227139ee5fb4d600a7a4927f322e1d4aea6fdc50bd3fca8493caba23f/cffi-1.17.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:805b4371bf7197c329fcb3ead37e710d1bca9da5d583f5073b799d5c5bd1eee4", size = 183178 }, + { url = "https://files.pythonhosted.org/packages/da/ee/fb72c2b48656111c4ef27f0f91da355e130a923473bf5ee75c5643d00cca/cffi-1.17.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:733e99bc2df47476e3848417c5a4540522f234dfd4ef3ab7fafdf555b082ec0c", size = 178840 }, + { url = "https://files.pythonhosted.org/packages/cc/b6/db007700f67d151abadf508cbfd6a1884f57eab90b1bb985c4c8c02b0f28/cffi-1.17.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1257bdabf294dceb59f5e70c64a3e2f462c30c7ad68092d01bbbfb1c16b1ba36", size = 454803 }, + { url = "https://files.pythonhosted.org/packages/1a/df/f8d151540d8c200eb1c6fba8cd0dfd40904f1b0682ea705c36e6c2e97ab3/cffi-1.17.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da95af8214998d77a98cc14e3a3bd00aa191526343078b530ceb0bd710fb48a5", size = 478850 }, + { url = "https://files.pythonhosted.org/packages/28/c0/b31116332a547fd2677ae5b78a2ef662dfc8023d67f41b2a83f7c2aa78b1/cffi-1.17.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d63afe322132c194cf832bfec0dc69a99fb9bb6bbd550f161a49e9e855cc78ff", size = 485729 }, + { url = "https://files.pythonhosted.org/packages/91/2b/9a1ddfa5c7f13cab007a2c9cc295b70fbbda7cb10a286aa6810338e60ea1/cffi-1.17.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f79fc4fc25f1c8698ff97788206bb3c2598949bfe0fef03d299eb1b5356ada99", size = 471256 }, + { url = "https://files.pythonhosted.org/packages/b2/d5/da47df7004cb17e4955df6a43d14b3b4ae77737dff8bf7f8f333196717bf/cffi-1.17.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b62ce867176a75d03a665bad002af8e6d54644fad99a3c70905c543130e39d93", size = 479424 }, + { url = "https://files.pythonhosted.org/packages/0b/ac/2a28bcf513e93a219c8a4e8e125534f4f6db03e3179ba1c45e949b76212c/cffi-1.17.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:386c8bf53c502fff58903061338ce4f4950cbdcb23e2902d86c0f722b786bbe3", size = 484568 }, + { url = "https://files.pythonhosted.org/packages/d4/38/ca8a4f639065f14ae0f1d9751e70447a261f1a30fa7547a828ae08142465/cffi-1.17.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4ceb10419a9adf4460ea14cfd6bc43d08701f0835e979bf821052f1805850fe8", size = 488736 }, + { url = "https://files.pythonhosted.org/packages/86/c5/28b2d6f799ec0bdecf44dced2ec5ed43e0eb63097b0f58c293583b406582/cffi-1.17.1-cp312-cp312-win32.whl", hash = "sha256:a08d7e755f8ed21095a310a693525137cfe756ce62d066e53f502a83dc550f65", size = 172448 }, + { url = "https://files.pythonhosted.org/packages/50/b9/db34c4755a7bd1cb2d1603ac3863f22bcecbd1ba29e5ee841a4bc510b294/cffi-1.17.1-cp312-cp312-win_amd64.whl", hash = "sha256:51392eae71afec0d0c8fb1a53b204dbb3bcabcb3c9b807eedf3e1e6ccf2de903", size = 181976 }, + { url = "https://files.pythonhosted.org/packages/8d/f8/dd6c246b148639254dad4d6803eb6a54e8c85c6e11ec9df2cffa87571dbe/cffi-1.17.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f3a2b4222ce6b60e2e8b337bb9596923045681d71e5a082783484d845390938e", size = 182989 }, + { url = "https://files.pythonhosted.org/packages/8b/f1/672d303ddf17c24fc83afd712316fda78dc6fce1cd53011b839483e1ecc8/cffi-1.17.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0984a4925a435b1da406122d4d7968dd861c1385afe3b45ba82b750f229811e2", size = 178802 }, + { url = "https://files.pythonhosted.org/packages/0e/2d/eab2e858a91fdff70533cab61dcff4a1f55ec60425832ddfdc9cd36bc8af/cffi-1.17.1-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d01b12eeeb4427d3110de311e1774046ad344f5b1a7403101878976ecd7a10f3", size = 454792 }, + { url = "https://files.pythonhosted.org/packages/75/b2/fbaec7c4455c604e29388d55599b99ebcc250a60050610fadde58932b7ee/cffi-1.17.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:706510fe141c86a69c8ddc029c7910003a17353970cff3b904ff0686a5927683", size = 478893 }, + { url = "https://files.pythonhosted.org/packages/4f/b7/6e4a2162178bf1935c336d4da8a9352cccab4d3a5d7914065490f08c0690/cffi-1.17.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de55b766c7aa2e2a3092c51e0483d700341182f08e67c63630d5b6f200bb28e5", size = 485810 }, + { url = "https://files.pythonhosted.org/packages/c7/8a/1d0e4a9c26e54746dc08c2c6c037889124d4f59dffd853a659fa545f1b40/cffi-1.17.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c59d6e989d07460165cc5ad3c61f9fd8f1b4796eacbd81cee78957842b834af4", size = 471200 }, + { url = "https://files.pythonhosted.org/packages/26/9f/1aab65a6c0db35f43c4d1b4f580e8df53914310afc10ae0397d29d697af4/cffi-1.17.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd398dbc6773384a17fe0d3e7eeb8d1a21c2200473ee6806bb5e6a8e62bb73dd", size = 479447 }, + { url = "https://files.pythonhosted.org/packages/5f/e4/fb8b3dd8dc0e98edf1135ff067ae070bb32ef9d509d6cb0f538cd6f7483f/cffi-1.17.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:3edc8d958eb099c634dace3c7e16560ae474aa3803a5df240542b305d14e14ed", size = 484358 }, + { url = "https://files.pythonhosted.org/packages/f1/47/d7145bf2dc04684935d57d67dff9d6d795b2ba2796806bb109864be3a151/cffi-1.17.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:72e72408cad3d5419375fc87d289076ee319835bdfa2caad331e377589aebba9", size = 488469 }, + { url = "https://files.pythonhosted.org/packages/bf/ee/f94057fa6426481d663b88637a9a10e859e492c73d0384514a17d78ee205/cffi-1.17.1-cp313-cp313-win32.whl", hash = "sha256:e03eab0a8677fa80d646b5ddece1cbeaf556c313dcfac435ba11f107ba117b5d", size = 172475 }, + { url = "https://files.pythonhosted.org/packages/7c/fc/6a8cb64e5f0324877d503c854da15d76c1e50eb722e320b15345c4d0c6de/cffi-1.17.1-cp313-cp313-win_amd64.whl", hash = "sha256:f6a16c31041f09ead72d69f583767292f750d24913dadacf5756b966aacb3f1a", size = 182009 }, +] + +[[package]] +name = "charset-normalizer" +version = "3.4.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/16/b0/572805e227f01586461c80e0fd25d65a2115599cc9dad142fee4b747c357/charset_normalizer-3.4.1.tar.gz", hash = "sha256:44251f18cd68a75b56585dd00dae26183e102cd5e0f9f1466e6df5da2ed64ea3", size = 123188 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/0d/58/5580c1716040bc89206c77d8f74418caf82ce519aae06450393ca73475d1/charset_normalizer-3.4.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:91b36a978b5ae0ee86c394f5a54d6ef44db1de0815eb43de826d41d21e4af3de", size = 198013 }, + { url = "https://files.pythonhosted.org/packages/d0/11/00341177ae71c6f5159a08168bcb98c6e6d196d372c94511f9f6c9afe0c6/charset_normalizer-3.4.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7461baadb4dc00fd9e0acbe254e3d7d2112e7f92ced2adc96e54ef6501c5f176", size = 141285 }, + { url = "https://files.pythonhosted.org/packages/01/09/11d684ea5819e5a8f5100fb0b38cf8d02b514746607934134d31233e02c8/charset_normalizer-3.4.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e218488cd232553829be0664c2292d3af2eeeb94b32bea483cf79ac6a694e037", size = 151449 }, + { url = "https://files.pythonhosted.org/packages/08/06/9f5a12939db324d905dc1f70591ae7d7898d030d7662f0d426e2286f68c9/charset_normalizer-3.4.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:80ed5e856eb7f30115aaf94e4a08114ccc8813e6ed1b5efa74f9f82e8509858f", size = 143892 }, + { url = "https://files.pythonhosted.org/packages/93/62/5e89cdfe04584cb7f4d36003ffa2936681b03ecc0754f8e969c2becb7e24/charset_normalizer-3.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b010a7a4fd316c3c484d482922d13044979e78d1861f0e0650423144c616a46a", size = 146123 }, + { url = "https://files.pythonhosted.org/packages/a9/ac/ab729a15c516da2ab70a05f8722ecfccc3f04ed7a18e45c75bbbaa347d61/charset_normalizer-3.4.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4532bff1b8421fd0a320463030c7520f56a79c9024a4e88f01c537316019005a", size = 147943 }, + { url = "https://files.pythonhosted.org/packages/03/d2/3f392f23f042615689456e9a274640c1d2e5dd1d52de36ab8f7955f8f050/charset_normalizer-3.4.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:d973f03c0cb71c5ed99037b870f2be986c3c05e63622c017ea9816881d2dd247", size = 142063 }, + { url = "https://files.pythonhosted.org/packages/f2/e3/e20aae5e1039a2cd9b08d9205f52142329f887f8cf70da3650326670bddf/charset_normalizer-3.4.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:3a3bd0dcd373514dcec91c411ddb9632c0d7d92aed7093b8c3bbb6d69ca74408", size = 150578 }, + { url = "https://files.pythonhosted.org/packages/8d/af/779ad72a4da0aed925e1139d458adc486e61076d7ecdcc09e610ea8678db/charset_normalizer-3.4.1-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:d9c3cdf5390dcd29aa8056d13e8e99526cda0305acc038b96b30352aff5ff2bb", size = 153629 }, + { url = "https://files.pythonhosted.org/packages/c2/b6/7aa450b278e7aa92cf7732140bfd8be21f5f29d5bf334ae987c945276639/charset_normalizer-3.4.1-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:2bdfe3ac2e1bbe5b59a1a63721eb3b95fc9b6817ae4a46debbb4e11f6232428d", size = 150778 }, + { url = "https://files.pythonhosted.org/packages/39/f4/d9f4f712d0951dcbfd42920d3db81b00dd23b6ab520419626f4023334056/charset_normalizer-3.4.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:eab677309cdb30d047996b36d34caeda1dc91149e4fdca0b1a039b3f79d9a807", size = 146453 }, + { url = "https://files.pythonhosted.org/packages/49/2b/999d0314e4ee0cff3cb83e6bc9aeddd397eeed693edb4facb901eb8fbb69/charset_normalizer-3.4.1-cp310-cp310-win32.whl", hash = "sha256:c0429126cf75e16c4f0ad00ee0eae4242dc652290f940152ca8c75c3a4b6ee8f", size = 95479 }, + { url = "https://files.pythonhosted.org/packages/2d/ce/3cbed41cff67e455a386fb5e5dd8906cdda2ed92fbc6297921f2e4419309/charset_normalizer-3.4.1-cp310-cp310-win_amd64.whl", hash = "sha256:9f0b8b1c6d84c8034a44893aba5e767bf9c7a211e313a9605d9c617d7083829f", size = 102790 }, + { url = "https://files.pythonhosted.org/packages/72/80/41ef5d5a7935d2d3a773e3eaebf0a9350542f2cab4eac59a7a4741fbbbbe/charset_normalizer-3.4.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:8bfa33f4f2672964266e940dd22a195989ba31669bd84629f05fab3ef4e2d125", size = 194995 }, + { url = "https://files.pythonhosted.org/packages/7a/28/0b9fefa7b8b080ec492110af6d88aa3dea91c464b17d53474b6e9ba5d2c5/charset_normalizer-3.4.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:28bf57629c75e810b6ae989f03c0828d64d6b26a5e205535585f96093e405ed1", size = 139471 }, + { url = "https://files.pythonhosted.org/packages/71/64/d24ab1a997efb06402e3fc07317e94da358e2585165930d9d59ad45fcae2/charset_normalizer-3.4.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f08ff5e948271dc7e18a35641d2f11a4cd8dfd5634f55228b691e62b37125eb3", size = 149831 }, + { url = "https://files.pythonhosted.org/packages/37/ed/be39e5258e198655240db5e19e0b11379163ad7070962d6b0c87ed2c4d39/charset_normalizer-3.4.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:234ac59ea147c59ee4da87a0c0f098e9c8d169f4dc2a159ef720f1a61bbe27cd", size = 142335 }, + { url = "https://files.pythonhosted.org/packages/88/83/489e9504711fa05d8dde1574996408026bdbdbd938f23be67deebb5eca92/charset_normalizer-3.4.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fd4ec41f914fa74ad1b8304bbc634b3de73d2a0889bd32076342a573e0779e00", size = 143862 }, + { url = "https://files.pythonhosted.org/packages/c6/c7/32da20821cf387b759ad24627a9aca289d2822de929b8a41b6241767b461/charset_normalizer-3.4.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:eea6ee1db730b3483adf394ea72f808b6e18cf3cb6454b4d86e04fa8c4327a12", size = 145673 }, + { url = "https://files.pythonhosted.org/packages/68/85/f4288e96039abdd5aeb5c546fa20a37b50da71b5cf01e75e87f16cd43304/charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:c96836c97b1238e9c9e3fe90844c947d5afbf4f4c92762679acfe19927d81d77", size = 140211 }, + { url = "https://files.pythonhosted.org/packages/28/a3/a42e70d03cbdabc18997baf4f0227c73591a08041c149e710045c281f97b/charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:4d86f7aff21ee58f26dcf5ae81a9addbd914115cdebcbb2217e4f0ed8982e146", size = 148039 }, + { url = "https://files.pythonhosted.org/packages/85/e4/65699e8ab3014ecbe6f5c71d1a55d810fb716bbfd74f6283d5c2aa87febf/charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:09b5e6733cbd160dcc09589227187e242a30a49ca5cefa5a7edd3f9d19ed53fd", size = 151939 }, + { url = "https://files.pythonhosted.org/packages/b1/82/8e9fe624cc5374193de6860aba3ea8070f584c8565ee77c168ec13274bd2/charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:5777ee0881f9499ed0f71cc82cf873d9a0ca8af166dfa0af8ec4e675b7df48e6", size = 149075 }, + { url = "https://files.pythonhosted.org/packages/3d/7b/82865ba54c765560c8433f65e8acb9217cb839a9e32b42af4aa8e945870f/charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:237bdbe6159cff53b4f24f397d43c6336c6b0b42affbe857970cefbb620911c8", size = 144340 }, + { url = "https://files.pythonhosted.org/packages/b5/b6/9674a4b7d4d99a0d2df9b215da766ee682718f88055751e1e5e753c82db0/charset_normalizer-3.4.1-cp311-cp311-win32.whl", hash = "sha256:8417cb1f36cc0bc7eaba8ccb0e04d55f0ee52df06df3ad55259b9a323555fc8b", size = 95205 }, + { url = "https://files.pythonhosted.org/packages/1e/ab/45b180e175de4402dcf7547e4fb617283bae54ce35c27930a6f35b6bef15/charset_normalizer-3.4.1-cp311-cp311-win_amd64.whl", hash = "sha256:d7f50a1f8c450f3925cb367d011448c39239bb3eb4117c36a6d354794de4ce76", size = 102441 }, + { url = "https://files.pythonhosted.org/packages/0a/9a/dd1e1cdceb841925b7798369a09279bd1cf183cef0f9ddf15a3a6502ee45/charset_normalizer-3.4.1-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:73d94b58ec7fecbc7366247d3b0b10a21681004153238750bb67bd9012414545", size = 196105 }, + { url = "https://files.pythonhosted.org/packages/d3/8c/90bfabf8c4809ecb648f39794cf2a84ff2e7d2a6cf159fe68d9a26160467/charset_normalizer-3.4.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dad3e487649f498dd991eeb901125411559b22e8d7ab25d3aeb1af367df5efd7", size = 140404 }, + { url = "https://files.pythonhosted.org/packages/ad/8f/e410d57c721945ea3b4f1a04b74f70ce8fa800d393d72899f0a40526401f/charset_normalizer-3.4.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c30197aa96e8eed02200a83fba2657b4c3acd0f0aa4bdc9f6c1af8e8962e0757", size = 150423 }, + { url = "https://files.pythonhosted.org/packages/f0/b8/e6825e25deb691ff98cf5c9072ee0605dc2acfca98af70c2d1b1bc75190d/charset_normalizer-3.4.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2369eea1ee4a7610a860d88f268eb39b95cb588acd7235e02fd5a5601773d4fa", size = 143184 }, + { url = "https://files.pythonhosted.org/packages/3e/a2/513f6cbe752421f16d969e32f3583762bfd583848b763913ddab8d9bfd4f/charset_normalizer-3.4.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc2722592d8998c870fa4e290c2eec2c1569b87fe58618e67d38b4665dfa680d", size = 145268 }, + { url = "https://files.pythonhosted.org/packages/74/94/8a5277664f27c3c438546f3eb53b33f5b19568eb7424736bdc440a88a31f/charset_normalizer-3.4.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ffc9202a29ab3920fa812879e95a9e78b2465fd10be7fcbd042899695d75e616", size = 147601 }, + { url = "https://files.pythonhosted.org/packages/7c/5f/6d352c51ee763623a98e31194823518e09bfa48be2a7e8383cf691bbb3d0/charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:804a4d582ba6e5b747c625bf1255e6b1507465494a40a2130978bda7b932c90b", size = 141098 }, + { url = "https://files.pythonhosted.org/packages/78/d4/f5704cb629ba5ab16d1d3d741396aec6dc3ca2b67757c45b0599bb010478/charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:0f55e69f030f7163dffe9fd0752b32f070566451afe180f99dbeeb81f511ad8d", size = 149520 }, + { url = "https://files.pythonhosted.org/packages/c5/96/64120b1d02b81785f222b976c0fb79a35875457fa9bb40827678e54d1bc8/charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:c4c3e6da02df6fa1410a7680bd3f63d4f710232d3139089536310d027950696a", size = 152852 }, + { url = "https://files.pythonhosted.org/packages/84/c9/98e3732278a99f47d487fd3468bc60b882920cef29d1fa6ca460a1fdf4e6/charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:5df196eb874dae23dcfb968c83d4f8fdccb333330fe1fc278ac5ceeb101003a9", size = 150488 }, + { url = "https://files.pythonhosted.org/packages/13/0e/9c8d4cb99c98c1007cc11eda969ebfe837bbbd0acdb4736d228ccaabcd22/charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:e358e64305fe12299a08e08978f51fc21fac060dcfcddd95453eabe5b93ed0e1", size = 146192 }, + { url = "https://files.pythonhosted.org/packages/b2/21/2b6b5b860781a0b49427309cb8670785aa543fb2178de875b87b9cc97746/charset_normalizer-3.4.1-cp312-cp312-win32.whl", hash = "sha256:9b23ca7ef998bc739bf6ffc077c2116917eabcc901f88da1b9856b210ef63f35", size = 95550 }, + { url = "https://files.pythonhosted.org/packages/21/5b/1b390b03b1d16c7e382b561c5329f83cc06623916aab983e8ab9239c7d5c/charset_normalizer-3.4.1-cp312-cp312-win_amd64.whl", hash = "sha256:6ff8a4a60c227ad87030d76e99cd1698345d4491638dfa6673027c48b3cd395f", size = 102785 }, + { url = "https://files.pythonhosted.org/packages/38/94/ce8e6f63d18049672c76d07d119304e1e2d7c6098f0841b51c666e9f44a0/charset_normalizer-3.4.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:aabfa34badd18f1da5ec1bc2715cadc8dca465868a4e73a0173466b688f29dda", size = 195698 }, + { url = "https://files.pythonhosted.org/packages/24/2e/dfdd9770664aae179a96561cc6952ff08f9a8cd09a908f259a9dfa063568/charset_normalizer-3.4.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22e14b5d70560b8dd51ec22863f370d1e595ac3d024cb8ad7d308b4cd95f8313", size = 140162 }, + { url = "https://files.pythonhosted.org/packages/24/4e/f646b9093cff8fc86f2d60af2de4dc17c759de9d554f130b140ea4738ca6/charset_normalizer-3.4.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8436c508b408b82d87dc5f62496973a1805cd46727c34440b0d29d8a2f50a6c9", size = 150263 }, + { url = "https://files.pythonhosted.org/packages/5e/67/2937f8d548c3ef6e2f9aab0f6e21001056f692d43282b165e7c56023e6dd/charset_normalizer-3.4.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2d074908e1aecee37a7635990b2c6d504cd4766c7bc9fc86d63f9c09af3fa11b", size = 142966 }, + { url = "https://files.pythonhosted.org/packages/52/ed/b7f4f07de100bdb95c1756d3a4d17b90c1a3c53715c1a476f8738058e0fa/charset_normalizer-3.4.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:955f8851919303c92343d2f66165294848d57e9bba6cf6e3625485a70a038d11", size = 144992 }, + { url = "https://files.pythonhosted.org/packages/96/2c/d49710a6dbcd3776265f4c923bb73ebe83933dfbaa841c5da850fe0fd20b/charset_normalizer-3.4.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:44ecbf16649486d4aebafeaa7ec4c9fed8b88101f4dd612dcaf65d5e815f837f", size = 147162 }, + { url = "https://files.pythonhosted.org/packages/b4/41/35ff1f9a6bd380303dea55e44c4933b4cc3c4850988927d4082ada230273/charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:0924e81d3d5e70f8126529951dac65c1010cdf117bb75eb02dd12339b57749dd", size = 140972 }, + { url = "https://files.pythonhosted.org/packages/fb/43/c6a0b685fe6910d08ba971f62cd9c3e862a85770395ba5d9cad4fede33ab/charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:2967f74ad52c3b98de4c3b32e1a44e32975e008a9cd2a8cc8966d6a5218c5cb2", size = 149095 }, + { url = "https://files.pythonhosted.org/packages/4c/ff/a9a504662452e2d2878512115638966e75633519ec11f25fca3d2049a94a/charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:c75cb2a3e389853835e84a2d8fb2b81a10645b503eca9bcb98df6b5a43eb8886", size = 152668 }, + { url = "https://files.pythonhosted.org/packages/6c/71/189996b6d9a4b932564701628af5cee6716733e9165af1d5e1b285c530ed/charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:09b26ae6b1abf0d27570633b2b078a2a20419c99d66fb2823173d73f188ce601", size = 150073 }, + { url = "https://files.pythonhosted.org/packages/e4/93/946a86ce20790e11312c87c75ba68d5f6ad2208cfb52b2d6a2c32840d922/charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:fa88b843d6e211393a37219e6a1c1df99d35e8fd90446f1118f4216e307e48cd", size = 145732 }, + { url = "https://files.pythonhosted.org/packages/cd/e5/131d2fb1b0dddafc37be4f3a2fa79aa4c037368be9423061dccadfd90091/charset_normalizer-3.4.1-cp313-cp313-win32.whl", hash = "sha256:eb8178fe3dba6450a3e024e95ac49ed3400e506fd4e9e5c32d30adda88cbd407", size = 95391 }, + { url = "https://files.pythonhosted.org/packages/27/f2/4f9a69cc7712b9b5ad8fdb87039fd89abba997ad5cbe690d1835d40405b0/charset_normalizer-3.4.1-cp313-cp313-win_amd64.whl", hash = "sha256:b1ac5992a838106edb89654e0aebfc24f5848ae2547d22c2c3f66454daa11971", size = 102702 }, + { url = "https://files.pythonhosted.org/packages/0e/f6/65ecc6878a89bb1c23a086ea335ad4bf21a588990c3f535a227b9eea9108/charset_normalizer-3.4.1-py3-none-any.whl", hash = "sha256:d98b1668f06378c6dbefec3b92299716b931cd4e6061f3c875a71ced1780ab85", size = 49767 }, +] + +[[package]] +name = "colorama" +version = "0.4.6" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/d8/53/6f443c9a4a8358a93a6792e2acffb9d9d5cb0a5cfd8802644b7b1c9a02e4/colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44", size = 27697 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d1/d6/3965ed04c63042e047cb6a3e6ed1a63a35087b6a609aa3a15ed8ac56c221/colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6", size = 25335 }, +] + +[[package]] +name = "comm" +version = "0.2.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/e9/a8/fb783cb0abe2b5fded9f55e5703015cdf1c9c85b3669087c538dd15a6a86/comm-0.2.2.tar.gz", hash = "sha256:3fd7a84065306e07bea1773df6eb8282de51ba82f77c72f9c85716ab11fe980e", size = 6210 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e6/75/49e5bfe642f71f272236b5b2d2691cf915a7283cc0ceda56357b61daa538/comm-0.2.2-py3-none-any.whl", hash = "sha256:e6fb86cb70ff661ee8c9c14e7d36d6de3b4066f1441be4063df9c5009f0a64d3", size = 7180 }, +] + +[[package]] +name = "contourpy" +version = "1.3.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "numpy" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/25/c2/fc7193cc5383637ff390a712e88e4ded0452c9fbcf84abe3de5ea3df1866/contourpy-1.3.1.tar.gz", hash = "sha256:dfd97abd83335045a913e3bcc4a09c0ceadbe66580cf573fe961f4a825efa699", size = 13465753 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/b2/a3/80937fe3efe0edacf67c9a20b955139a1a622730042c1ea991956f2704ad/contourpy-1.3.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a045f341a77b77e1c5de31e74e966537bba9f3c4099b35bf4c2e3939dd54cdab", size = 268466 }, + { url = "https://files.pythonhosted.org/packages/82/1d/e3eaebb4aa2d7311528c048350ca8e99cdacfafd99da87bc0a5f8d81f2c2/contourpy-1.3.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:500360b77259914f7805af7462e41f9cb7ca92ad38e9f94d6c8641b089338124", size = 253314 }, + { url = "https://files.pythonhosted.org/packages/de/f3/d796b22d1a2b587acc8100ba8c07fb7b5e17fde265a7bb05ab967f4c935a/contourpy-1.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b2f926efda994cdf3c8d3fdb40b9962f86edbc4457e739277b961eced3d0b4c1", size = 312003 }, + { url = "https://files.pythonhosted.org/packages/bf/f5/0e67902bc4394daee8daa39c81d4f00b50e063ee1a46cb3938cc65585d36/contourpy-1.3.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:adce39d67c0edf383647a3a007de0a45fd1b08dedaa5318404f1a73059c2512b", size = 351896 }, + { url = "https://files.pythonhosted.org/packages/1f/d6/e766395723f6256d45d6e67c13bb638dd1fa9dc10ef912dc7dd3dcfc19de/contourpy-1.3.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:abbb49fb7dac584e5abc6636b7b2a7227111c4f771005853e7d25176daaf8453", size = 320814 }, + { url = "https://files.pythonhosted.org/packages/a9/57/86c500d63b3e26e5b73a28b8291a67c5608d4aa87ebd17bd15bb33c178bc/contourpy-1.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0cffcbede75c059f535725c1680dfb17b6ba8753f0c74b14e6a9c68c29d7ea3", size = 324969 }, + { url = "https://files.pythonhosted.org/packages/b8/62/bb146d1289d6b3450bccc4642e7f4413b92ebffd9bf2e91b0404323704a7/contourpy-1.3.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:ab29962927945d89d9b293eabd0d59aea28d887d4f3be6c22deaefbb938a7277", size = 1265162 }, + { url = "https://files.pythonhosted.org/packages/18/04/9f7d132ce49a212c8e767042cc80ae390f728060d2eea47058f55b9eff1c/contourpy-1.3.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:974d8145f8ca354498005b5b981165b74a195abfae9a8129df3e56771961d595", size = 1324328 }, + { url = "https://files.pythonhosted.org/packages/46/23/196813901be3f97c83ababdab1382e13e0edc0bb4e7b49a7bff15fcf754e/contourpy-1.3.1-cp310-cp310-win32.whl", hash = "sha256:ac4578ac281983f63b400f7fe6c101bedc10651650eef012be1ccffcbacf3697", size = 173861 }, + { url = "https://files.pythonhosted.org/packages/e0/82/c372be3fc000a3b2005061ca623a0d1ecd2eaafb10d9e883a2fc8566e951/contourpy-1.3.1-cp310-cp310-win_amd64.whl", hash = "sha256:174e758c66bbc1c8576992cec9599ce8b6672b741b5d336b5c74e35ac382b18e", size = 218566 }, + { url = "https://files.pythonhosted.org/packages/12/bb/11250d2906ee2e8b466b5f93e6b19d525f3e0254ac8b445b56e618527718/contourpy-1.3.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3e8b974d8db2c5610fb4e76307e265de0edb655ae8169e8b21f41807ccbeec4b", size = 269555 }, + { url = "https://files.pythonhosted.org/packages/67/71/1e6e95aee21a500415f5d2dbf037bf4567529b6a4e986594d7026ec5ae90/contourpy-1.3.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:20914c8c973f41456337652a6eeca26d2148aa96dd7ac323b74516988bea89fc", size = 254549 }, + { url = "https://files.pythonhosted.org/packages/31/2c/b88986e8d79ac45efe9d8801ae341525f38e087449b6c2f2e6050468a42c/contourpy-1.3.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:19d40d37c1c3a4961b4619dd9d77b12124a453cc3d02bb31a07d58ef684d3d86", size = 313000 }, + { url = "https://files.pythonhosted.org/packages/c4/18/65280989b151fcf33a8352f992eff71e61b968bef7432fbfde3a364f0730/contourpy-1.3.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:113231fe3825ebf6f15eaa8bc1f5b0ddc19d42b733345eae0934cb291beb88b6", size = 352925 }, + { url = "https://files.pythonhosted.org/packages/f5/c7/5fd0146c93220dbfe1a2e0f98969293b86ca9bc041d6c90c0e065f4619ad/contourpy-1.3.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4dbbc03a40f916a8420e420d63e96a1258d3d1b58cbdfd8d1f07b49fcbd38e85", size = 323693 }, + { url = "https://files.pythonhosted.org/packages/85/fc/7fa5d17daf77306840a4e84668a48ddff09e6bc09ba4e37e85ffc8e4faa3/contourpy-1.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3a04ecd68acbd77fa2d39723ceca4c3197cb2969633836ced1bea14e219d077c", size = 326184 }, + { url = "https://files.pythonhosted.org/packages/ef/e7/104065c8270c7397c9571620d3ab880558957216f2b5ebb7e040f85eeb22/contourpy-1.3.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:c414fc1ed8ee1dbd5da626cf3710c6013d3d27456651d156711fa24f24bd1291", size = 1268031 }, + { url = "https://files.pythonhosted.org/packages/e2/4a/c788d0bdbf32c8113c2354493ed291f924d4793c4a2e85b69e737a21a658/contourpy-1.3.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:31c1b55c1f34f80557d3830d3dd93ba722ce7e33a0b472cba0ec3b6535684d8f", size = 1325995 }, + { url = "https://files.pythonhosted.org/packages/a6/e6/a2f351a90d955f8b0564caf1ebe4b1451a3f01f83e5e3a414055a5b8bccb/contourpy-1.3.1-cp311-cp311-win32.whl", hash = "sha256:f611e628ef06670df83fce17805c344710ca5cde01edfdc72751311da8585375", size = 174396 }, + { url = "https://files.pythonhosted.org/packages/a8/7e/cd93cab453720a5d6cb75588cc17dcdc08fc3484b9de98b885924ff61900/contourpy-1.3.1-cp311-cp311-win_amd64.whl", hash = "sha256:b2bdca22a27e35f16794cf585832e542123296b4687f9fd96822db6bae17bfc9", size = 219787 }, + { url = "https://files.pythonhosted.org/packages/37/6b/175f60227d3e7f5f1549fcb374592be311293132207e451c3d7c654c25fb/contourpy-1.3.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:0ffa84be8e0bd33410b17189f7164c3589c229ce5db85798076a3fa136d0e509", size = 271494 }, + { url = "https://files.pythonhosted.org/packages/6b/6a/7833cfae2c1e63d1d8875a50fd23371394f540ce809d7383550681a1fa64/contourpy-1.3.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:805617228ba7e2cbbfb6c503858e626ab528ac2a32a04a2fe88ffaf6b02c32bc", size = 255444 }, + { url = "https://files.pythonhosted.org/packages/7f/b3/7859efce66eaca5c14ba7619791b084ed02d868d76b928ff56890d2d059d/contourpy-1.3.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ade08d343436a94e633db932e7e8407fe7de8083967962b46bdfc1b0ced39454", size = 307628 }, + { url = "https://files.pythonhosted.org/packages/48/b2/011415f5e3f0a50b1e285a0bf78eb5d92a4df000553570f0851b6e309076/contourpy-1.3.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:47734d7073fb4590b4a40122b35917cd77be5722d80683b249dac1de266aac80", size = 347271 }, + { url = "https://files.pythonhosted.org/packages/84/7d/ef19b1db0f45b151ac78c65127235239a8cf21a59d1ce8507ce03e89a30b/contourpy-1.3.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2ba94a401342fc0f8b948e57d977557fbf4d515f03c67682dd5c6191cb2d16ec", size = 318906 }, + { url = "https://files.pythonhosted.org/packages/ba/99/6794142b90b853a9155316c8f470d2e4821fe6f086b03e372aca848227dd/contourpy-1.3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:efa874e87e4a647fd2e4f514d5e91c7d493697127beb95e77d2f7561f6905bd9", size = 323622 }, + { url = "https://files.pythonhosted.org/packages/3c/0f/37d2c84a900cd8eb54e105f4fa9aebd275e14e266736778bb5dccbf3bbbb/contourpy-1.3.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:1bf98051f1045b15c87868dbaea84f92408337d4f81d0e449ee41920ea121d3b", size = 1266699 }, + { url = "https://files.pythonhosted.org/packages/3a/8a/deb5e11dc7d9cc8f0f9c8b29d4f062203f3af230ba83c30a6b161a6effc9/contourpy-1.3.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:61332c87493b00091423e747ea78200659dc09bdf7fd69edd5e98cef5d3e9a8d", size = 1326395 }, + { url = "https://files.pythonhosted.org/packages/1a/35/7e267ae7c13aaf12322ccc493531f1e7f2eb8fba2927b9d7a05ff615df7a/contourpy-1.3.1-cp312-cp312-win32.whl", hash = "sha256:e914a8cb05ce5c809dd0fe350cfbb4e881bde5e2a38dc04e3afe1b3e58bd158e", size = 175354 }, + { url = "https://files.pythonhosted.org/packages/a1/35/c2de8823211d07e8a79ab018ef03960716c5dff6f4d5bff5af87fd682992/contourpy-1.3.1-cp312-cp312-win_amd64.whl", hash = "sha256:08d9d449a61cf53033612cb368f3a1b26cd7835d9b8cd326647efe43bca7568d", size = 220971 }, + { url = "https://files.pythonhosted.org/packages/9a/e7/de62050dce687c5e96f946a93546910bc67e483fe05324439e329ff36105/contourpy-1.3.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:a761d9ccfc5e2ecd1bf05534eda382aa14c3e4f9205ba5b1684ecfe400716ef2", size = 271548 }, + { url = "https://files.pythonhosted.org/packages/78/4d/c2a09ae014ae984c6bdd29c11e74d3121b25eaa117eca0bb76340efd7e1c/contourpy-1.3.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:523a8ee12edfa36f6d2a49407f705a6ef4c5098de4f498619787e272de93f2d5", size = 255576 }, + { url = "https://files.pythonhosted.org/packages/ab/8a/915380ee96a5638bda80cd061ccb8e666bfdccea38d5741cb69e6dbd61fc/contourpy-1.3.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ece6df05e2c41bd46776fbc712e0996f7c94e0d0543af1656956d150c4ca7c81", size = 306635 }, + { url = "https://files.pythonhosted.org/packages/29/5c/c83ce09375428298acd4e6582aeb68b1e0d1447f877fa993d9bf6cd3b0a0/contourpy-1.3.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:573abb30e0e05bf31ed067d2f82500ecfdaec15627a59d63ea2d95714790f5c2", size = 345925 }, + { url = "https://files.pythonhosted.org/packages/29/63/5b52f4a15e80c66c8078a641a3bfacd6e07106835682454647aca1afc852/contourpy-1.3.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a9fa36448e6a3a1a9a2ba23c02012c43ed88905ec80163f2ffe2421c7192a5d7", size = 318000 }, + { url = "https://files.pythonhosted.org/packages/9a/e2/30ca086c692691129849198659bf0556d72a757fe2769eb9620a27169296/contourpy-1.3.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ea9924d28fc5586bf0b42d15f590b10c224117e74409dd7a0be3b62b74a501c", size = 322689 }, + { url = "https://files.pythonhosted.org/packages/6b/77/f37812ef700f1f185d348394debf33f22d531e714cf6a35d13d68a7003c7/contourpy-1.3.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:5b75aa69cb4d6f137b36f7eb2ace9280cfb60c55dc5f61c731fdf6f037f958a3", size = 1268413 }, + { url = "https://files.pythonhosted.org/packages/3f/6d/ce84e79cdd128542ebeb268f84abb4b093af78e7f8ec504676673d2675bc/contourpy-1.3.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:041b640d4ec01922083645a94bb3b2e777e6b626788f4095cf21abbe266413c1", size = 1326530 }, + { url = "https://files.pythonhosted.org/packages/72/22/8282f4eae20c73c89bee7a82a19c4e27af9b57bb602ecaa00713d5bdb54d/contourpy-1.3.1-cp313-cp313-win32.whl", hash = "sha256:36987a15e8ace5f58d4d5da9dca82d498c2bbb28dff6e5d04fbfcc35a9cb3a82", size = 175315 }, + { url = "https://files.pythonhosted.org/packages/e3/d5/28bca491f65312b438fbf076589dcde7f6f966b196d900777f5811b9c4e2/contourpy-1.3.1-cp313-cp313-win_amd64.whl", hash = "sha256:a7895f46d47671fa7ceec40f31fae721da51ad34bdca0bee83e38870b1f47ffd", size = 220987 }, + { url = "https://files.pythonhosted.org/packages/2f/24/a4b285d6adaaf9746e4700932f579f1a7b6f9681109f694cfa233ae75c4e/contourpy-1.3.1-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:9ddeb796389dadcd884c7eb07bd14ef12408aaae358f0e2ae24114d797eede30", size = 285001 }, + { url = "https://files.pythonhosted.org/packages/48/1d/fb49a401b5ca4f06ccf467cd6c4f1fd65767e63c21322b29b04ec40b40b9/contourpy-1.3.1-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:19c1555a6801c2f084c7ddc1c6e11f02eb6a6016ca1318dd5452ba3f613a1751", size = 268553 }, + { url = "https://files.pythonhosted.org/packages/79/1e/4aef9470d13fd029087388fae750dccb49a50c012a6c8d1d634295caa644/contourpy-1.3.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:841ad858cff65c2c04bf93875e384ccb82b654574a6d7f30453a04f04af71342", size = 310386 }, + { url = "https://files.pythonhosted.org/packages/b0/34/910dc706ed70153b60392b5305c708c9810d425bde12499c9184a1100888/contourpy-1.3.1-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4318af1c925fb9a4fb190559ef3eec206845f63e80fb603d47f2d6d67683901c", size = 349806 }, + { url = "https://files.pythonhosted.org/packages/31/3c/faee6a40d66d7f2a87f7102236bf4780c57990dd7f98e5ff29881b1b1344/contourpy-1.3.1-cp313-cp313t-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:14c102b0eab282427b662cb590f2e9340a9d91a1c297f48729431f2dcd16e14f", size = 321108 }, + { url = "https://files.pythonhosted.org/packages/17/69/390dc9b20dd4bb20585651d7316cc3054b7d4a7b4f8b710b2b698e08968d/contourpy-1.3.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:05e806338bfeaa006acbdeba0ad681a10be63b26e1b17317bfac3c5d98f36cda", size = 327291 }, + { url = "https://files.pythonhosted.org/packages/ef/74/7030b67c4e941fe1e5424a3d988080e83568030ce0355f7c9fc556455b01/contourpy-1.3.1-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:4d76d5993a34ef3df5181ba3c92fabb93f1eaa5729504fb03423fcd9f3177242", size = 1263752 }, + { url = "https://files.pythonhosted.org/packages/f0/ed/92d86f183a8615f13f6b9cbfc5d4298a509d6ce433432e21da838b4b63f4/contourpy-1.3.1-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:89785bb2a1980c1bd87f0cb1517a71cde374776a5f150936b82580ae6ead44a1", size = 1318403 }, + { url = "https://files.pythonhosted.org/packages/b3/0e/c8e4950c77dcfc897c71d61e56690a0a9df39543d2164040301b5df8e67b/contourpy-1.3.1-cp313-cp313t-win32.whl", hash = "sha256:8eb96e79b9f3dcadbad2a3891672f81cdcab7f95b27f28f1c67d75f045b6b4f1", size = 185117 }, + { url = "https://files.pythonhosted.org/packages/c1/31/1ae946f11dfbd229222e6d6ad8e7bd1891d3d48bde5fbf7a0beb9491f8e3/contourpy-1.3.1-cp313-cp313t-win_amd64.whl", hash = "sha256:287ccc248c9e0d0566934e7d606201abd74761b5703d804ff3df8935f523d546", size = 236668 }, + { url = "https://files.pythonhosted.org/packages/3e/4f/e56862e64b52b55b5ddcff4090085521fc228ceb09a88390a2b103dccd1b/contourpy-1.3.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:b457d6430833cee8e4b8e9b6f07aa1c161e5e0d52e118dc102c8f9bd7dd060d6", size = 265605 }, + { url = "https://files.pythonhosted.org/packages/b0/2e/52bfeeaa4541889f23d8eadc6386b442ee2470bd3cff9baa67deb2dd5c57/contourpy-1.3.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cb76c1a154b83991a3cbbf0dfeb26ec2833ad56f95540b442c73950af2013750", size = 315040 }, + { url = "https://files.pythonhosted.org/packages/52/94/86bfae441707205634d80392e873295652fc313dfd93c233c52c4dc07874/contourpy-1.3.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:44a29502ca9c7b5ba389e620d44f2fbe792b1fb5734e8b931ad307071ec58c53", size = 218221 }, +] + +[[package]] +name = "cycler" +version = "0.12.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/a9/95/a3dbbb5028f35eafb79008e7522a75244477d2838f38cbb722248dabc2a8/cycler-0.12.1.tar.gz", hash = "sha256:88bb128f02ba341da8ef447245a9e138fae777f6a23943da4540077d3601eb1c", size = 7615 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e7/05/c19819d5e3d95294a6f5947fb9b9629efb316b96de511b418c53d245aae6/cycler-0.12.1-py3-none-any.whl", hash = "sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30", size = 8321 }, +] + +[[package]] +name = "debugpy" +version = "1.8.11" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/bc/e7/666f4c9b0e24796af50aadc28d36d21c2e01e831a934535f956e09b3650c/debugpy-1.8.11.tar.gz", hash = "sha256:6ad2688b69235c43b020e04fecccdf6a96c8943ca9c2fb340b8adc103c655e57", size = 1640124 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/26/e6/4cf7422eaa591b4c7d6a9fde224095dac25283fdd99d90164f28714242b0/debugpy-1.8.11-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:2b26fefc4e31ff85593d68b9022e35e8925714a10ab4858fb1b577a8a48cb8cd", size = 2075100 }, + { url = "https://files.pythonhosted.org/packages/83/3a/e163de1df5995d95760a4d748b02fbefb1c1bf19e915b664017c40435dbf/debugpy-1.8.11-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:61bc8b3b265e6949855300e84dc93d02d7a3a637f2aec6d382afd4ceb9120c9f", size = 3559724 }, + { url = "https://files.pythonhosted.org/packages/27/6c/327e19fd1bf428a1efe1a6f97b306689c54c2cebcf871b66674ead718756/debugpy-1.8.11-cp310-cp310-win32.whl", hash = "sha256:c928bbf47f65288574b78518449edaa46c82572d340e2750889bbf8cd92f3737", size = 5178068 }, + { url = "https://files.pythonhosted.org/packages/49/80/359ff8aa388f0bd4a48f0fa9ce3606396d576657ac149c6fba3cc7de8adb/debugpy-1.8.11-cp310-cp310-win_amd64.whl", hash = "sha256:8da1db4ca4f22583e834dcabdc7832e56fe16275253ee53ba66627b86e304da1", size = 5210109 }, + { url = "https://files.pythonhosted.org/packages/7c/58/8e3f7ec86c1b7985a232667b5df8f3b1b1c8401028d8f4d75e025c9556cd/debugpy-1.8.11-cp311-cp311-macosx_14_0_universal2.whl", hash = "sha256:85de8474ad53ad546ff1c7c7c89230db215b9b8a02754d41cb5a76f70d0be296", size = 2173656 }, + { url = "https://files.pythonhosted.org/packages/d2/03/95738a68ade2358e5a4d63a2fd8e7ed9ad911001cfabbbb33a7f81343945/debugpy-1.8.11-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ffc382e4afa4aee367bf413f55ed17bd91b191dcaf979890af239dda435f2a1", size = 3132464 }, + { url = "https://files.pythonhosted.org/packages/ca/f4/18204891ab67300950615a6ad09b9de236203a9138f52b3b596fa17628ca/debugpy-1.8.11-cp311-cp311-win32.whl", hash = "sha256:40499a9979c55f72f4eb2fc38695419546b62594f8af194b879d2a18439c97a9", size = 5103637 }, + { url = "https://files.pythonhosted.org/packages/3b/90/3775e301cfa573b51eb8a108285681f43f5441dc4c3916feed9f386ef861/debugpy-1.8.11-cp311-cp311-win_amd64.whl", hash = "sha256:987bce16e86efa86f747d5151c54e91b3c1e36acc03ce1ddb50f9d09d16ded0e", size = 5127862 }, + { url = "https://files.pythonhosted.org/packages/c6/ae/2cf26f3111e9d94384d9c01e9d6170188b0aeda15b60a4ac6457f7c8a26f/debugpy-1.8.11-cp312-cp312-macosx_14_0_universal2.whl", hash = "sha256:84e511a7545d11683d32cdb8f809ef63fc17ea2a00455cc62d0a4dbb4ed1c308", size = 2498756 }, + { url = "https://files.pythonhosted.org/packages/b0/16/ec551789d547541a46831a19aa15c147741133da188e7e6acf77510545a7/debugpy-1.8.11-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ce291a5aca4985d82875d6779f61375e959208cdf09fcec40001e65fb0a54768", size = 4219136 }, + { url = "https://files.pythonhosted.org/packages/72/6f/b2b3ce673c55f882d27a6eb04a5f0c68bcad6b742ac08a86d8392ae58030/debugpy-1.8.11-cp312-cp312-win32.whl", hash = "sha256:28e45b3f827d3bf2592f3cf7ae63282e859f3259db44ed2b129093ca0ac7940b", size = 5224440 }, + { url = "https://files.pythonhosted.org/packages/77/09/b1f05be802c1caef5b3efc042fc6a7cadd13d8118b072afd04a9b9e91e06/debugpy-1.8.11-cp312-cp312-win_amd64.whl", hash = "sha256:44b1b8e6253bceada11f714acf4309ffb98bfa9ac55e4fce14f9e5d4484287a1", size = 5264578 }, + { url = "https://files.pythonhosted.org/packages/2e/66/931dc2479aa8fbf362dc6dcee707d895a84b0b2d7b64020135f20b8db1ed/debugpy-1.8.11-cp313-cp313-macosx_14_0_universal2.whl", hash = "sha256:8988f7163e4381b0da7696f37eec7aca19deb02e500245df68a7159739bbd0d3", size = 2483651 }, + { url = "https://files.pythonhosted.org/packages/10/07/6c171d0fe6b8d237e35598b742f20ba062511b3a4631938cc78eefbbf847/debugpy-1.8.11-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c1f6a173d1140e557347419767d2b14ac1c9cd847e0b4c5444c7f3144697e4e", size = 4213770 }, + { url = "https://files.pythonhosted.org/packages/89/f1/0711da6ac250d4fe3bf7b3e9b14b4a86e82a98b7825075c07e19bab8da3d/debugpy-1.8.11-cp313-cp313-win32.whl", hash = "sha256:bb3b15e25891f38da3ca0740271e63ab9db61f41d4d8541745cfc1824252cb28", size = 5223911 }, + { url = "https://files.pythonhosted.org/packages/56/98/5e27fa39050749ed460025bcd0034a0a5e78a580a14079b164cc3abdeb98/debugpy-1.8.11-cp313-cp313-win_amd64.whl", hash = "sha256:d8768edcbeb34da9e11bcb8b5c2e0958d25218df7a6e56adf415ef262cd7b6d1", size = 5264166 }, + { url = "https://files.pythonhosted.org/packages/77/0a/d29a5aacf47b4383ed569b8478c02d59ee3a01ad91224d2cff8562410e43/debugpy-1.8.11-py2.py3-none-any.whl", hash = "sha256:0e22f846f4211383e6a416d04b4c13ed174d24cc5d43f5fd52e7821d0ebc8920", size = 5226874 }, +] + +[[package]] +name = "decorator" +version = "5.1.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/66/0c/8d907af351aa16b42caae42f9d6aa37b900c67308052d10fdce809f8d952/decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330", size = 35016 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d5/50/83c593b07763e1161326b3b8c6686f0f4b0f24d5526546bee538c89837d6/decorator-5.1.1-py3-none-any.whl", hash = "sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186", size = 9073 }, +] + +[[package]] +name = "defusedxml" +version = "0.7.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/0f/d5/c66da9b79e5bdb124974bfe172b4daf3c984ebd9c2a06e2b8a4dc7331c72/defusedxml-0.7.1.tar.gz", hash = "sha256:1bb3032db185915b62d7c6209c5a8792be6a32ab2fedacc84e01b52c51aa3e69", size = 75520 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/07/6c/aa3f2f849e01cb6a001cd8554a88d4c77c5c1a31c95bdf1cf9301e6d9ef4/defusedxml-0.7.1-py2.py3-none-any.whl", hash = "sha256:a352e7e428770286cc899e2542b6cdaedb2b4953ff269a210103ec58f6198a61", size = 25604 }, +] + +[[package]] +name = "emcee" +version = "3.1.6" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "numpy" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/cb/53/1045ee878cb24281387079f8ee4f0ade1622c6aae1ed1fd91a53e4fa5b19/emcee-3.1.6.tar.gz", hash = "sha256:11af4daf6ab8f9ca69681e3c29054665db7bbd87fd4eb8e437d2c3a1248c637d", size = 2871117 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f9/ef/2196b9bf88ffa1bde45853c72df021fbd07a8fa91a0f59a22d14a050dc04/emcee-3.1.6-py2.py3-none-any.whl", hash = "sha256:f2d63752023bdccf744461450e512a5b417ae7d28f18e12acd76a33de87580cb", size = 47351 }, +] + +[[package]] +name = "exceptiongroup" +version = "1.2.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/09/35/2495c4ac46b980e4ca1f6ad6db102322ef3ad2410b79fdde159a4b0f3b92/exceptiongroup-1.2.2.tar.gz", hash = "sha256:47c2edf7c6738fafb49fd34290706d1a1a2f4d1c6df275526b62cbb4aa5393cc", size = 28883 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/02/cc/b7e31358aac6ed1ef2bb790a9746ac2c69bcb3c8588b41616914eb106eaf/exceptiongroup-1.2.2-py3-none-any.whl", hash = "sha256:3111b9d131c238bec2f8f516e123e14ba243563fb135d3fe885990585aa7795b", size = 16453 }, +] + +[[package]] +name = "executing" +version = "2.1.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/8c/e3/7d45f492c2c4a0e8e0fad57d081a7c8a0286cdd86372b070cca1ec0caa1e/executing-2.1.0.tar.gz", hash = "sha256:8ea27ddd260da8150fa5a708269c4a10e76161e2496ec3e587da9e3c0fe4b9ab", size = 977485 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/b5/fd/afcd0496feca3276f509df3dbd5dae726fcc756f1a08d9e25abe1733f962/executing-2.1.0-py2.py3-none-any.whl", hash = "sha256:8d63781349375b5ebccc3142f4b30350c0cd9c79f921cde38be2be4637e98eaf", size = 25805 }, +] + +[[package]] +name = "fastjsonschema" +version = "2.21.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/8b/50/4b769ce1ac4071a1ef6d86b1a3fb56cdc3a37615e8c5519e1af96cdac366/fastjsonschema-2.21.1.tar.gz", hash = "sha256:794d4f0a58f848961ba16af7b9c85a3e88cd360df008c59aac6fc5ae9323b5d4", size = 373939 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/90/2b/0817a2b257fe88725c25589d89aec060581aabf668707a8d03b2e9e0cb2a/fastjsonschema-2.21.1-py3-none-any.whl", hash = "sha256:c9e5b7e908310918cf494a434eeb31384dd84a98b57a30bcb1f535015b554667", size = 23924 }, +] + +[[package]] +name = "fonttools" +version = "4.55.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/76/61/a300d1574dc381393424047c0396a0e213db212e28361123af9830d71a8d/fonttools-4.55.3.tar.gz", hash = "sha256:3983313c2a04d6cc1fe9251f8fc647754cf49a61dac6cb1e7249ae67afaafc45", size = 3498155 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/bd/f3/9ac8c6705e4a0ff3c29e524df1caeee6f2987b02fb630129f21cc99a8212/fonttools-4.55.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:1dcc07934a2165ccdc3a5a608db56fb3c24b609658a5b340aee4ecf3ba679dc0", size = 2769857 }, + { url = "https://files.pythonhosted.org/packages/d8/24/e8b8edd280bdb7d0ecc88a5d952b1dec2ee2335be71cc5a33c64871cdfe8/fonttools-4.55.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:f7d66c15ba875432a2d2fb419523f5d3d347f91f48f57b8b08a2dfc3c39b8a3f", size = 2299705 }, + { url = "https://files.pythonhosted.org/packages/f8/9e/e1ba20bd3b71870207fd45ca3b90208a7edd8ae3b001081dc31c45adb017/fonttools-4.55.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:27e4ae3592e62eba83cd2c4ccd9462dcfa603ff78e09110680a5444c6925d841", size = 4576104 }, + { url = "https://files.pythonhosted.org/packages/34/db/d423bc646e6703fe3e6aea0edd22a2df47b9d188c5f7f1b49070be4d2205/fonttools-4.55.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:62d65a3022c35e404d19ca14f291c89cc5890032ff04f6c17af0bd1927299674", size = 4618282 }, + { url = "https://files.pythonhosted.org/packages/75/a0/e5062ac960a385b984ba74e7b55132e7f2c65e449e8330ab0f595407a3de/fonttools-4.55.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:d342e88764fb201286d185093781bf6628bbe380a913c24adf772d901baa8276", size = 4570539 }, + { url = "https://files.pythonhosted.org/packages/1f/33/0d744ff518ebe50020b63e5018b8b278efd6a930c1d2eedda7defc42153b/fonttools-4.55.3-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:dd68c87a2bfe37c5b33bcda0fba39b65a353876d3b9006fde3adae31f97b3ef5", size = 4742411 }, + { url = "https://files.pythonhosted.org/packages/7e/6c/2f768652dba6b801f1567fc5d1829cda369bcd6e95e315a91e628f91c702/fonttools-4.55.3-cp310-cp310-win32.whl", hash = "sha256:1bc7ad24ff98846282eef1cbeac05d013c2154f977a79886bb943015d2b1b261", size = 2175132 }, + { url = "https://files.pythonhosted.org/packages/19/d1/4dcd865360fb2c499749a913fe80e41c26e8ae18629d87dfffa3de27e831/fonttools-4.55.3-cp310-cp310-win_amd64.whl", hash = "sha256:b54baf65c52952db65df39fcd4820668d0ef4766c0ccdf32879b77f7c804d5c5", size = 2219430 }, + { url = "https://files.pythonhosted.org/packages/4b/18/14be25545600bd100e5b74a3ac39089b7c1cb403dc513b7ca348be3381bf/fonttools-4.55.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:8c4491699bad88efe95772543cd49870cf756b019ad56294f6498982408ab03e", size = 2771005 }, + { url = "https://files.pythonhosted.org/packages/b2/51/2e1a5d3871cd7c2ae2054b54e92604e7d6abc3fd3656e9583c399648fe1c/fonttools-4.55.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:5323a22eabddf4b24f66d26894f1229261021dacd9d29e89f7872dd8c63f0b8b", size = 2300654 }, + { url = "https://files.pythonhosted.org/packages/73/1a/50109bb2703bc6f774b52ea081db21edf2a9fa4b6d7485faadf9d1b997e9/fonttools-4.55.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5480673f599ad410695ca2ddef2dfefe9df779a9a5cda89503881e503c9c7d90", size = 4877541 }, + { url = "https://files.pythonhosted.org/packages/5d/52/c0b9857fa075da1b8806c5dc2d8342918a8cc2065fd14fbddb3303282693/fonttools-4.55.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:da9da6d65cd7aa6b0f806556f4985bcbf603bf0c5c590e61b43aa3e5a0f822d0", size = 4906304 }, + { url = "https://files.pythonhosted.org/packages/0b/1b/55f85c7e962d295e456d5209581c919620ee3e877b95cd86245187a5050f/fonttools-4.55.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:e894b5bd60d9f473bed7a8f506515549cc194de08064d829464088d23097331b", size = 4888087 }, + { url = "https://files.pythonhosted.org/packages/83/13/6f2809c612ea2ac51391f92468ff861c63473601530fca96458b453212bf/fonttools-4.55.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:aee3b57643827e237ff6ec6d28d9ff9766bd8b21e08cd13bff479e13d4b14765", size = 5056958 }, + { url = "https://files.pythonhosted.org/packages/c1/28/d0ea9e872fa4208b9dfca686e1dd9ca22f6c9ef33ecff2f0ebc2dbe7c29b/fonttools-4.55.3-cp311-cp311-win32.whl", hash = "sha256:eb6ca911c4c17eb51853143624d8dc87cdcdf12a711fc38bf5bd21521e79715f", size = 2173939 }, + { url = "https://files.pythonhosted.org/packages/be/36/d74ae1020bc41a1dff3e6f5a99f646563beecb97e386d27abdac3ba07650/fonttools-4.55.3-cp311-cp311-win_amd64.whl", hash = "sha256:6314bf82c54c53c71805318fcf6786d986461622dd926d92a465199ff54b1b72", size = 2220363 }, + { url = "https://files.pythonhosted.org/packages/89/58/fbcf5dff7e3ea844bb00c4d806ca1e339e1f2dce5529633bf4842c0c9a1f/fonttools-4.55.3-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:f9e736f60f4911061235603a6119e72053073a12c6d7904011df2d8fad2c0e35", size = 2765380 }, + { url = "https://files.pythonhosted.org/packages/81/dd/da6e329e51919b4f421c8738f3497e2ab08c168e76aaef7b6d5351862bdf/fonttools-4.55.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:7a8aa2c5e5b8b3bcb2e4538d929f6589a5c6bdb84fd16e2ed92649fb5454f11c", size = 2297940 }, + { url = "https://files.pythonhosted.org/packages/00/44/f5ee560858425c99ef07e04919e736db09d6416408e5a8d3bbfb4a6623fd/fonttools-4.55.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:07f8288aacf0a38d174445fc78377a97fb0b83cfe352a90c9d9c1400571963c7", size = 4793327 }, + { url = "https://files.pythonhosted.org/packages/24/da/0a001926d791c55e29ac3c52964957a20dbc1963615446b568b7432891c3/fonttools-4.55.3-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b8d5e8916c0970fbc0f6f1bece0063363bb5857a7f170121a4493e31c3db3314", size = 4865624 }, + { url = "https://files.pythonhosted.org/packages/3d/d8/1edd8b13a427a9fb6418373437caa586c0caa57f260af8e0548f4d11e340/fonttools-4.55.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:ae3b6600565b2d80b7c05acb8e24d2b26ac407b27a3f2e078229721ba5698427", size = 4774166 }, + { url = "https://files.pythonhosted.org/packages/9c/ec/ade054097976c3d6debc9032e09a351505a0196aa5493edf021be376f75e/fonttools-4.55.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:54153c49913f45065c8d9e6d0c101396725c5621c8aee744719300f79771d75a", size = 5001832 }, + { url = "https://files.pythonhosted.org/packages/e2/cd/233f0e31ad799bb91fc78099c8b4e5ec43b85a131688519640d6bae46f6a/fonttools-4.55.3-cp312-cp312-win32.whl", hash = "sha256:827e95fdbbd3e51f8b459af5ea10ecb4e30af50221ca103bea68218e9615de07", size = 2162228 }, + { url = "https://files.pythonhosted.org/packages/46/45/a498b5291f6c0d91b2394b1ed7447442a57d1c9b9cf8f439aee3c316a56e/fonttools-4.55.3-cp312-cp312-win_amd64.whl", hash = "sha256:e6e8766eeeb2de759e862004aa11a9ea3d6f6d5ec710551a88b476192b64fd54", size = 2209118 }, + { url = "https://files.pythonhosted.org/packages/9c/9f/00142a19bad96eeeb1aed93f567adc19b7f2c1af6f5bc0a1c3de90b4b1ac/fonttools-4.55.3-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:a430178ad3e650e695167cb53242dae3477b35c95bef6525b074d87493c4bf29", size = 2752812 }, + { url = "https://files.pythonhosted.org/packages/b0/20/14b8250d63ba65e162091fb0dda07730f90c303bbf5257e9ddacec7230d9/fonttools-4.55.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:529cef2ce91dc44f8e407cc567fae6e49a1786f2fefefa73a294704c415322a4", size = 2291521 }, + { url = "https://files.pythonhosted.org/packages/34/47/a681cfd10245eb74f65e491a934053ec75c4af639655446558f29818e45e/fonttools-4.55.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8e75f12c82127486fac2d8bfbf5bf058202f54bf4f158d367e41647b972342ca", size = 4770980 }, + { url = "https://files.pythonhosted.org/packages/d2/6c/a7066afc19db0705a12efd812e19c32cde2b9514eb714659522f2ebd60b6/fonttools-4.55.3-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:859c358ebf41db18fb72342d3080bce67c02b39e86b9fbcf1610cca14984841b", size = 4845534 }, + { url = "https://files.pythonhosted.org/packages/0c/a2/3c204fbabbfd845d9bdcab9ae35279d41e9a4bf5c80a0a2708f9c5a195d6/fonttools-4.55.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:546565028e244a701f73df6d8dd6be489d01617863ec0c6a42fa25bf45d43048", size = 4753910 }, + { url = "https://files.pythonhosted.org/packages/6e/8c/b4cb3592880340b89e4ef6601b531780bba73862332a6451d78fe135d6cb/fonttools-4.55.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:aca318b77f23523309eec4475d1fbbb00a6b133eb766a8bdc401faba91261abe", size = 4976411 }, + { url = "https://files.pythonhosted.org/packages/fc/a8/4bf98840ff89fcc188470b59daec57322178bf36d2f4f756cd19a42a826b/fonttools-4.55.3-cp313-cp313-win32.whl", hash = "sha256:8c5ec45428edaa7022f1c949a632a6f298edc7b481312fc7dc258921e9399628", size = 2160178 }, + { url = "https://files.pythonhosted.org/packages/e6/57/4cc35004605416df3225ff362f3455cf09765db00df578ae9e46d0fefd23/fonttools-4.55.3-cp313-cp313-win_amd64.whl", hash = "sha256:11e5de1ee0d95af4ae23c1a138b184b7f06e0b6abacabf1d0db41c90b03d834b", size = 2206102 }, + { url = "https://files.pythonhosted.org/packages/99/3b/406d17b1f63e04a82aa621936e6e1c53a8c05458abd66300ac85ea7f9ae9/fonttools-4.55.3-py3-none-any.whl", hash = "sha256:f412604ccbeee81b091b420272841e5ec5ef68967a9790e80bffd0e30b8e2977", size = 1111638 }, +] + +[[package]] +name = "fqdn" +version = "1.5.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/30/3e/a80a8c077fd798951169626cde3e239adeba7dab75deb3555716415bd9b0/fqdn-1.5.1.tar.gz", hash = "sha256:105ed3677e767fb5ca086a0c1f4bb66ebc3c100be518f0e0d755d9eae164d89f", size = 6015 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/cf/58/8acf1b3e91c58313ce5cb67df61001fc9dcd21be4fadb76c1a2d540e09ed/fqdn-1.5.1-py3-none-any.whl", hash = "sha256:3a179af3761e4df6eb2e026ff9e1a3033d3587bf980a0b1b2e1e5d08d7358014", size = 9121 }, +] + +[[package]] +name = "h11" +version = "0.14.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/f5/38/3af3d3633a34a3316095b39c8e8fb4853a28a536e55d347bd8d8e9a14b03/h11-0.14.0.tar.gz", hash = "sha256:8f19fbbe99e72420ff35c00b27a34cb9937e902a8b810e2c88300c6f0a3b699d", size = 100418 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/95/04/ff642e65ad6b90db43e668d70ffb6736436c7ce41fcc549f4e9472234127/h11-0.14.0-py3-none-any.whl", hash = "sha256:e3fe4ac4b851c468cc8363d500db52c2ead036020723024a109d37346efaa761", size = 58259 }, +] + +[[package]] +name = "httpcore" +version = "1.0.7" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "certifi" }, + { name = "h11" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/6a/41/d7d0a89eb493922c37d343b607bc1b5da7f5be7e383740b4753ad8943e90/httpcore-1.0.7.tar.gz", hash = "sha256:8551cb62a169ec7162ac7be8d4817d561f60e08eaa485234898414bb5a8a0b4c", size = 85196 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/87/f5/72347bc88306acb359581ac4d52f23c0ef445b57157adedb9aee0cd689d2/httpcore-1.0.7-py3-none-any.whl", hash = "sha256:a3fff8f43dc260d5bd363d9f9cf1830fa3a458b332856f34282de498ed420edd", size = 78551 }, +] + +[[package]] +name = "httpx" +version = "0.28.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "anyio" }, + { name = "certifi" }, + { name = "httpcore" }, + { name = "idna" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/b1/df/48c586a5fe32a0f01324ee087459e112ebb7224f646c0b5023f5e79e9956/httpx-0.28.1.tar.gz", hash = "sha256:75e98c5f16b0f35b567856f597f06ff2270a374470a5c2392242528e3e3e42fc", size = 141406 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/2a/39/e50c7c3a983047577ee07d2a9e53faf5a69493943ec3f6a384bdc792deb2/httpx-0.28.1-py3-none-any.whl", hash = "sha256:d909fcccc110f8c7faf814ca82a9a4d816bc5a6dbfea25d6591d6985b8ba59ad", size = 73517 }, +] + +[[package]] +name = "idna" +version = "3.10" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/f1/70/7703c29685631f5a7590aa73f1f1d3fa9a380e654b86af429e0934a32f7d/idna-3.10.tar.gz", hash = "sha256:12f65c9b470abda6dc35cf8e63cc574b1c52b11df2c86030af0ac09b01b13ea9", size = 190490 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/76/c6/c88e154df9c4e1a2a66ccf0005a88dfb2650c1dffb6f5ce603dfbd452ce3/idna-3.10-py3-none-any.whl", hash = "sha256:946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3", size = 70442 }, +] + +[[package]] +name = "iniconfig" +version = "2.0.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/d7/4b/cbd8e699e64a6f16ca3a8220661b5f83792b3017d0f79807cb8708d33913/iniconfig-2.0.0.tar.gz", hash = "sha256:2d91e135bf72d31a410b17c16da610a82cb55f6b0477d1a902134b24a455b8b3", size = 4646 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ef/a6/62565a6e1cf69e10f5727360368e451d4b7f58beeac6173dc9db836a5b46/iniconfig-2.0.0-py3-none-any.whl", hash = "sha256:b6a85871a79d2e3b22d2d1b94ac2824226a63c6b741c88f7ae975f18b6778374", size = 5892 }, +] + +[[package]] +name = "ipykernel" +version = "6.29.5" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "appnope", marker = "sys_platform == 'darwin'" }, + { name = "comm" }, + { name = "debugpy" }, + { name = "ipython" }, + { name = "jupyter-client" }, + { name = "jupyter-core" }, + { name = "matplotlib-inline" }, + { name = "nest-asyncio" }, + { name = "packaging" }, + { name = "psutil" }, + { name = "pyzmq" }, + { name = "tornado" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/e9/5c/67594cb0c7055dc50814b21731c22a601101ea3b1b50a9a1b090e11f5d0f/ipykernel-6.29.5.tar.gz", hash = "sha256:f093a22c4a40f8828f8e330a9c297cb93dcab13bd9678ded6de8e5cf81c56215", size = 163367 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/94/5c/368ae6c01c7628438358e6d337c19b05425727fbb221d2a3c4303c372f42/ipykernel-6.29.5-py3-none-any.whl", hash = "sha256:afdb66ba5aa354b09b91379bac28ae4afebbb30e8b39510c9690afb7a10421b5", size = 117173 }, +] + +[[package]] +name = "ipython" +version = "8.31.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "colorama", marker = "sys_platform == 'win32'" }, + { name = "decorator" }, + { name = "exceptiongroup", marker = "python_full_version < '3.11'" }, + { name = "jedi" }, + { name = "matplotlib-inline" }, + { name = "pexpect", marker = "sys_platform != 'emscripten' and sys_platform != 'win32'" }, + { name = "prompt-toolkit" }, + { name = "pygments" }, + { name = "stack-data" }, + { name = "traitlets" }, + { name = "typing-extensions", marker = "python_full_version < '3.12'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/01/35/6f90fdddff7a08b7b715fccbd2427b5212c9525cd043d26fdc45bee0708d/ipython-8.31.0.tar.gz", hash = "sha256:b6a2274606bec6166405ff05e54932ed6e5cfecaca1fc05f2cacde7bb074d70b", size = 5501011 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/04/60/d0feb6b6d9fe4ab89fe8fe5b47cbf6cd936bfd9f1e7ffa9d0015425aeed6/ipython-8.31.0-py3-none-any.whl", hash = "sha256:46ec58f8d3d076a61d128fe517a51eb730e3aaf0c184ea8c17d16e366660c6a6", size = 821583 }, +] + +[[package]] +name = "isoduration" +version = "20.11.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "arrow" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/7c/1a/3c8edc664e06e6bd06cce40c6b22da5f1429aa4224d0c590f3be21c91ead/isoduration-20.11.0.tar.gz", hash = "sha256:ac2f9015137935279eac671f94f89eb00584f940f5dc49462a0c4ee692ba1bd9", size = 11649 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/7b/55/e5326141505c5d5e34c5e0935d2908a74e4561eca44108fbfb9c13d2911a/isoduration-20.11.0-py3-none-any.whl", hash = "sha256:b2904c2a4228c3d44f409c8ae8e2370eb21a26f7ac2ec5446df141dde3452042", size = 11321 }, +] + +[[package]] +name = "jedi" +version = "0.19.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "parso" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/72/3a/79a912fbd4d8dd6fbb02bf69afd3bb72cf0c729bb3063c6f4498603db17a/jedi-0.19.2.tar.gz", hash = "sha256:4770dc3de41bde3966b02eb84fbcf557fb33cce26ad23da12c742fb50ecb11f0", size = 1231287 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/c0/5a/9cac0c82afec3d09ccd97c8b6502d48f165f9124db81b4bcb90b4af974ee/jedi-0.19.2-py2.py3-none-any.whl", hash = "sha256:a8ef22bde8490f57fe5c7681a3c83cb58874daf72b4784de3cce5b6ef6edb5b9", size = 1572278 }, +] + +[[package]] +name = "jinja2" +version = "3.1.5" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "markupsafe" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/af/92/b3130cbbf5591acf9ade8708c365f3238046ac7cb8ccba6e81abccb0ccff/jinja2-3.1.5.tar.gz", hash = "sha256:8fefff8dc3034e27bb80d67c671eb8a9bc424c0ef4c0826edbff304cceff43bb", size = 244674 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/bd/0f/2ba5fbcd631e3e88689309dbe978c5769e883e4b84ebfe7da30b43275c5a/jinja2-3.1.5-py3-none-any.whl", hash = "sha256:aba0f4dc9ed8013c424088f68a5c226f7d6097ed89b246d7749c2ec4175c6adb", size = 134596 }, +] + +[[package]] +name = "json5" +version = "0.10.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/85/3d/bbe62f3d0c05a689c711cff57b2e3ac3d3e526380adb7c781989f075115c/json5-0.10.0.tar.gz", hash = "sha256:e66941c8f0a02026943c52c2eb34ebeb2a6f819a0be05920a6f5243cd30fd559", size = 48202 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/aa/42/797895b952b682c3dafe23b1834507ee7f02f4d6299b65aaa61425763278/json5-0.10.0-py3-none-any.whl", hash = "sha256:19b23410220a7271e8377f81ba8aacba2fdd56947fbb137ee5977cbe1f5e8dfa", size = 34049 }, +] + +[[package]] +name = "jsonpointer" +version = "3.0.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/6a/0a/eebeb1fa92507ea94016a2a790b93c2ae41a7e18778f85471dc54475ed25/jsonpointer-3.0.0.tar.gz", hash = "sha256:2b2d729f2091522d61c3b31f82e11870f60b68f43fbc705cb76bf4b832af59ef", size = 9114 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/71/92/5e77f98553e9e75130c78900d000368476aed74276eb8ae8796f65f00918/jsonpointer-3.0.0-py2.py3-none-any.whl", hash = "sha256:13e088adc14fca8b6aa8177c044e12701e6ad4b28ff10e65f2267a90109c9942", size = 7595 }, +] + +[[package]] +name = "jsonschema" +version = "4.23.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "attrs" }, + { name = "jsonschema-specifications" }, + { name = "referencing" }, + { name = "rpds-py" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/38/2e/03362ee4034a4c917f697890ccd4aec0800ccf9ded7f511971c75451deec/jsonschema-4.23.0.tar.gz", hash = "sha256:d71497fef26351a33265337fa77ffeb82423f3ea21283cd9467bb03999266bc4", size = 325778 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/69/4a/4f9dbeb84e8850557c02365a0eee0649abe5eb1d84af92a25731c6c0f922/jsonschema-4.23.0-py3-none-any.whl", hash = "sha256:fbadb6f8b144a8f8cf9f0b89ba94501d143e50411a1278633f56a7acf7fd5566", size = 88462 }, +] + +[package.optional-dependencies] +format-nongpl = [ + { name = "fqdn" }, + { name = "idna" }, + { name = "isoduration" }, + { name = "jsonpointer" }, + { name = "rfc3339-validator" }, + { name = "rfc3986-validator" }, + { name = "uri-template" }, + { name = "webcolors" }, +] + +[[package]] +name = "jsonschema-specifications" +version = "2024.10.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "referencing" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/10/db/58f950c996c793472e336ff3655b13fbcf1e3b359dcf52dcf3ed3b52c352/jsonschema_specifications-2024.10.1.tar.gz", hash = "sha256:0f38b83639958ce1152d02a7f062902c41c8fd20d558b0c34344292d417ae272", size = 15561 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d1/0f/8910b19ac0670a0f80ce1008e5e751c4a57e14d2c4c13a482aa6079fa9d6/jsonschema_specifications-2024.10.1-py3-none-any.whl", hash = "sha256:a09a0680616357d9a0ecf05c12ad234479f549239d0f5b55f3deea67475da9bf", size = 18459 }, +] + +[[package]] +name = "jupyter-client" +version = "8.6.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "jupyter-core" }, + { name = "python-dateutil" }, + { name = "pyzmq" }, + { name = "tornado" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/71/22/bf9f12fdaeae18019a468b68952a60fe6dbab5d67cd2a103cac7659b41ca/jupyter_client-8.6.3.tar.gz", hash = "sha256:35b3a0947c4a6e9d589eb97d7d4cd5e90f910ee73101611f01283732bd6d9419", size = 342019 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/11/85/b0394e0b6fcccd2c1eeefc230978a6f8cb0c5df1e4cd3e7625735a0d7d1e/jupyter_client-8.6.3-py3-none-any.whl", hash = "sha256:e8a19cc986cc45905ac3362915f410f3af85424b4c0905e94fa5f2cb08e8f23f", size = 106105 }, +] + +[[package]] +name = "jupyter-core" +version = "5.7.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "platformdirs" }, + { name = "pywin32", marker = "platform_python_implementation != 'PyPy' and sys_platform == 'win32'" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/00/11/b56381fa6c3f4cc5d2cf54a7dbf98ad9aa0b339ef7a601d6053538b079a7/jupyter_core-5.7.2.tar.gz", hash = "sha256:aa5f8d32bbf6b431ac830496da7392035d6f61b4f54872f15c4bd2a9c3f536d9", size = 87629 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/c9/fb/108ecd1fe961941959ad0ee4e12ee7b8b1477247f30b1fdfd83ceaf017f0/jupyter_core-5.7.2-py3-none-any.whl", hash = "sha256:4f7315d2f6b4bcf2e3e7cb6e46772eba760ae459cd1f59d29eb57b0a01bd7409", size = 28965 }, +] + +[[package]] +name = "jupyter-events" +version = "0.11.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "jsonschema", extra = ["format-nongpl"] }, + { name = "python-json-logger" }, + { name = "pyyaml" }, + { name = "referencing" }, + { name = "rfc3339-validator" }, + { name = "rfc3986-validator" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/f4/65/5791c8a979b5646ca29ea50e42b6708908b789f7ff389d1a03c1b93a1c54/jupyter_events-0.11.0.tar.gz", hash = "sha256:c0bc56a37aac29c1fbc3bcfbddb8c8c49533f9cf11f1c4e6adadba936574ab90", size = 62039 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/3f/8c/9b65cb2cd4ea32d885993d5542244641590530836802a2e8c7449a4c61c9/jupyter_events-0.11.0-py3-none-any.whl", hash = "sha256:36399b41ce1ca45fe8b8271067d6a140ffa54cec4028e95491c93b78a855cacf", size = 19423 }, +] + +[[package]] +name = "jupyter-lsp" +version = "2.2.5" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "jupyter-server" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/85/b4/3200b0b09c12bc3b72d943d923323c398eff382d1dcc7c0dbc8b74630e40/jupyter-lsp-2.2.5.tar.gz", hash = "sha256:793147a05ad446f809fd53ef1cd19a9f5256fd0a2d6b7ce943a982cb4f545001", size = 48741 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/07/e0/7bd7cff65594fd9936e2f9385701e44574fc7d721331ff676ce440b14100/jupyter_lsp-2.2.5-py3-none-any.whl", hash = "sha256:45fbddbd505f3fbfb0b6cb2f1bc5e15e83ab7c79cd6e89416b248cb3c00c11da", size = 69146 }, +] + +[[package]] +name = "jupyter-server" +version = "2.15.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "anyio" }, + { name = "argon2-cffi" }, + { name = "jinja2" }, + { name = "jupyter-client" }, + { name = "jupyter-core" }, + { name = "jupyter-events" }, + { name = "jupyter-server-terminals" }, + { name = "nbconvert" }, + { name = "nbformat" }, + { name = "overrides" }, + { name = "packaging" }, + { name = "prometheus-client" }, + { name = "pywinpty", marker = "os_name == 'nt'" }, + { name = "pyzmq" }, + { name = "send2trash" }, + { name = "terminado" }, + { name = "tornado" }, + { name = "traitlets" }, + { name = "websocket-client" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/61/8c/df09d4ab646141f130f9977b32b206ba8615d1969b2eba6a2e84b7f89137/jupyter_server-2.15.0.tar.gz", hash = "sha256:9d446b8697b4f7337a1b7cdcac40778babdd93ba614b6d68ab1c0c918f1c4084", size = 725227 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e2/a2/89eeaf0bb954a123a909859fa507fa86f96eb61b62dc30667b60dbd5fdaf/jupyter_server-2.15.0-py3-none-any.whl", hash = "sha256:872d989becf83517012ee669f09604aa4a28097c0bd90b2f424310156c2cdae3", size = 385826 }, +] + +[[package]] +name = "jupyter-server-terminals" +version = "0.5.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "pywinpty", marker = "os_name == 'nt'" }, + { name = "terminado" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/fc/d5/562469734f476159e99a55426d697cbf8e7eb5efe89fb0e0b4f83a3d3459/jupyter_server_terminals-0.5.3.tar.gz", hash = "sha256:5ae0295167220e9ace0edcfdb212afd2b01ee8d179fe6f23c899590e9b8a5269", size = 31430 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/07/2d/2b32cdbe8d2a602f697a649798554e4f072115438e92249624e532e8aca6/jupyter_server_terminals-0.5.3-py3-none-any.whl", hash = "sha256:41ee0d7dc0ebf2809c668e0fc726dfaf258fcd3e769568996ca731b6194ae9aa", size = 13656 }, +] + +[[package]] +name = "jupyterlab" +version = "4.3.4" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "async-lru" }, + { name = "httpx" }, + { name = "ipykernel" }, + { name = "jinja2" }, + { name = "jupyter-core" }, + { name = "jupyter-lsp" }, + { name = "jupyter-server" }, + { name = "jupyterlab-server" }, + { name = "notebook-shim" }, + { name = "packaging" }, + { name = "setuptools" }, + { name = "tomli", marker = "python_full_version < '3.11'" }, + { name = "tornado" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/a7/45/1052f842e066902b1d78126df7e2269b1b9408991e1344e167b2e429f9e1/jupyterlab-4.3.4.tar.gz", hash = "sha256:f0bb9b09a04766e3423cccc2fc23169aa2ffedcdf8713e9e0fb33cac0b6859d0", size = 21797583 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/61/48/af57263e53cfc220e522de047aa0993f53bab734fe812af1e03e33ac6d7c/jupyterlab-4.3.4-py3-none-any.whl", hash = "sha256:b754c2601c5be6adf87cb5a1d8495d653ffb945f021939f77776acaa94dae952", size = 11665373 }, +] + +[[package]] +name = "jupyterlab-pygments" +version = "0.3.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/90/51/9187be60d989df97f5f0aba133fa54e7300f17616e065d1ada7d7646b6d6/jupyterlab_pygments-0.3.0.tar.gz", hash = "sha256:721aca4d9029252b11cfa9d185e5b5af4d54772bb8072f9b7036f4170054d35d", size = 512900 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/b1/dd/ead9d8ea85bf202d90cc513b533f9c363121c7792674f78e0d8a854b63b4/jupyterlab_pygments-0.3.0-py3-none-any.whl", hash = "sha256:841a89020971da1d8693f1a99997aefc5dc424bb1b251fd6322462a1b8842780", size = 15884 }, +] + +[[package]] +name = "jupyterlab-server" +version = "2.27.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "babel" }, + { name = "jinja2" }, + { name = "json5" }, + { name = "jsonschema" }, + { name = "jupyter-server" }, + { name = "packaging" }, + { name = "requests" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/0a/c9/a883ce65eb27905ce77ace410d83587c82ea64dc85a48d1f7ed52bcfa68d/jupyterlab_server-2.27.3.tar.gz", hash = "sha256:eb36caca59e74471988f0ae25c77945610b887f777255aa21f8065def9e51ed4", size = 76173 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/54/09/2032e7d15c544a0e3cd831c51d77a8ca57f7555b2e1b2922142eddb02a84/jupyterlab_server-2.27.3-py3-none-any.whl", hash = "sha256:e697488f66c3db49df675158a77b3b017520d772c6e1548c7d9bcc5df7944ee4", size = 59700 }, +] + +[[package]] +name = "kiwisolver" +version = "1.4.8" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/82/59/7c91426a8ac292e1cdd53a63b6d9439abd573c875c3f92c146767dd33faf/kiwisolver-1.4.8.tar.gz", hash = "sha256:23d5f023bdc8c7e54eb65f03ca5d5bb25b601eac4d7f1a042888a1f45237987e", size = 97538 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/47/5f/4d8e9e852d98ecd26cdf8eaf7ed8bc33174033bba5e07001b289f07308fd/kiwisolver-1.4.8-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:88c6f252f6816a73b1f8c904f7bbe02fd67c09a69f7cb8a0eecdbf5ce78e63db", size = 124623 }, + { url = "https://files.pythonhosted.org/packages/1d/70/7f5af2a18a76fe92ea14675f8bd88ce53ee79e37900fa5f1a1d8e0b42998/kiwisolver-1.4.8-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c72941acb7b67138f35b879bbe85be0f6c6a70cab78fe3ef6db9c024d9223e5b", size = 66720 }, + { url = "https://files.pythonhosted.org/packages/c6/13/e15f804a142353aefd089fadc8f1d985561a15358c97aca27b0979cb0785/kiwisolver-1.4.8-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ce2cf1e5688edcb727fdf7cd1bbd0b6416758996826a8be1d958f91880d0809d", size = 65413 }, + { url = "https://files.pythonhosted.org/packages/ce/6d/67d36c4d2054e83fb875c6b59d0809d5c530de8148846b1370475eeeece9/kiwisolver-1.4.8-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:c8bf637892dc6e6aad2bc6d4d69d08764166e5e3f69d469e55427b6ac001b19d", size = 1650826 }, + { url = "https://files.pythonhosted.org/packages/de/c6/7b9bb8044e150d4d1558423a1568e4f227193662a02231064e3824f37e0a/kiwisolver-1.4.8-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:034d2c891f76bd3edbdb3ea11140d8510dca675443da7304205a2eaa45d8334c", size = 1628231 }, + { url = "https://files.pythonhosted.org/packages/b6/38/ad10d437563063eaaedbe2c3540a71101fc7fb07a7e71f855e93ea4de605/kiwisolver-1.4.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d47b28d1dfe0793d5e96bce90835e17edf9a499b53969b03c6c47ea5985844c3", size = 1408938 }, + { url = "https://files.pythonhosted.org/packages/52/ce/c0106b3bd7f9e665c5f5bc1e07cc95b5dabd4e08e3dad42dbe2faad467e7/kiwisolver-1.4.8-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eb158fe28ca0c29f2260cca8c43005329ad58452c36f0edf298204de32a9a3ed", size = 1422799 }, + { url = "https://files.pythonhosted.org/packages/d0/87/efb704b1d75dc9758087ba374c0f23d3254505edaedd09cf9d247f7878b9/kiwisolver-1.4.8-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d5536185fce131780ebd809f8e623bf4030ce1b161353166c49a3c74c287897f", size = 1354362 }, + { url = "https://files.pythonhosted.org/packages/eb/b3/fd760dc214ec9a8f208b99e42e8f0130ff4b384eca8b29dd0efc62052176/kiwisolver-1.4.8-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:369b75d40abedc1da2c1f4de13f3482cb99e3237b38726710f4a793432b1c5ff", size = 2222695 }, + { url = "https://files.pythonhosted.org/packages/a2/09/a27fb36cca3fc01700687cc45dae7a6a5f8eeb5f657b9f710f788748e10d/kiwisolver-1.4.8-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:641f2ddf9358c80faa22e22eb4c9f54bd3f0e442e038728f500e3b978d00aa7d", size = 2370802 }, + { url = "https://files.pythonhosted.org/packages/3d/c3/ba0a0346db35fe4dc1f2f2cf8b99362fbb922d7562e5f911f7ce7a7b60fa/kiwisolver-1.4.8-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:d561d2d8883e0819445cfe58d7ddd673e4015c3c57261d7bdcd3710d0d14005c", size = 2334646 }, + { url = "https://files.pythonhosted.org/packages/41/52/942cf69e562f5ed253ac67d5c92a693745f0bed3c81f49fc0cbebe4d6b00/kiwisolver-1.4.8-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:1732e065704b47c9afca7ffa272f845300a4eb959276bf6970dc07265e73b605", size = 2467260 }, + { url = "https://files.pythonhosted.org/packages/32/26/2d9668f30d8a494b0411d4d7d4ea1345ba12deb6a75274d58dd6ea01e951/kiwisolver-1.4.8-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:bcb1ebc3547619c3b58a39e2448af089ea2ef44b37988caf432447374941574e", size = 2288633 }, + { url = "https://files.pythonhosted.org/packages/98/99/0dd05071654aa44fe5d5e350729961e7bb535372935a45ac89a8924316e6/kiwisolver-1.4.8-cp310-cp310-win_amd64.whl", hash = "sha256:89c107041f7b27844179ea9c85d6da275aa55ecf28413e87624d033cf1f6b751", size = 71885 }, + { url = "https://files.pythonhosted.org/packages/6c/fc/822e532262a97442989335394d441cd1d0448c2e46d26d3e04efca84df22/kiwisolver-1.4.8-cp310-cp310-win_arm64.whl", hash = "sha256:b5773efa2be9eb9fcf5415ea3ab70fc785d598729fd6057bea38d539ead28271", size = 65175 }, + { url = "https://files.pythonhosted.org/packages/da/ed/c913ee28936c371418cb167b128066ffb20bbf37771eecc2c97edf8a6e4c/kiwisolver-1.4.8-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:a4d3601908c560bdf880f07d94f31d734afd1bb71e96585cace0e38ef44c6d84", size = 124635 }, + { url = "https://files.pythonhosted.org/packages/4c/45/4a7f896f7467aaf5f56ef093d1f329346f3b594e77c6a3c327b2d415f521/kiwisolver-1.4.8-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:856b269c4d28a5c0d5e6c1955ec36ebfd1651ac00e1ce0afa3e28da95293b561", size = 66717 }, + { url = "https://files.pythonhosted.org/packages/5f/b4/c12b3ac0852a3a68f94598d4c8d569f55361beef6159dce4e7b624160da2/kiwisolver-1.4.8-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c2b9a96e0f326205af81a15718a9073328df1173a2619a68553decb7097fd5d7", size = 65413 }, + { url = "https://files.pythonhosted.org/packages/a9/98/1df4089b1ed23d83d410adfdc5947245c753bddfbe06541c4aae330e9e70/kiwisolver-1.4.8-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c5020c83e8553f770cb3b5fc13faac40f17e0b205bd237aebd21d53d733adb03", size = 1343994 }, + { url = "https://files.pythonhosted.org/packages/8d/bf/b4b169b050c8421a7c53ea1ea74e4ef9c335ee9013216c558a047f162d20/kiwisolver-1.4.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dace81d28c787956bfbfbbfd72fdcef014f37d9b48830829e488fdb32b49d954", size = 1434804 }, + { url = "https://files.pythonhosted.org/packages/66/5a/e13bd341fbcf73325ea60fdc8af752addf75c5079867af2e04cc41f34434/kiwisolver-1.4.8-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:11e1022b524bd48ae56c9b4f9296bce77e15a2e42a502cceba602f804b32bb79", size = 1450690 }, + { url = "https://files.pythonhosted.org/packages/9b/4f/5955dcb376ba4a830384cc6fab7d7547bd6759fe75a09564910e9e3bb8ea/kiwisolver-1.4.8-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3b9b4d2892fefc886f30301cdd80debd8bb01ecdf165a449eb6e78f79f0fabd6", size = 1376839 }, + { url = "https://files.pythonhosted.org/packages/3a/97/5edbed69a9d0caa2e4aa616ae7df8127e10f6586940aa683a496c2c280b9/kiwisolver-1.4.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3a96c0e790ee875d65e340ab383700e2b4891677b7fcd30a699146f9384a2bb0", size = 1435109 }, + { url = "https://files.pythonhosted.org/packages/13/fc/e756382cb64e556af6c1809a1bbb22c141bbc2445049f2da06b420fe52bf/kiwisolver-1.4.8-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:23454ff084b07ac54ca8be535f4174170c1094a4cff78fbae4f73a4bcc0d4dab", size = 2245269 }, + { url = "https://files.pythonhosted.org/packages/76/15/e59e45829d7f41c776d138245cabae6515cb4eb44b418f6d4109c478b481/kiwisolver-1.4.8-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:87b287251ad6488e95b4f0b4a79a6d04d3ea35fde6340eb38fbd1ca9cd35bbbc", size = 2393468 }, + { url = "https://files.pythonhosted.org/packages/e9/39/483558c2a913ab8384d6e4b66a932406f87c95a6080112433da5ed668559/kiwisolver-1.4.8-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:b21dbe165081142b1232a240fc6383fd32cdd877ca6cc89eab93e5f5883e1c25", size = 2355394 }, + { url = "https://files.pythonhosted.org/packages/01/aa/efad1fbca6570a161d29224f14b082960c7e08268a133fe5dc0f6906820e/kiwisolver-1.4.8-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:768cade2c2df13db52475bd28d3a3fac8c9eff04b0e9e2fda0f3760f20b3f7fc", size = 2490901 }, + { url = "https://files.pythonhosted.org/packages/c9/4f/15988966ba46bcd5ab9d0c8296914436720dd67fca689ae1a75b4ec1c72f/kiwisolver-1.4.8-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:d47cfb2650f0e103d4bf68b0b5804c68da97272c84bb12850d877a95c056bd67", size = 2312306 }, + { url = "https://files.pythonhosted.org/packages/2d/27/bdf1c769c83f74d98cbc34483a972f221440703054894a37d174fba8aa68/kiwisolver-1.4.8-cp311-cp311-win_amd64.whl", hash = "sha256:ed33ca2002a779a2e20eeb06aea7721b6e47f2d4b8a8ece979d8ba9e2a167e34", size = 71966 }, + { url = "https://files.pythonhosted.org/packages/4a/c9/9642ea855604aeb2968a8e145fc662edf61db7632ad2e4fb92424be6b6c0/kiwisolver-1.4.8-cp311-cp311-win_arm64.whl", hash = "sha256:16523b40aab60426ffdebe33ac374457cf62863e330a90a0383639ce14bf44b2", size = 65311 }, + { url = "https://files.pythonhosted.org/packages/fc/aa/cea685c4ab647f349c3bc92d2daf7ae34c8e8cf405a6dcd3a497f58a2ac3/kiwisolver-1.4.8-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:d6af5e8815fd02997cb6ad9bbed0ee1e60014438ee1a5c2444c96f87b8843502", size = 124152 }, + { url = "https://files.pythonhosted.org/packages/c5/0b/8db6d2e2452d60d5ebc4ce4b204feeb16176a851fd42462f66ade6808084/kiwisolver-1.4.8-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:bade438f86e21d91e0cf5dd7c0ed00cda0f77c8c1616bd83f9fc157fa6760d31", size = 66555 }, + { url = "https://files.pythonhosted.org/packages/60/26/d6a0db6785dd35d3ba5bf2b2df0aedc5af089962c6eb2cbf67a15b81369e/kiwisolver-1.4.8-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:b83dc6769ddbc57613280118fb4ce3cd08899cc3369f7d0e0fab518a7cf37fdb", size = 65067 }, + { url = "https://files.pythonhosted.org/packages/c9/ed/1d97f7e3561e09757a196231edccc1bcf59d55ddccefa2afc9c615abd8e0/kiwisolver-1.4.8-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:111793b232842991be367ed828076b03d96202c19221b5ebab421ce8bcad016f", size = 1378443 }, + { url = "https://files.pythonhosted.org/packages/29/61/39d30b99954e6b46f760e6289c12fede2ab96a254c443639052d1b573fbc/kiwisolver-1.4.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:257af1622860e51b1a9d0ce387bf5c2c4f36a90594cb9514f55b074bcc787cfc", size = 1472728 }, + { url = "https://files.pythonhosted.org/packages/0c/3e/804163b932f7603ef256e4a715e5843a9600802bb23a68b4e08c8c0ff61d/kiwisolver-1.4.8-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:69b5637c3f316cab1ec1c9a12b8c5f4750a4c4b71af9157645bf32830e39c03a", size = 1478388 }, + { url = "https://files.pythonhosted.org/packages/8a/9e/60eaa75169a154700be74f875a4d9961b11ba048bef315fbe89cb6999056/kiwisolver-1.4.8-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:782bb86f245ec18009890e7cb8d13a5ef54dcf2ebe18ed65f795e635a96a1c6a", size = 1413849 }, + { url = "https://files.pythonhosted.org/packages/bc/b3/9458adb9472e61a998c8c4d95cfdfec91c73c53a375b30b1428310f923e4/kiwisolver-1.4.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cc978a80a0db3a66d25767b03688f1147a69e6237175c0f4ffffaaedf744055a", size = 1475533 }, + { url = "https://files.pythonhosted.org/packages/e4/7a/0a42d9571e35798de80aef4bb43a9b672aa7f8e58643d7bd1950398ffb0a/kiwisolver-1.4.8-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:36dbbfd34838500a31f52c9786990d00150860e46cd5041386f217101350f0d3", size = 2268898 }, + { url = "https://files.pythonhosted.org/packages/d9/07/1255dc8d80271400126ed8db35a1795b1a2c098ac3a72645075d06fe5c5d/kiwisolver-1.4.8-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:eaa973f1e05131de5ff3569bbba7f5fd07ea0595d3870ed4a526d486fe57fa1b", size = 2425605 }, + { url = "https://files.pythonhosted.org/packages/84/df/5a3b4cf13780ef6f6942df67b138b03b7e79e9f1f08f57c49957d5867f6e/kiwisolver-1.4.8-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:a66f60f8d0c87ab7f59b6fb80e642ebb29fec354a4dfad687ca4092ae69d04f4", size = 2375801 }, + { url = "https://files.pythonhosted.org/packages/8f/10/2348d068e8b0f635c8c86892788dac7a6b5c0cb12356620ab575775aad89/kiwisolver-1.4.8-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:858416b7fb777a53f0c59ca08190ce24e9abbd3cffa18886a5781b8e3e26f65d", size = 2520077 }, + { url = "https://files.pythonhosted.org/packages/32/d8/014b89fee5d4dce157d814303b0fce4d31385a2af4c41fed194b173b81ac/kiwisolver-1.4.8-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:085940635c62697391baafaaeabdf3dd7a6c3643577dde337f4d66eba021b2b8", size = 2338410 }, + { url = "https://files.pythonhosted.org/packages/bd/72/dfff0cc97f2a0776e1c9eb5bef1ddfd45f46246c6533b0191887a427bca5/kiwisolver-1.4.8-cp312-cp312-win_amd64.whl", hash = "sha256:01c3d31902c7db5fb6182832713d3b4122ad9317c2c5877d0539227d96bb2e50", size = 71853 }, + { url = "https://files.pythonhosted.org/packages/dc/85/220d13d914485c0948a00f0b9eb419efaf6da81b7d72e88ce2391f7aed8d/kiwisolver-1.4.8-cp312-cp312-win_arm64.whl", hash = "sha256:a3c44cb68861de93f0c4a8175fbaa691f0aa22550c331fefef02b618a9dcb476", size = 65424 }, + { url = "https://files.pythonhosted.org/packages/79/b3/e62464a652f4f8cd9006e13d07abad844a47df1e6537f73ddfbf1bc997ec/kiwisolver-1.4.8-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:1c8ceb754339793c24aee1c9fb2485b5b1f5bb1c2c214ff13368431e51fc9a09", size = 124156 }, + { url = "https://files.pythonhosted.org/packages/8d/2d/f13d06998b546a2ad4f48607a146e045bbe48030774de29f90bdc573df15/kiwisolver-1.4.8-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:54a62808ac74b5e55a04a408cda6156f986cefbcf0ada13572696b507cc92fa1", size = 66555 }, + { url = "https://files.pythonhosted.org/packages/59/e3/b8bd14b0a54998a9fd1e8da591c60998dc003618cb19a3f94cb233ec1511/kiwisolver-1.4.8-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:68269e60ee4929893aad82666821aaacbd455284124817af45c11e50a4b42e3c", size = 65071 }, + { url = "https://files.pythonhosted.org/packages/f0/1c/6c86f6d85ffe4d0ce04228d976f00674f1df5dc893bf2dd4f1928748f187/kiwisolver-1.4.8-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:34d142fba9c464bc3bbfeff15c96eab0e7310343d6aefb62a79d51421fcc5f1b", size = 1378053 }, + { url = "https://files.pythonhosted.org/packages/4e/b9/1c6e9f6dcb103ac5cf87cb695845f5fa71379021500153566d8a8a9fc291/kiwisolver-1.4.8-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3ddc373e0eef45b59197de815b1b28ef89ae3955e7722cc9710fb91cd77b7f47", size = 1472278 }, + { url = "https://files.pythonhosted.org/packages/ee/81/aca1eb176de671f8bda479b11acdc42c132b61a2ac861c883907dde6debb/kiwisolver-1.4.8-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:77e6f57a20b9bd4e1e2cedda4d0b986ebd0216236f0106e55c28aea3d3d69b16", size = 1478139 }, + { url = "https://files.pythonhosted.org/packages/49/f4/e081522473671c97b2687d380e9e4c26f748a86363ce5af48b4a28e48d06/kiwisolver-1.4.8-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:08e77738ed7538f036cd1170cbed942ef749137b1311fa2bbe2a7fda2f6bf3cc", size = 1413517 }, + { url = "https://files.pythonhosted.org/packages/8f/e9/6a7d025d8da8c4931522922cd706105aa32b3291d1add8c5427cdcd66e63/kiwisolver-1.4.8-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a5ce1e481a74b44dd5e92ff03ea0cb371ae7a0268318e202be06c8f04f4f1246", size = 1474952 }, + { url = "https://files.pythonhosted.org/packages/82/13/13fa685ae167bee5d94b415991c4fc7bb0a1b6ebea6e753a87044b209678/kiwisolver-1.4.8-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:fc2ace710ba7c1dfd1a3b42530b62b9ceed115f19a1656adefce7b1782a37794", size = 2269132 }, + { url = "https://files.pythonhosted.org/packages/ef/92/bb7c9395489b99a6cb41d502d3686bac692586db2045adc19e45ee64ed23/kiwisolver-1.4.8-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:3452046c37c7692bd52b0e752b87954ef86ee2224e624ef7ce6cb21e8c41cc1b", size = 2425997 }, + { url = "https://files.pythonhosted.org/packages/ed/12/87f0e9271e2b63d35d0d8524954145837dd1a6c15b62a2d8c1ebe0f182b4/kiwisolver-1.4.8-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:7e9a60b50fe8b2ec6f448fe8d81b07e40141bfced7f896309df271a0b92f80f3", size = 2376060 }, + { url = "https://files.pythonhosted.org/packages/02/6e/c8af39288edbce8bf0fa35dee427b082758a4b71e9c91ef18fa667782138/kiwisolver-1.4.8-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:918139571133f366e8362fa4a297aeba86c7816b7ecf0bc79168080e2bd79957", size = 2520471 }, + { url = "https://files.pythonhosted.org/packages/13/78/df381bc7b26e535c91469f77f16adcd073beb3e2dd25042efd064af82323/kiwisolver-1.4.8-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:e063ef9f89885a1d68dd8b2e18f5ead48653176d10a0e324e3b0030e3a69adeb", size = 2338793 }, + { url = "https://files.pythonhosted.org/packages/d0/dc/c1abe38c37c071d0fc71c9a474fd0b9ede05d42f5a458d584619cfd2371a/kiwisolver-1.4.8-cp313-cp313-win_amd64.whl", hash = "sha256:a17b7c4f5b2c51bb68ed379defd608a03954a1845dfed7cc0117f1cc8a9b7fd2", size = 71855 }, + { url = "https://files.pythonhosted.org/packages/a0/b6/21529d595b126ac298fdd90b705d87d4c5693de60023e0efcb4f387ed99e/kiwisolver-1.4.8-cp313-cp313-win_arm64.whl", hash = "sha256:3cd3bc628b25f74aedc6d374d5babf0166a92ff1317f46267f12d2ed54bc1d30", size = 65430 }, + { url = "https://files.pythonhosted.org/packages/34/bd/b89380b7298e3af9b39f49334e3e2a4af0e04819789f04b43d560516c0c8/kiwisolver-1.4.8-cp313-cp313t-macosx_10_13_universal2.whl", hash = "sha256:370fd2df41660ed4e26b8c9d6bbcad668fbe2560462cba151a721d49e5b6628c", size = 126294 }, + { url = "https://files.pythonhosted.org/packages/83/41/5857dc72e5e4148eaac5aa76e0703e594e4465f8ab7ec0fc60e3a9bb8fea/kiwisolver-1.4.8-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:84a2f830d42707de1d191b9490ac186bf7997a9495d4e9072210a1296345f7dc", size = 67736 }, + { url = "https://files.pythonhosted.org/packages/e1/d1/be059b8db56ac270489fb0b3297fd1e53d195ba76e9bbb30e5401fa6b759/kiwisolver-1.4.8-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:7a3ad337add5148cf51ce0b55642dc551c0b9d6248458a757f98796ca7348712", size = 66194 }, + { url = "https://files.pythonhosted.org/packages/e1/83/4b73975f149819eb7dcf9299ed467eba068ecb16439a98990dcb12e63fdd/kiwisolver-1.4.8-cp313-cp313t-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7506488470f41169b86d8c9aeff587293f530a23a23a49d6bc64dab66bedc71e", size = 1465942 }, + { url = "https://files.pythonhosted.org/packages/c7/2c/30a5cdde5102958e602c07466bce058b9d7cb48734aa7a4327261ac8e002/kiwisolver-1.4.8-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2f0121b07b356a22fb0414cec4666bbe36fd6d0d759db3d37228f496ed67c880", size = 1595341 }, + { url = "https://files.pythonhosted.org/packages/ff/9b/1e71db1c000385aa069704f5990574b8244cce854ecd83119c19e83c9586/kiwisolver-1.4.8-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d6d6bd87df62c27d4185de7c511c6248040afae67028a8a22012b010bc7ad062", size = 1598455 }, + { url = "https://files.pythonhosted.org/packages/85/92/c8fec52ddf06231b31cbb779af77e99b8253cd96bd135250b9498144c78b/kiwisolver-1.4.8-cp313-cp313t-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:291331973c64bb9cce50bbe871fb2e675c4331dab4f31abe89f175ad7679a4d7", size = 1522138 }, + { url = "https://files.pythonhosted.org/packages/0b/51/9eb7e2cd07a15d8bdd976f6190c0164f92ce1904e5c0c79198c4972926b7/kiwisolver-1.4.8-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:893f5525bb92d3d735878ec00f781b2de998333659507d29ea4466208df37bed", size = 1582857 }, + { url = "https://files.pythonhosted.org/packages/0f/95/c5a00387a5405e68ba32cc64af65ce881a39b98d73cc394b24143bebc5b8/kiwisolver-1.4.8-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:b47a465040146981dc9db8647981b8cb96366fbc8d452b031e4f8fdffec3f26d", size = 2293129 }, + { url = "https://files.pythonhosted.org/packages/44/83/eeb7af7d706b8347548313fa3a3a15931f404533cc54fe01f39e830dd231/kiwisolver-1.4.8-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:99cea8b9dd34ff80c521aef46a1dddb0dcc0283cf18bde6d756f1e6f31772165", size = 2421538 }, + { url = "https://files.pythonhosted.org/packages/05/f9/27e94c1b3eb29e6933b6986ffc5fa1177d2cd1f0c8efc5f02c91c9ac61de/kiwisolver-1.4.8-cp313-cp313t-musllinux_1_2_ppc64le.whl", hash = "sha256:151dffc4865e5fe6dafce5480fab84f950d14566c480c08a53c663a0020504b6", size = 2390661 }, + { url = "https://files.pythonhosted.org/packages/d9/d4/3c9735faa36ac591a4afcc2980d2691000506050b7a7e80bcfe44048daa7/kiwisolver-1.4.8-cp313-cp313t-musllinux_1_2_s390x.whl", hash = "sha256:577facaa411c10421314598b50413aa1ebcf5126f704f1e5d72d7e4e9f020d90", size = 2546710 }, + { url = "https://files.pythonhosted.org/packages/4c/fa/be89a49c640930180657482a74970cdcf6f7072c8d2471e1babe17a222dc/kiwisolver-1.4.8-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:be4816dc51c8a471749d664161b434912eee82f2ea66bd7628bd14583a833e85", size = 2349213 }, + { url = "https://files.pythonhosted.org/packages/1f/f9/ae81c47a43e33b93b0a9819cac6723257f5da2a5a60daf46aa5c7226ea85/kiwisolver-1.4.8-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:e7a019419b7b510f0f7c9dceff8c5eae2392037eae483a7f9162625233802b0a", size = 60403 }, + { url = "https://files.pythonhosted.org/packages/58/ca/f92b5cb6f4ce0c1ebfcfe3e2e42b96917e16f7090e45b21102941924f18f/kiwisolver-1.4.8-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:286b18e86682fd2217a48fc6be6b0f20c1d0ed10958d8dc53453ad58d7be0bf8", size = 58657 }, + { url = "https://files.pythonhosted.org/packages/80/28/ae0240f732f0484d3a4dc885d055653c47144bdf59b670aae0ec3c65a7c8/kiwisolver-1.4.8-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4191ee8dfd0be1c3666ccbac178c5a05d5f8d689bbe3fc92f3c4abec817f8fe0", size = 84948 }, + { url = "https://files.pythonhosted.org/packages/5d/eb/78d50346c51db22c7203c1611f9b513075f35c4e0e4877c5dde378d66043/kiwisolver-1.4.8-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7cd2785b9391f2873ad46088ed7599a6a71e762e1ea33e87514b1a441ed1da1c", size = 81186 }, + { url = "https://files.pythonhosted.org/packages/43/f8/7259f18c77adca88d5f64f9a522792e178b2691f3748817a8750c2d216ef/kiwisolver-1.4.8-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c07b29089b7ba090b6f1a669f1411f27221c3662b3a1b7010e67b59bb5a6f10b", size = 80279 }, + { url = "https://files.pythonhosted.org/packages/3a/1d/50ad811d1c5dae091e4cf046beba925bcae0a610e79ae4c538f996f63ed5/kiwisolver-1.4.8-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:65ea09a5a3faadd59c2ce96dc7bf0f364986a315949dc6374f04396b0d60e09b", size = 71762 }, +] + +[[package]] +name = "markupsafe" +version = "3.0.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/b2/97/5d42485e71dfc078108a86d6de8fa46db44a1a9295e89c5d6d4a06e23a62/markupsafe-3.0.2.tar.gz", hash = "sha256:ee55d3edf80167e48ea11a923c7386f4669df67d7994554387f84e7d8b0a2bf0", size = 20537 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/04/90/d08277ce111dd22f77149fd1a5d4653eeb3b3eaacbdfcbae5afb2600eebd/MarkupSafe-3.0.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:7e94c425039cde14257288fd61dcfb01963e658efbc0ff54f5306b06054700f8", size = 14357 }, + { url = "https://files.pythonhosted.org/packages/04/e1/6e2194baeae0bca1fae6629dc0cbbb968d4d941469cbab11a3872edff374/MarkupSafe-3.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9e2d922824181480953426608b81967de705c3cef4d1af983af849d7bd619158", size = 12393 }, + { url = "https://files.pythonhosted.org/packages/1d/69/35fa85a8ece0a437493dc61ce0bb6d459dcba482c34197e3efc829aa357f/MarkupSafe-3.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:38a9ef736c01fccdd6600705b09dc574584b89bea478200c5fbf112a6b0d5579", size = 21732 }, + { url = "https://files.pythonhosted.org/packages/22/35/137da042dfb4720b638d2937c38a9c2df83fe32d20e8c8f3185dbfef05f7/MarkupSafe-3.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bbcb445fa71794da8f178f0f6d66789a28d7319071af7a496d4d507ed566270d", size = 20866 }, + { url = "https://files.pythonhosted.org/packages/29/28/6d029a903727a1b62edb51863232152fd335d602def598dade38996887f0/MarkupSafe-3.0.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:57cb5a3cf367aeb1d316576250f65edec5bb3be939e9247ae594b4bcbc317dfb", size = 20964 }, + { url = "https://files.pythonhosted.org/packages/cc/cd/07438f95f83e8bc028279909d9c9bd39e24149b0d60053a97b2bc4f8aa51/MarkupSafe-3.0.2-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:3809ede931876f5b2ec92eef964286840ed3540dadf803dd570c3b7e13141a3b", size = 21977 }, + { url = "https://files.pythonhosted.org/packages/29/01/84b57395b4cc062f9c4c55ce0df7d3108ca32397299d9df00fedd9117d3d/MarkupSafe-3.0.2-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:e07c3764494e3776c602c1e78e298937c3315ccc9043ead7e685b7f2b8d47b3c", size = 21366 }, + { url = "https://files.pythonhosted.org/packages/bd/6e/61ebf08d8940553afff20d1fb1ba7294b6f8d279df9fd0c0db911b4bbcfd/MarkupSafe-3.0.2-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:b424c77b206d63d500bcb69fa55ed8d0e6a3774056bdc4839fc9298a7edca171", size = 21091 }, + { url = "https://files.pythonhosted.org/packages/11/23/ffbf53694e8c94ebd1e7e491de185124277964344733c45481f32ede2499/MarkupSafe-3.0.2-cp310-cp310-win32.whl", hash = "sha256:fcabf5ff6eea076f859677f5f0b6b5c1a51e70a376b0579e0eadef8db48c6b50", size = 15065 }, + { url = "https://files.pythonhosted.org/packages/44/06/e7175d06dd6e9172d4a69a72592cb3f7a996a9c396eee29082826449bbc3/MarkupSafe-3.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:6af100e168aa82a50e186c82875a5893c5597a0c1ccdb0d8b40240b1f28b969a", size = 15514 }, + { url = "https://files.pythonhosted.org/packages/6b/28/bbf83e3f76936960b850435576dd5e67034e200469571be53f69174a2dfd/MarkupSafe-3.0.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:9025b4018f3a1314059769c7bf15441064b2207cb3f065e6ea1e7359cb46db9d", size = 14353 }, + { url = "https://files.pythonhosted.org/packages/6c/30/316d194b093cde57d448a4c3209f22e3046c5bb2fb0820b118292b334be7/MarkupSafe-3.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:93335ca3812df2f366e80509ae119189886b0f3c2b81325d39efdb84a1e2ae93", size = 12392 }, + { url = "https://files.pythonhosted.org/packages/f2/96/9cdafba8445d3a53cae530aaf83c38ec64c4d5427d975c974084af5bc5d2/MarkupSafe-3.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2cb8438c3cbb25e220c2ab33bb226559e7afb3baec11c4f218ffa7308603c832", size = 23984 }, + { url = "https://files.pythonhosted.org/packages/f1/a4/aefb044a2cd8d7334c8a47d3fb2c9f328ac48cb349468cc31c20b539305f/MarkupSafe-3.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a123e330ef0853c6e822384873bef7507557d8e4a082961e1defa947aa59ba84", size = 23120 }, + { url = "https://files.pythonhosted.org/packages/8d/21/5e4851379f88f3fad1de30361db501300d4f07bcad047d3cb0449fc51f8c/MarkupSafe-3.0.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1e084f686b92e5b83186b07e8a17fc09e38fff551f3602b249881fec658d3eca", size = 23032 }, + { url = "https://files.pythonhosted.org/packages/00/7b/e92c64e079b2d0d7ddf69899c98842f3f9a60a1ae72657c89ce2655c999d/MarkupSafe-3.0.2-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:d8213e09c917a951de9d09ecee036d5c7d36cb6cb7dbaece4c71a60d79fb9798", size = 24057 }, + { url = "https://files.pythonhosted.org/packages/f9/ac/46f960ca323037caa0a10662ef97d0a4728e890334fc156b9f9e52bcc4ca/MarkupSafe-3.0.2-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:5b02fb34468b6aaa40dfc198d813a641e3a63b98c2b05a16b9f80b7ec314185e", size = 23359 }, + { url = "https://files.pythonhosted.org/packages/69/84/83439e16197337b8b14b6a5b9c2105fff81d42c2a7c5b58ac7b62ee2c3b1/MarkupSafe-3.0.2-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:0bff5e0ae4ef2e1ae4fdf2dfd5b76c75e5c2fa4132d05fc1b0dabcd20c7e28c4", size = 23306 }, + { url = "https://files.pythonhosted.org/packages/9a/34/a15aa69f01e2181ed8d2b685c0d2f6655d5cca2c4db0ddea775e631918cd/MarkupSafe-3.0.2-cp311-cp311-win32.whl", hash = "sha256:6c89876f41da747c8d3677a2b540fb32ef5715f97b66eeb0c6b66f5e3ef6f59d", size = 15094 }, + { url = "https://files.pythonhosted.org/packages/da/b8/3a3bd761922d416f3dc5d00bfbed11f66b1ab89a0c2b6e887240a30b0f6b/MarkupSafe-3.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:70a87b411535ccad5ef2f1df5136506a10775d267e197e4cf531ced10537bd6b", size = 15521 }, + { url = "https://files.pythonhosted.org/packages/22/09/d1f21434c97fc42f09d290cbb6350d44eb12f09cc62c9476effdb33a18aa/MarkupSafe-3.0.2-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:9778bd8ab0a994ebf6f84c2b949e65736d5575320a17ae8984a77fab08db94cf", size = 14274 }, + { url = "https://files.pythonhosted.org/packages/6b/b0/18f76bba336fa5aecf79d45dcd6c806c280ec44538b3c13671d49099fdd0/MarkupSafe-3.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:846ade7b71e3536c4e56b386c2a47adf5741d2d8b94ec9dc3e92e5e1ee1e2225", size = 12348 }, + { url = "https://files.pythonhosted.org/packages/e0/25/dd5c0f6ac1311e9b40f4af06c78efde0f3b5cbf02502f8ef9501294c425b/MarkupSafe-3.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1c99d261bd2d5f6b59325c92c73df481e05e57f19837bdca8413b9eac4bd8028", size = 24149 }, + { url = "https://files.pythonhosted.org/packages/f3/f0/89e7aadfb3749d0f52234a0c8c7867877876e0a20b60e2188e9850794c17/MarkupSafe-3.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e17c96c14e19278594aa4841ec148115f9c7615a47382ecb6b82bd8fea3ab0c8", size = 23118 }, + { url = "https://files.pythonhosted.org/packages/d5/da/f2eeb64c723f5e3777bc081da884b414671982008c47dcc1873d81f625b6/MarkupSafe-3.0.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:88416bd1e65dcea10bc7569faacb2c20ce071dd1f87539ca2ab364bf6231393c", size = 22993 }, + { url = "https://files.pythonhosted.org/packages/da/0e/1f32af846df486dce7c227fe0f2398dc7e2e51d4a370508281f3c1c5cddc/MarkupSafe-3.0.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:2181e67807fc2fa785d0592dc2d6206c019b9502410671cc905d132a92866557", size = 24178 }, + { url = "https://files.pythonhosted.org/packages/c4/f6/bb3ca0532de8086cbff5f06d137064c8410d10779c4c127e0e47d17c0b71/MarkupSafe-3.0.2-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:52305740fe773d09cffb16f8ed0427942901f00adedac82ec8b67752f58a1b22", size = 23319 }, + { url = "https://files.pythonhosted.org/packages/a2/82/8be4c96ffee03c5b4a034e60a31294daf481e12c7c43ab8e34a1453ee48b/MarkupSafe-3.0.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:ad10d3ded218f1039f11a75f8091880239651b52e9bb592ca27de44eed242a48", size = 23352 }, + { url = "https://files.pythonhosted.org/packages/51/ae/97827349d3fcffee7e184bdf7f41cd6b88d9919c80f0263ba7acd1bbcb18/MarkupSafe-3.0.2-cp312-cp312-win32.whl", hash = "sha256:0f4ca02bea9a23221c0182836703cbf8930c5e9454bacce27e767509fa286a30", size = 15097 }, + { url = "https://files.pythonhosted.org/packages/c1/80/a61f99dc3a936413c3ee4e1eecac96c0da5ed07ad56fd975f1a9da5bc630/MarkupSafe-3.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:8e06879fc22a25ca47312fbe7c8264eb0b662f6db27cb2d3bbbc74b1df4b9b87", size = 15601 }, + { url = "https://files.pythonhosted.org/packages/83/0e/67eb10a7ecc77a0c2bbe2b0235765b98d164d81600746914bebada795e97/MarkupSafe-3.0.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:ba9527cdd4c926ed0760bc301f6728ef34d841f405abf9d4f959c478421e4efd", size = 14274 }, + { url = "https://files.pythonhosted.org/packages/2b/6d/9409f3684d3335375d04e5f05744dfe7e9f120062c9857df4ab490a1031a/MarkupSafe-3.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f8b3d067f2e40fe93e1ccdd6b2e1d16c43140e76f02fb1319a05cf2b79d99430", size = 12352 }, + { url = "https://files.pythonhosted.org/packages/d2/f5/6eadfcd3885ea85fe2a7c128315cc1bb7241e1987443d78c8fe712d03091/MarkupSafe-3.0.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:569511d3b58c8791ab4c2e1285575265991e6d8f8700c7be0e88f86cb0672094", size = 24122 }, + { url = "https://files.pythonhosted.org/packages/0c/91/96cf928db8236f1bfab6ce15ad070dfdd02ed88261c2afafd4b43575e9e9/MarkupSafe-3.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:15ab75ef81add55874e7ab7055e9c397312385bd9ced94920f2802310c930396", size = 23085 }, + { url = "https://files.pythonhosted.org/packages/c2/cf/c9d56af24d56ea04daae7ac0940232d31d5a8354f2b457c6d856b2057d69/MarkupSafe-3.0.2-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f3818cb119498c0678015754eba762e0d61e5b52d34c8b13d770f0719f7b1d79", size = 22978 }, + { url = "https://files.pythonhosted.org/packages/2a/9f/8619835cd6a711d6272d62abb78c033bda638fdc54c4e7f4272cf1c0962b/MarkupSafe-3.0.2-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:cdb82a876c47801bb54a690c5ae105a46b392ac6099881cdfb9f6e95e4014c6a", size = 24208 }, + { url = "https://files.pythonhosted.org/packages/f9/bf/176950a1792b2cd2102b8ffeb5133e1ed984547b75db47c25a67d3359f77/MarkupSafe-3.0.2-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:cabc348d87e913db6ab4aa100f01b08f481097838bdddf7c7a84b7575b7309ca", size = 23357 }, + { url = "https://files.pythonhosted.org/packages/ce/4f/9a02c1d335caabe5c4efb90e1b6e8ee944aa245c1aaaab8e8a618987d816/MarkupSafe-3.0.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:444dcda765c8a838eaae23112db52f1efaf750daddb2d9ca300bcae1039adc5c", size = 23344 }, + { url = "https://files.pythonhosted.org/packages/ee/55/c271b57db36f748f0e04a759ace9f8f759ccf22b4960c270c78a394f58be/MarkupSafe-3.0.2-cp313-cp313-win32.whl", hash = "sha256:bcf3e58998965654fdaff38e58584d8937aa3096ab5354d493c77d1fdd66d7a1", size = 15101 }, + { url = "https://files.pythonhosted.org/packages/29/88/07df22d2dd4df40aba9f3e402e6dc1b8ee86297dddbad4872bd5e7b0094f/MarkupSafe-3.0.2-cp313-cp313-win_amd64.whl", hash = "sha256:e6a2a455bd412959b57a172ce6328d2dd1f01cb2135efda2e4576e8a23fa3b0f", size = 15603 }, + { url = "https://files.pythonhosted.org/packages/62/6a/8b89d24db2d32d433dffcd6a8779159da109842434f1dd2f6e71f32f738c/MarkupSafe-3.0.2-cp313-cp313t-macosx_10_13_universal2.whl", hash = "sha256:b5a6b3ada725cea8a5e634536b1b01c30bcdcd7f9c6fff4151548d5bf6b3a36c", size = 14510 }, + { url = "https://files.pythonhosted.org/packages/7a/06/a10f955f70a2e5a9bf78d11a161029d278eeacbd35ef806c3fd17b13060d/MarkupSafe-3.0.2-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:a904af0a6162c73e3edcb969eeeb53a63ceeb5d8cf642fade7d39e7963a22ddb", size = 12486 }, + { url = "https://files.pythonhosted.org/packages/34/cf/65d4a571869a1a9078198ca28f39fba5fbb910f952f9dbc5220afff9f5e6/MarkupSafe-3.0.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4aa4e5faecf353ed117801a068ebab7b7e09ffb6e1d5e412dc852e0da018126c", size = 25480 }, + { url = "https://files.pythonhosted.org/packages/0c/e3/90e9651924c430b885468b56b3d597cabf6d72be4b24a0acd1fa0e12af67/MarkupSafe-3.0.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0ef13eaeee5b615fb07c9a7dadb38eac06a0608b41570d8ade51c56539e509d", size = 23914 }, + { url = "https://files.pythonhosted.org/packages/66/8c/6c7cf61f95d63bb866db39085150df1f2a5bd3335298f14a66b48e92659c/MarkupSafe-3.0.2-cp313-cp313t-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d16a81a06776313e817c951135cf7340a3e91e8c1ff2fac444cfd75fffa04afe", size = 23796 }, + { url = "https://files.pythonhosted.org/packages/bb/35/cbe9238ec3f47ac9a7c8b3df7a808e7cb50fe149dc7039f5f454b3fba218/MarkupSafe-3.0.2-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:6381026f158fdb7c72a168278597a5e3a5222e83ea18f543112b2662a9b699c5", size = 25473 }, + { url = "https://files.pythonhosted.org/packages/e6/32/7621a4382488aa283cc05e8984a9c219abad3bca087be9ec77e89939ded9/MarkupSafe-3.0.2-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:3d79d162e7be8f996986c064d1c7c817f6df3a77fe3d6859f6f9e7be4b8c213a", size = 24114 }, + { url = "https://files.pythonhosted.org/packages/0d/80/0985960e4b89922cb5a0bac0ed39c5b96cbc1a536a99f30e8c220a996ed9/MarkupSafe-3.0.2-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:131a3c7689c85f5ad20f9f6fb1b866f402c445b220c19fe4308c0b147ccd2ad9", size = 24098 }, + { url = "https://files.pythonhosted.org/packages/82/78/fedb03c7d5380df2427038ec8d973587e90561b2d90cd472ce9254cf348b/MarkupSafe-3.0.2-cp313-cp313t-win32.whl", hash = "sha256:ba8062ed2cf21c07a9e295d5b8a2a5ce678b913b45fdf68c32d95d6c1291e0b6", size = 15208 }, + { url = "https://files.pythonhosted.org/packages/4f/65/6079a46068dfceaeabb5dcad6d674f5f5c61a6fa5673746f42a9f4c233b3/MarkupSafe-3.0.2-cp313-cp313t-win_amd64.whl", hash = "sha256:e444a31f8db13eb18ada366ab3cf45fd4b31e4db1236a4448f68778c1d1a5a2f", size = 15739 }, +] + +[[package]] +name = "matplotlib" +version = "3.10.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "contourpy" }, + { name = "cycler" }, + { name = "fonttools" }, + { name = "kiwisolver" }, + { name = "numpy" }, + { name = "packaging" }, + { name = "pillow" }, + { name = "pyparsing" }, + { name = "python-dateutil" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/68/dd/fa2e1a45fce2d09f4aea3cee169760e672c8262325aa5796c49d543dc7e6/matplotlib-3.10.0.tar.gz", hash = "sha256:b886d02a581b96704c9d1ffe55709e49b4d2d52709ccebc4be42db856e511278", size = 36686418 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/09/ec/3cdff7b5239adaaacefcc4f77c316dfbbdf853c4ed2beec467e0fec31b9f/matplotlib-3.10.0-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:2c5829a5a1dd5a71f0e31e6e8bb449bc0ee9dbfb05ad28fc0c6b55101b3a4be6", size = 8160551 }, + { url = "https://files.pythonhosted.org/packages/41/f2/b518f2c7f29895c9b167bf79f8529c63383ae94eaf49a247a4528e9a148d/matplotlib-3.10.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a2a43cbefe22d653ab34bb55d42384ed30f611bcbdea1f8d7f431011a2e1c62e", size = 8034853 }, + { url = "https://files.pythonhosted.org/packages/ed/8d/45754b4affdb8f0d1a44e4e2bcd932cdf35b256b60d5eda9f455bb293ed0/matplotlib-3.10.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:607b16c8a73943df110f99ee2e940b8a1cbf9714b65307c040d422558397dac5", size = 8446724 }, + { url = "https://files.pythonhosted.org/packages/09/5a/a113495110ae3e3395c72d82d7bc4802902e46dc797f6b041e572f195c56/matplotlib-3.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:01d2b19f13aeec2e759414d3bfe19ddfb16b13a1250add08d46d5ff6f9be83c6", size = 8583905 }, + { url = "https://files.pythonhosted.org/packages/12/b1/8b1655b4c9ed4600c817c419f7eaaf70082630efd7556a5b2e77a8a3cdaf/matplotlib-3.10.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:5e6c6461e1fc63df30bf6f80f0b93f5b6784299f721bc28530477acd51bfc3d1", size = 9395223 }, + { url = "https://files.pythonhosted.org/packages/5a/85/b9a54d64585a6b8737a78a61897450403c30f39e0bd3214270bb0b96f002/matplotlib-3.10.0-cp310-cp310-win_amd64.whl", hash = "sha256:994c07b9d9fe8d25951e3202a68c17900679274dadfc1248738dcfa1bd40d7f3", size = 8025355 }, + { url = "https://files.pythonhosted.org/packages/0c/f1/e37f6c84d252867d7ddc418fff70fc661cfd363179263b08e52e8b748e30/matplotlib-3.10.0-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:fd44fc75522f58612ec4a33958a7e5552562b7705b42ef1b4f8c0818e304a363", size = 8171677 }, + { url = "https://files.pythonhosted.org/packages/c7/8b/92e9da1f28310a1f6572b5c55097b0c0ceb5e27486d85fb73b54f5a9b939/matplotlib-3.10.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c58a9622d5dbeb668f407f35f4e6bfac34bb9ecdcc81680c04d0258169747997", size = 8044945 }, + { url = "https://files.pythonhosted.org/packages/c5/cb/49e83f0fd066937a5bd3bc5c5d63093703f3637b2824df8d856e0558beef/matplotlib-3.10.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:845d96568ec873be63f25fa80e9e7fae4be854a66a7e2f0c8ccc99e94a8bd4ef", size = 8458269 }, + { url = "https://files.pythonhosted.org/packages/b2/7d/2d873209536b9ee17340754118a2a17988bc18981b5b56e6715ee07373ac/matplotlib-3.10.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5439f4c5a3e2e8eab18e2f8c3ef929772fd5641876db71f08127eed95ab64683", size = 8599369 }, + { url = "https://files.pythonhosted.org/packages/b8/03/57d6cbbe85c61fe4cbb7c94b54dce443d68c21961830833a1f34d056e5ea/matplotlib-3.10.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:4673ff67a36152c48ddeaf1135e74ce0d4bce1bbf836ae40ed39c29edf7e2765", size = 9405992 }, + { url = "https://files.pythonhosted.org/packages/14/cf/e382598f98be11bf51dd0bc60eca44a517f6793e3dc8b9d53634a144620c/matplotlib-3.10.0-cp311-cp311-win_amd64.whl", hash = "sha256:7e8632baebb058555ac0cde75db885c61f1212e47723d63921879806b40bec6a", size = 8034580 }, + { url = "https://files.pythonhosted.org/packages/44/c7/6b2d8cb7cc251d53c976799cacd3200add56351c175ba89ab9cbd7c1e68a/matplotlib-3.10.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:4659665bc7c9b58f8c00317c3c2a299f7f258eeae5a5d56b4c64226fca2f7c59", size = 8172465 }, + { url = "https://files.pythonhosted.org/packages/42/2a/6d66d0fba41e13e9ca6512a0a51170f43e7e7ed3a8dfa036324100775612/matplotlib-3.10.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d44cb942af1693cced2604c33a9abcef6205601c445f6d0dc531d813af8a2f5a", size = 8043300 }, + { url = "https://files.pythonhosted.org/packages/90/60/2a60342b27b90a16bada939a85e29589902b41073f59668b904b15ea666c/matplotlib-3.10.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a994f29e968ca002b50982b27168addfd65f0105610b6be7fa515ca4b5307c95", size = 8448936 }, + { url = "https://files.pythonhosted.org/packages/a7/b2/d872fc3d753516870d520595ddd8ce4dd44fa797a240999f125f58521ad7/matplotlib-3.10.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9b0558bae37f154fffda54d779a592bc97ca8b4701f1c710055b609a3bac44c8", size = 8594151 }, + { url = "https://files.pythonhosted.org/packages/f4/bd/b2f60cf7f57d014ab33e4f74602a2b5bdc657976db8196bbc022185f6f9c/matplotlib-3.10.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:503feb23bd8c8acc75541548a1d709c059b7184cde26314896e10a9f14df5f12", size = 9400347 }, + { url = "https://files.pythonhosted.org/packages/9f/6e/264673e64001b99d747aff5a288eca82826c024437a3694e19aed1decf46/matplotlib-3.10.0-cp312-cp312-win_amd64.whl", hash = "sha256:c40ba2eb08b3f5de88152c2333c58cee7edcead0a2a0d60fcafa116b17117adc", size = 8039144 }, + { url = "https://files.pythonhosted.org/packages/72/11/1b2a094d95dcb6e6edd4a0b238177c439006c6b7a9fe8d31801237bf512f/matplotlib-3.10.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:96f2886f5c1e466f21cc41b70c5a0cd47bfa0015eb2d5793c88ebce658600e25", size = 8173073 }, + { url = "https://files.pythonhosted.org/packages/0d/c4/87b6ad2723070511a411ea719f9c70fde64605423b184face4e94986de9d/matplotlib-3.10.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:12eaf48463b472c3c0f8dbacdbf906e573013df81a0ab82f0616ea4b11281908", size = 8043892 }, + { url = "https://files.pythonhosted.org/packages/57/69/cb0812a136550b21361335e9ffb7d459bf6d13e03cb7b015555d5143d2d6/matplotlib-3.10.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2fbbabc82fde51391c4da5006f965e36d86d95f6ee83fb594b279564a4c5d0d2", size = 8450532 }, + { url = "https://files.pythonhosted.org/packages/ea/3a/bab9deb4fb199c05e9100f94d7f1c702f78d3241e6a71b784d2b88d7bebd/matplotlib-3.10.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ad2e15300530c1a94c63cfa546e3b7864bd18ea2901317bae8bbf06a5ade6dcf", size = 8593905 }, + { url = "https://files.pythonhosted.org/packages/8b/66/742fd242f989adc1847ddf5f445815f73ad7c46aa3440690cc889cfa423c/matplotlib-3.10.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:3547d153d70233a8496859097ef0312212e2689cdf8d7ed764441c77604095ae", size = 9399609 }, + { url = "https://files.pythonhosted.org/packages/fa/d6/54cee7142cef7d910a324a7aedf335c0c147b03658b54d49ec48166f10a6/matplotlib-3.10.0-cp313-cp313-win_amd64.whl", hash = "sha256:c55b20591ced744aa04e8c3e4b7543ea4d650b6c3c4b208c08a05b4010e8b442", size = 8039076 }, + { url = "https://files.pythonhosted.org/packages/43/14/815d072dc36e88753433bfd0385113405efb947e6895ff7b4d2e8614a33b/matplotlib-3.10.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:9ade1003376731a971e398cc4ef38bb83ee8caf0aee46ac6daa4b0506db1fd06", size = 8211000 }, + { url = "https://files.pythonhosted.org/packages/9a/76/34e75f364194ec352678adcb540964be6f35ec7d3d8c75ebcb17e6839359/matplotlib-3.10.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:95b710fea129c76d30be72c3b38f330269363fbc6e570a5dd43580487380b5ff", size = 8087707 }, + { url = "https://files.pythonhosted.org/packages/c3/2b/b6bc0dff6a72d333bc7df94a66e6ce662d224e43daa8ad8ae4eaa9a77f55/matplotlib-3.10.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5cdbaf909887373c3e094b0318d7ff230b2ad9dcb64da7ade654182872ab2593", size = 8477384 }, + { url = "https://files.pythonhosted.org/packages/c2/2d/b5949fb2b76e9b47ab05e25a5f5f887c70de20d8b0cbc704a4e2ee71c786/matplotlib-3.10.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d907fddb39f923d011875452ff1eca29a9e7f21722b873e90db32e5d8ddff12e", size = 8610334 }, + { url = "https://files.pythonhosted.org/packages/d6/9a/6e3c799d5134d9af44b01c787e1360bee38cf51850506ea2e743a787700b/matplotlib-3.10.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:3b427392354d10975c1d0f4ee18aa5844640b512d5311ef32efd4dd7db106ede", size = 9406777 }, + { url = "https://files.pythonhosted.org/packages/0e/dd/e6ae97151e5ed648ab2ea48885bc33d39202b640eec7a2910e2c843f7ac0/matplotlib-3.10.0-cp313-cp313t-win_amd64.whl", hash = "sha256:5fd41b0ec7ee45cd960a8e71aea7c946a28a0b8a4dcee47d2856b2af051f334c", size = 8109742 }, + { url = "https://files.pythonhosted.org/packages/32/5f/29def7ce4e815ab939b56280976ee35afffb3bbdb43f332caee74cb8c951/matplotlib-3.10.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:81713dd0d103b379de4516b861d964b1d789a144103277769238c732229d7f03", size = 8155500 }, + { url = "https://files.pythonhosted.org/packages/de/6d/d570383c9f7ca799d0a54161446f9ce7b17d6c50f2994b653514bcaa108f/matplotlib-3.10.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:359f87baedb1f836ce307f0e850d12bb5f1936f70d035561f90d41d305fdacea", size = 8032398 }, + { url = "https://files.pythonhosted.org/packages/c9/b4/680aa700d99b48e8c4393fa08e9ab8c49c0555ee6f4c9c0a5e8ea8dfde5d/matplotlib-3.10.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ae80dc3a4add4665cf2faa90138384a7ffe2a4e37c58d83e115b54287c4f06ef", size = 8587361 }, +] + +[[package]] +name = "matplotlib-inline" +version = "0.1.7" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/99/5b/a36a337438a14116b16480db471ad061c36c3694df7c2084a0da7ba538b7/matplotlib_inline-0.1.7.tar.gz", hash = "sha256:8423b23ec666be3d16e16b60bdd8ac4e86e840ebd1dd11a30b9f117f2fa0ab90", size = 8159 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/8f/8e/9ad090d3553c280a8060fbf6e24dc1c0c29704ee7d1c372f0c174aa59285/matplotlib_inline-0.1.7-py3-none-any.whl", hash = "sha256:df192d39a4ff8f21b1895d72e6a13f5fcc5099f00fa84384e0ea28c2cc0653ca", size = 9899 }, +] + +[[package]] +name = "mistune" +version = "3.1.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "typing-extensions", marker = "python_full_version < '3.11'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/79/6e/96fc7cb3288666c5de2c396eb0e338dc95f7a8e4920e43e38783a22d0084/mistune-3.1.0.tar.gz", hash = "sha256:dbcac2f78292b9dc066cd03b7a3a26b62d85f8159f2ea5fd28e55df79908d667", size = 94401 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/b4/b3/743ffc3f59da380da504d84ccd1faf9a857a1445991ff19bf2ec754163c2/mistune-3.1.0-py3-none-any.whl", hash = "sha256:b05198cf6d671b3deba6c87ec6cf0d4eb7b72c524636eddb6dbf13823b52cee1", size = 53694 }, +] + +[[package]] +name = "nbclient" +version = "0.10.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "jupyter-client" }, + { name = "jupyter-core" }, + { name = "nbformat" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/87/66/7ffd18d58eae90d5721f9f39212327695b749e23ad44b3881744eaf4d9e8/nbclient-0.10.2.tar.gz", hash = "sha256:90b7fc6b810630db87a6d0c2250b1f0ab4cf4d3c27a299b0cde78a4ed3fd9193", size = 62424 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/34/6d/e7fa07f03a4a7b221d94b4d586edb754a9b0dc3c9e2c93353e9fa4e0d117/nbclient-0.10.2-py3-none-any.whl", hash = "sha256:4ffee11e788b4a27fabeb7955547e4318a5298f34342a4bfd01f2e1faaeadc3d", size = 25434 }, +] + +[[package]] +name = "nbconvert" +version = "7.16.5" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "beautifulsoup4" }, + { name = "bleach", extra = ["css"] }, + { name = "defusedxml" }, + { name = "jinja2" }, + { name = "jupyter-core" }, + { name = "jupyterlab-pygments" }, + { name = "markupsafe" }, + { name = "mistune" }, + { name = "nbclient" }, + { name = "nbformat" }, + { name = "packaging" }, + { name = "pandocfilters" }, + { name = "pygments" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/46/2c/d026c0367f2be2463d4c2f5b538e28add2bc67bc13730abb7f364ae4eb8b/nbconvert-7.16.5.tar.gz", hash = "sha256:c83467bb5777fdfaac5ebbb8e864f300b277f68692ecc04d6dab72f2d8442344", size = 856367 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/8f/9e/2dcc9fe00cf55d95a8deae69384e9cea61816126e345754f6c75494d32ec/nbconvert-7.16.5-py3-none-any.whl", hash = "sha256:e12eac052d6fd03040af4166c563d76e7aeead2e9aadf5356db552a1784bd547", size = 258061 }, +] + +[[package]] +name = "nbformat" +version = "5.10.4" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "fastjsonschema" }, + { name = "jsonschema" }, + { name = "jupyter-core" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/6d/fd/91545e604bc3dad7dca9ed03284086039b294c6b3d75c0d2fa45f9e9caf3/nbformat-5.10.4.tar.gz", hash = "sha256:322168b14f937a5d11362988ecac2a4952d3d8e3a2cbeb2319584631226d5b3a", size = 142749 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a9/82/0340caa499416c78e5d8f5f05947ae4bc3cba53c9f038ab6e9ed964e22f1/nbformat-5.10.4-py3-none-any.whl", hash = "sha256:3b48d6c8fbca4b299bf3982ea7db1af21580e4fec269ad087b9e81588891200b", size = 78454 }, +] + +[[package]] +name = "nest-asyncio" +version = "1.6.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/83/f8/51569ac65d696c8ecbee95938f89d4abf00f47d58d48f6fbabfe8f0baefe/nest_asyncio-1.6.0.tar.gz", hash = "sha256:6f172d5449aca15afd6c646851f4e31e02c598d553a667e38cafa997cfec55fe", size = 7418 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a0/c4/c2971a3ba4c6103a3d10c4b0f24f461ddc027f0f09763220cf35ca1401b3/nest_asyncio-1.6.0-py3-none-any.whl", hash = "sha256:87af6efd6b5e897c81050477ef65c62e2b2f35d51703cae01aff2905b1852e1c", size = 5195 }, +] + +[[package]] +name = "notebook" +version = "7.3.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "jupyter-server" }, + { name = "jupyterlab" }, + { name = "jupyterlab-server" }, + { name = "notebook-shim" }, + { name = "tornado" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/ea/04/ac488379d5afef43402b3fb4be2857db1a09804fecf98b9b714c741b225b/notebook-7.3.2.tar.gz", hash = "sha256:705e83a1785f45b383bf3ee13cb76680b92d24f56fb0c7d2136fe1d850cd3ca8", size = 12781804 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/22/9b/76e50ee18f183ea5fe1784a9eeaa50f2c71802e4740d6e959592b0993298/notebook-7.3.2-py3-none-any.whl", hash = "sha256:e5f85fc59b69d3618d73cf27544418193ff8e8058d5bf61d315ce4f473556288", size = 13163630 }, +] + +[[package]] +name = "notebook-shim" +version = "0.2.4" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "jupyter-server" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/54/d2/92fa3243712b9a3e8bafaf60aac366da1cada3639ca767ff4b5b3654ec28/notebook_shim-0.2.4.tar.gz", hash = "sha256:b4b2cfa1b65d98307ca24361f5b30fe785b53c3fd07b7a47e89acb5e6ac638cb", size = 13167 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f9/33/bd5b9137445ea4b680023eb0469b2bb969d61303dedb2aac6560ff3d14a1/notebook_shim-0.2.4-py3-none-any.whl", hash = "sha256:411a5be4e9dc882a074ccbcae671eda64cceb068767e9a3419096986560e1cef", size = 13307 }, +] + +[[package]] +name = "numpy" +version = "2.2.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/f2/a5/fdbf6a7871703df6160b5cf3dd774074b086d278172285c52c2758b76305/numpy-2.2.1.tar.gz", hash = "sha256:45681fd7128c8ad1c379f0ca0776a8b0c6583d2f69889ddac01559dfe4390918", size = 20227662 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/c7/c4/5588367dc9f91e1a813beb77de46ea8cab13f778e1b3a0e661ab031aba44/numpy-2.2.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:5edb4e4caf751c1518e6a26a83501fda79bff41cc59dac48d70e6d65d4ec4440", size = 21213214 }, + { url = "https://files.pythonhosted.org/packages/d8/8b/32dd9f08419023a4cf856c5ad0b4eba9b830da85eafdef841a104c4fc05a/numpy-2.2.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:aa3017c40d513ccac9621a2364f939d39e550c542eb2a894b4c8da92b38896ab", size = 14352248 }, + { url = "https://files.pythonhosted.org/packages/84/2d/0e895d02940ba6e12389f0ab5cac5afcf8dc2dc0ade4e8cad33288a721bd/numpy-2.2.1-cp310-cp310-macosx_14_0_arm64.whl", hash = "sha256:61048b4a49b1c93fe13426e04e04fdf5a03f456616f6e98c7576144677598675", size = 5391007 }, + { url = "https://files.pythonhosted.org/packages/11/b9/7f1e64a0d46d9c2af6d17966f641fb12d5b8ea3003f31b2308f3e3b9a6aa/numpy-2.2.1-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:7671dc19c7019103ca44e8d94917eba8534c76133523ca8406822efdd19c9308", size = 6926174 }, + { url = "https://files.pythonhosted.org/packages/2e/8c/043fa4418bc9364e364ab7aba8ff6ef5f6b9171ade22de8fbcf0e2fa4165/numpy-2.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4250888bcb96617e00bfa28ac24850a83c9f3a16db471eca2ee1f1714df0f957", size = 14330914 }, + { url = "https://files.pythonhosted.org/packages/f7/b6/d8110985501ca8912dfc1c3bbef99d66e62d487f72e46b2337494df77364/numpy-2.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a7746f235c47abc72b102d3bce9977714c2444bdfaea7888d241b4c4bb6a78bf", size = 16379607 }, + { url = "https://files.pythonhosted.org/packages/e2/57/bdca9fb8bdaa810c3a4ff2eb3231379b77f618a7c0d24be9f7070db50775/numpy-2.2.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:059e6a747ae84fce488c3ee397cee7e5f905fd1bda5fb18c66bc41807ff119b2", size = 15541760 }, + { url = "https://files.pythonhosted.org/packages/97/55/3b9147b3cbc3b6b1abc2a411dec5337a46c873deca0dd0bf5bef9d0579cc/numpy-2.2.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:f62aa6ee4eb43b024b0e5a01cf65a0bb078ef8c395e8713c6e8a12a697144528", size = 18168476 }, + { url = "https://files.pythonhosted.org/packages/00/e7/7c2cde16c9b87a8e14fdd262ca7849c4681cf48c8a774505f7e6f5e3b643/numpy-2.2.1-cp310-cp310-win32.whl", hash = "sha256:48fd472630715e1c1c89bf1feab55c29098cb403cc184b4859f9c86d4fcb6a95", size = 6570985 }, + { url = "https://files.pythonhosted.org/packages/a1/a8/554b0e99fc4ac11ec481254781a10da180d0559c2ebf2c324232317349ee/numpy-2.2.1-cp310-cp310-win_amd64.whl", hash = "sha256:b541032178a718c165a49638d28272b771053f628382d5e9d1c93df23ff58dbf", size = 12913384 }, + { url = "https://files.pythonhosted.org/packages/59/14/645887347124e101d983e1daf95b48dc3e136bf8525cb4257bf9eab1b768/numpy-2.2.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:40f9e544c1c56ba8f1cf7686a8c9b5bb249e665d40d626a23899ba6d5d9e1484", size = 21217379 }, + { url = "https://files.pythonhosted.org/packages/9f/fd/2279000cf29f58ccfd3778cbf4670dfe3f7ce772df5e198c5abe9e88b7d7/numpy-2.2.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f9b57eaa3b0cd8db52049ed0330747b0364e899e8a606a624813452b8203d5f7", size = 14388520 }, + { url = "https://files.pythonhosted.org/packages/58/b0/034eb5d5ba12d66ab658ff3455a31f20add0b78df8203c6a7451bd1bee21/numpy-2.2.1-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:bc8a37ad5b22c08e2dbd27df2b3ef7e5c0864235805b1e718a235bcb200cf1cb", size = 5389286 }, + { url = "https://files.pythonhosted.org/packages/5d/69/6f3cccde92e82e7835fdb475c2bf439761cbf8a1daa7c07338e1e132dfec/numpy-2.2.1-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:9036d6365d13b6cbe8f27a0eaf73ddcc070cae584e5ff94bb45e3e9d729feab5", size = 6930345 }, + { url = "https://files.pythonhosted.org/packages/d1/72/1cd38e91ab563e67f584293fcc6aca855c9ae46dba42e6b5ff4600022899/numpy-2.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:51faf345324db860b515d3f364eaa93d0e0551a88d6218a7d61286554d190d73", size = 14335748 }, + { url = "https://files.pythonhosted.org/packages/f2/d4/f999444e86986f3533e7151c272bd8186c55dda554284def18557e013a2a/numpy-2.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:38efc1e56b73cc9b182fe55e56e63b044dd26a72128fd2fbd502f75555d92591", size = 16391057 }, + { url = "https://files.pythonhosted.org/packages/99/7b/85cef6a3ae1b19542b7afd97d0b296526b6ef9e3c43ea0c4d9c4404fb2d0/numpy-2.2.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:31b89fa67a8042e96715c68e071a1200c4e172f93b0fbe01a14c0ff3ff820fc8", size = 15556943 }, + { url = "https://files.pythonhosted.org/packages/69/7e/b83cc884c3508e91af78760f6b17ab46ad649831b1fa35acb3eb26d9e6d2/numpy-2.2.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:4c86e2a209199ead7ee0af65e1d9992d1dce7e1f63c4b9a616500f93820658d0", size = 18180785 }, + { url = "https://files.pythonhosted.org/packages/b2/9f/eb4a9a38867de059dcd4b6e18d47c3867fbd3795d4c9557bb49278f94087/numpy-2.2.1-cp311-cp311-win32.whl", hash = "sha256:b34d87e8a3090ea626003f87f9392b3929a7bbf4104a05b6667348b6bd4bf1cd", size = 6568983 }, + { url = "https://files.pythonhosted.org/packages/6d/1e/be3b9f3073da2f8c7fa361fcdc231b548266b0781029fdbaf75eeab997fd/numpy-2.2.1-cp311-cp311-win_amd64.whl", hash = "sha256:360137f8fb1b753c5cde3ac388597ad680eccbbbb3865ab65efea062c4a1fd16", size = 12917260 }, + { url = "https://files.pythonhosted.org/packages/62/12/b928871c570d4a87ab13d2cc19f8817f17e340d5481621930e76b80ffb7d/numpy-2.2.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:694f9e921a0c8f252980e85bce61ebbd07ed2b7d4fa72d0e4246f2f8aa6642ab", size = 20909861 }, + { url = "https://files.pythonhosted.org/packages/3d/c3/59df91ae1d8ad7c5e03efd63fd785dec62d96b0fe56d1f9ab600b55009af/numpy-2.2.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:3683a8d166f2692664262fd4900f207791d005fb088d7fdb973cc8d663626faa", size = 14095776 }, + { url = "https://files.pythonhosted.org/packages/af/4e/8ed5868efc8e601fb69419644a280e9c482b75691466b73bfaab7d86922c/numpy-2.2.1-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:780077d95eafc2ccc3ced969db22377b3864e5b9a0ea5eb347cc93b3ea900315", size = 5126239 }, + { url = "https://files.pythonhosted.org/packages/1a/74/dd0bbe650d7bc0014b051f092f2de65e34a8155aabb1287698919d124d7f/numpy-2.2.1-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:55ba24ebe208344aa7a00e4482f65742969a039c2acfcb910bc6fcd776eb4355", size = 6659296 }, + { url = "https://files.pythonhosted.org/packages/7f/11/4ebd7a3f4a655764dc98481f97bd0a662fb340d1001be6050606be13e162/numpy-2.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9b1d07b53b78bf84a96898c1bc139ad7f10fda7423f5fd158fd0f47ec5e01ac7", size = 14047121 }, + { url = "https://files.pythonhosted.org/packages/7f/a7/c1f1d978166eb6b98ad009503e4d93a8c1962d0eb14a885c352ee0276a54/numpy-2.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5062dc1a4e32a10dc2b8b13cedd58988261416e811c1dc4dbdea4f57eea61b0d", size = 16096599 }, + { url = "https://files.pythonhosted.org/packages/3d/6d/0e22afd5fcbb4d8d0091f3f46bf4e8906399c458d4293da23292c0ba5022/numpy-2.2.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:fce4f615f8ca31b2e61aa0eb5865a21e14f5629515c9151850aa936c02a1ee51", size = 15243932 }, + { url = "https://files.pythonhosted.org/packages/03/39/e4e5832820131ba424092b9610d996b37e5557180f8e2d6aebb05c31ae54/numpy-2.2.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:67d4cda6fa6ffa073b08c8372aa5fa767ceb10c9a0587c707505a6d426f4e046", size = 17861032 }, + { url = "https://files.pythonhosted.org/packages/5f/8a/3794313acbf5e70df2d5c7d2aba8718676f8d054a05abe59e48417fb2981/numpy-2.2.1-cp312-cp312-win32.whl", hash = "sha256:32cb94448be47c500d2c7a95f93e2f21a01f1fd05dd2beea1ccd049bb6001cd2", size = 6274018 }, + { url = "https://files.pythonhosted.org/packages/17/c1/c31d3637f2641e25c7a19adf2ae822fdaf4ddd198b05d79a92a9ce7cb63e/numpy-2.2.1-cp312-cp312-win_amd64.whl", hash = "sha256:ba5511d8f31c033a5fcbda22dd5c813630af98c70b2661f2d2c654ae3cdfcfc8", size = 12613843 }, + { url = "https://files.pythonhosted.org/packages/20/d6/91a26e671c396e0c10e327b763485ee295f5a5a7a48c553f18417e5a0ed5/numpy-2.2.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f1d09e520217618e76396377c81fba6f290d5f926f50c35f3a5f72b01a0da780", size = 20896464 }, + { url = "https://files.pythonhosted.org/packages/8c/40/5792ccccd91d45e87d9e00033abc4f6ca8a828467b193f711139ff1f1cd9/numpy-2.2.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:3ecc47cd7f6ea0336042be87d9e7da378e5c7e9b3c8ad0f7c966f714fc10d821", size = 14111350 }, + { url = "https://files.pythonhosted.org/packages/c0/2a/fb0a27f846cb857cef0c4c92bef89f133a3a1abb4e16bba1c4dace2e9b49/numpy-2.2.1-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:f419290bc8968a46c4933158c91a0012b7a99bb2e465d5ef5293879742f8797e", size = 5111629 }, + { url = "https://files.pythonhosted.org/packages/eb/e5/8e81bb9d84db88b047baf4e8b681a3e48d6390bc4d4e4453eca428ecbb49/numpy-2.2.1-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:5b6c390bfaef8c45a260554888966618328d30e72173697e5cabe6b285fb2348", size = 6645865 }, + { url = "https://files.pythonhosted.org/packages/7a/1a/a90ceb191dd2f9e2897c69dde93ccc2d57dd21ce2acbd7b0333e8eea4e8d/numpy-2.2.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:526fc406ab991a340744aad7e25251dd47a6720a685fa3331e5c59fef5282a59", size = 14043508 }, + { url = "https://files.pythonhosted.org/packages/f1/5a/e572284c86a59dec0871a49cd4e5351e20b9c751399d5f1d79628c0542cb/numpy-2.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f74e6fdeb9a265624ec3a3918430205dff1df7e95a230779746a6af78bc615af", size = 16094100 }, + { url = "https://files.pythonhosted.org/packages/0c/2c/a79d24f364788386d85899dd280a94f30b0950be4b4a545f4fa4ed1d4ca7/numpy-2.2.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:53c09385ff0b72ba79d8715683c1168c12e0b6e84fb0372e97553d1ea91efe51", size = 15239691 }, + { url = "https://files.pythonhosted.org/packages/cf/79/1e20fd1c9ce5a932111f964b544facc5bb9bde7865f5b42f00b4a6a9192b/numpy-2.2.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:f3eac17d9ec51be534685ba877b6ab5edc3ab7ec95c8f163e5d7b39859524716", size = 17856571 }, + { url = "https://files.pythonhosted.org/packages/be/5b/cc155e107f75d694f562bdc84a26cc930569f3dfdfbccb3420b626065777/numpy-2.2.1-cp313-cp313-win32.whl", hash = "sha256:9ad014faa93dbb52c80d8f4d3dcf855865c876c9660cb9bd7553843dd03a4b1e", size = 6270841 }, + { url = "https://files.pythonhosted.org/packages/44/be/0e5cd009d2162e4138d79a5afb3b5d2341f0fe4777ab6e675aa3d4a42e21/numpy-2.2.1-cp313-cp313-win_amd64.whl", hash = "sha256:164a829b6aacf79ca47ba4814b130c4020b202522a93d7bff2202bfb33b61c60", size = 12606618 }, + { url = "https://files.pythonhosted.org/packages/a8/87/04ddf02dd86fb17c7485a5f87b605c4437966d53de1e3745d450343a6f56/numpy-2.2.1-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:4dfda918a13cc4f81e9118dea249e192ab167a0bb1966272d5503e39234d694e", size = 20921004 }, + { url = "https://files.pythonhosted.org/packages/6e/3e/d0e9e32ab14005425d180ef950badf31b862f3839c5b927796648b11f88a/numpy-2.2.1-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:733585f9f4b62e9b3528dd1070ec4f52b8acf64215b60a845fa13ebd73cd0712", size = 14119910 }, + { url = "https://files.pythonhosted.org/packages/b5/5b/aa2d1905b04a8fb681e08742bb79a7bddfc160c7ce8e1ff6d5c821be0236/numpy-2.2.1-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:89b16a18e7bba224ce5114db863e7029803c179979e1af6ad6a6b11f70545008", size = 5153612 }, + { url = "https://files.pythonhosted.org/packages/ce/35/6831808028df0648d9b43c5df7e1051129aa0d562525bacb70019c5f5030/numpy-2.2.1-cp313-cp313t-macosx_14_0_x86_64.whl", hash = "sha256:676f4eebf6b2d430300f1f4f4c2461685f8269f94c89698d832cdf9277f30b84", size = 6668401 }, + { url = "https://files.pythonhosted.org/packages/b1/38/10ef509ad63a5946cc042f98d838daebfe7eaf45b9daaf13df2086b15ff9/numpy-2.2.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:27f5cdf9f493b35f7e41e8368e7d7b4bbafaf9660cba53fb21d2cd174ec09631", size = 14014198 }, + { url = "https://files.pythonhosted.org/packages/df/f8/c80968ae01df23e249ee0a4487fae55a4c0fe2f838dfe9cc907aa8aea0fa/numpy-2.2.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c1ad395cf254c4fbb5b2132fee391f361a6e8c1adbd28f2cd8e79308a615fe9d", size = 16076211 }, + { url = "https://files.pythonhosted.org/packages/09/69/05c169376016a0b614b432967ac46ff14269eaffab80040ec03ae1ae8e2c/numpy-2.2.1-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:08ef779aed40dbc52729d6ffe7dd51df85796a702afbf68a4f4e41fafdc8bda5", size = 15220266 }, + { url = "https://files.pythonhosted.org/packages/f1/ff/94a4ce67ea909f41cf7ea712aebbe832dc67decad22944a1020bb398a5ee/numpy-2.2.1-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:26c9c4382b19fcfbbed3238a14abf7ff223890ea1936b8890f058e7ba35e8d71", size = 17852844 }, + { url = "https://files.pythonhosted.org/packages/46/72/8a5dbce4020dfc595592333ef2fbb0a187d084ca243b67766d29d03e0096/numpy-2.2.1-cp313-cp313t-win32.whl", hash = "sha256:93cf4e045bae74c90ca833cba583c14b62cb4ba2cba0abd2b141ab52548247e2", size = 6326007 }, + { url = "https://files.pythonhosted.org/packages/7b/9c/4fce9cf39dde2562584e4cfd351a0140240f82c0e3569ce25a250f47037d/numpy-2.2.1-cp313-cp313t-win_amd64.whl", hash = "sha256:bff7d8ec20f5f42607599f9994770fa65d76edca264a87b5e4ea5629bce12268", size = 12693107 }, + { url = "https://files.pythonhosted.org/packages/f1/65/d36a76b811ffe0a4515e290cb05cb0e22171b1b0f0db6bee9141cf023545/numpy-2.2.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:7ba9cc93a91d86365a5d270dee221fdc04fb68d7478e6bf6af650de78a8339e3", size = 21044672 }, + { url = "https://files.pythonhosted.org/packages/aa/3f/b644199f165063154df486d95198d814578f13dd4d8c1651e075bf1cb8af/numpy-2.2.1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl", hash = "sha256:3d03883435a19794e41f147612a77a8f56d4e52822337844fff3d4040a142964", size = 6789873 }, + { url = "https://files.pythonhosted.org/packages/d7/df/2adb0bb98a3cbe8a6c3c6d1019aede1f1d8b83927ced228a46cc56c7a206/numpy-2.2.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4511d9e6071452b944207c8ce46ad2f897307910b402ea5fa975da32e0102800", size = 16194933 }, + { url = "https://files.pythonhosted.org/packages/13/3e/1959d5219a9e6d200638d924cedda6a606392f7186a4ed56478252e70d55/numpy-2.2.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:5c5cc0cbabe9452038ed984d05ac87910f89370b9242371bd9079cb4af61811e", size = 12820057 }, +] + +[[package]] +name = "overrides" +version = "7.7.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/36/86/b585f53236dec60aba864e050778b25045f857e17f6e5ea0ae95fe80edd2/overrides-7.7.0.tar.gz", hash = "sha256:55158fa3d93b98cc75299b1e67078ad9003ca27945c76162c1c0766d6f91820a", size = 22812 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/2c/ab/fc8290c6a4c722e5514d80f62b2dc4c4df1a68a41d1364e625c35990fcf3/overrides-7.7.0-py3-none-any.whl", hash = "sha256:c7ed9d062f78b8e4c1a7b70bd8796b35ead4d9f510227ef9c5dc7626c60d7e49", size = 17832 }, +] + +[[package]] +name = "packaging" +version = "24.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/d0/63/68dbb6eb2de9cb10ee4c9c14a0148804425e13c4fb20d61cce69f53106da/packaging-24.2.tar.gz", hash = "sha256:c228a6dc5e932d346bc5739379109d49e8853dd8223571c7c5b55260edc0b97f", size = 163950 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/88/ef/eb23f262cca3c0c4eb7ab1933c3b1f03d021f2c48f54763065b6f0e321be/packaging-24.2-py3-none-any.whl", hash = "sha256:09abb1bccd265c01f4a3aa3f7a7db064b36514d2cba19a2f694fe6150451a759", size = 65451 }, +] + +[[package]] +name = "pandas" +version = "2.2.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "numpy" }, + { name = "python-dateutil" }, + { name = "pytz" }, + { name = "tzdata" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/9c/d6/9f8431bacc2e19dca897724cd097b1bb224a6ad5433784a44b587c7c13af/pandas-2.2.3.tar.gz", hash = "sha256:4f18ba62b61d7e192368b84517265a99b4d7ee8912f8708660fb4a366cc82667", size = 4399213 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/aa/70/c853aec59839bceed032d52010ff5f1b8d87dc3114b762e4ba2727661a3b/pandas-2.2.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1948ddde24197a0f7add2bdc4ca83bf2b1ef84a1bc8ccffd95eda17fd836ecb5", size = 12580827 }, + { url = "https://files.pythonhosted.org/packages/99/f2/c4527768739ffa4469b2b4fff05aa3768a478aed89a2f271a79a40eee984/pandas-2.2.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:381175499d3802cde0eabbaf6324cce0c4f5d52ca6f8c377c29ad442f50f6348", size = 11303897 }, + { url = "https://files.pythonhosted.org/packages/ed/12/86c1747ea27989d7a4064f806ce2bae2c6d575b950be087837bdfcabacc9/pandas-2.2.3-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:d9c45366def9a3dd85a6454c0e7908f2b3b8e9c138f5dc38fed7ce720d8453ed", size = 66480908 }, + { url = "https://files.pythonhosted.org/packages/44/50/7db2cd5e6373ae796f0ddad3675268c8d59fb6076e66f0c339d61cea886b/pandas-2.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:86976a1c5b25ae3f8ccae3a5306e443569ee3c3faf444dfd0f41cda24667ad57", size = 13064210 }, + { url = "https://files.pythonhosted.org/packages/61/61/a89015a6d5536cb0d6c3ba02cebed51a95538cf83472975275e28ebf7d0c/pandas-2.2.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:b8661b0238a69d7aafe156b7fa86c44b881387509653fdf857bebc5e4008ad42", size = 16754292 }, + { url = "https://files.pythonhosted.org/packages/ce/0d/4cc7b69ce37fac07645a94e1d4b0880b15999494372c1523508511b09e40/pandas-2.2.3-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:37e0aced3e8f539eccf2e099f65cdb9c8aa85109b0be6e93e2baff94264bdc6f", size = 14416379 }, + { url = "https://files.pythonhosted.org/packages/31/9e/6ebb433de864a6cd45716af52a4d7a8c3c9aaf3a98368e61db9e69e69a9c/pandas-2.2.3-cp310-cp310-win_amd64.whl", hash = "sha256:56534ce0746a58afaf7942ba4863e0ef81c9c50d3f0ae93e9497d6a41a057645", size = 11598471 }, + { url = "https://files.pythonhosted.org/packages/a8/44/d9502bf0ed197ba9bf1103c9867d5904ddcaf869e52329787fc54ed70cc8/pandas-2.2.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:66108071e1b935240e74525006034333f98bcdb87ea116de573a6a0dccb6c039", size = 12602222 }, + { url = "https://files.pythonhosted.org/packages/52/11/9eac327a38834f162b8250aab32a6781339c69afe7574368fffe46387edf/pandas-2.2.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:7c2875855b0ff77b2a64a0365e24455d9990730d6431b9e0ee18ad8acee13dbd", size = 11321274 }, + { url = "https://files.pythonhosted.org/packages/45/fb/c4beeb084718598ba19aa9f5abbc8aed8b42f90930da861fcb1acdb54c3a/pandas-2.2.3-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:cd8d0c3be0515c12fed0bdbae072551c8b54b7192c7b1fda0ba56059a0179698", size = 15579836 }, + { url = "https://files.pythonhosted.org/packages/cd/5f/4dba1d39bb9c38d574a9a22548c540177f78ea47b32f99c0ff2ec499fac5/pandas-2.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c124333816c3a9b03fbeef3a9f230ba9a737e9e5bb4060aa2107a86cc0a497fc", size = 13058505 }, + { url = "https://files.pythonhosted.org/packages/b9/57/708135b90391995361636634df1f1130d03ba456e95bcf576fada459115a/pandas-2.2.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:63cc132e40a2e084cf01adf0775b15ac515ba905d7dcca47e9a251819c575ef3", size = 16744420 }, + { url = "https://files.pythonhosted.org/packages/86/4a/03ed6b7ee323cf30404265c284cee9c65c56a212e0a08d9ee06984ba2240/pandas-2.2.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:29401dbfa9ad77319367d36940cd8a0b3a11aba16063e39632d98b0e931ddf32", size = 14440457 }, + { url = "https://files.pythonhosted.org/packages/ed/8c/87ddf1fcb55d11f9f847e3c69bb1c6f8e46e2f40ab1a2d2abadb2401b007/pandas-2.2.3-cp311-cp311-win_amd64.whl", hash = "sha256:3fc6873a41186404dad67245896a6e440baacc92f5b716ccd1bc9ed2995ab2c5", size = 11617166 }, + { url = "https://files.pythonhosted.org/packages/17/a3/fb2734118db0af37ea7433f57f722c0a56687e14b14690edff0cdb4b7e58/pandas-2.2.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:b1d432e8d08679a40e2a6d8b2f9770a5c21793a6f9f47fdd52c5ce1948a5a8a9", size = 12529893 }, + { url = "https://files.pythonhosted.org/packages/e1/0c/ad295fd74bfac85358fd579e271cded3ac969de81f62dd0142c426b9da91/pandas-2.2.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a5a1595fe639f5988ba6a8e5bc9649af3baf26df3998a0abe56c02609392e0a4", size = 11363475 }, + { url = "https://files.pythonhosted.org/packages/c6/2a/4bba3f03f7d07207481fed47f5b35f556c7441acddc368ec43d6643c5777/pandas-2.2.3-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:5de54125a92bb4d1c051c0659e6fcb75256bf799a732a87184e5ea503965bce3", size = 15188645 }, + { url = "https://files.pythonhosted.org/packages/38/f8/d8fddee9ed0d0c0f4a2132c1dfcf0e3e53265055da8df952a53e7eaf178c/pandas-2.2.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fffb8ae78d8af97f849404f21411c95062db1496aeb3e56f146f0355c9989319", size = 12739445 }, + { url = "https://files.pythonhosted.org/packages/20/e8/45a05d9c39d2cea61ab175dbe6a2de1d05b679e8de2011da4ee190d7e748/pandas-2.2.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6dfcb5ee8d4d50c06a51c2fffa6cff6272098ad6540aed1a76d15fb9318194d8", size = 16359235 }, + { url = "https://files.pythonhosted.org/packages/1d/99/617d07a6a5e429ff90c90da64d428516605a1ec7d7bea494235e1c3882de/pandas-2.2.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:062309c1b9ea12a50e8ce661145c6aab431b1e99530d3cd60640e255778bd43a", size = 14056756 }, + { url = "https://files.pythonhosted.org/packages/29/d4/1244ab8edf173a10fd601f7e13b9566c1b525c4f365d6bee918e68381889/pandas-2.2.3-cp312-cp312-win_amd64.whl", hash = "sha256:59ef3764d0fe818125a5097d2ae867ca3fa64df032331b7e0917cf5d7bf66b13", size = 11504248 }, + { url = "https://files.pythonhosted.org/packages/64/22/3b8f4e0ed70644e85cfdcd57454686b9057c6c38d2f74fe4b8bc2527214a/pandas-2.2.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f00d1345d84d8c86a63e476bb4955e46458b304b9575dcf71102b5c705320015", size = 12477643 }, + { url = "https://files.pythonhosted.org/packages/e4/93/b3f5d1838500e22c8d793625da672f3eec046b1a99257666c94446969282/pandas-2.2.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:3508d914817e153ad359d7e069d752cdd736a247c322d932eb89e6bc84217f28", size = 11281573 }, + { url = "https://files.pythonhosted.org/packages/f5/94/6c79b07f0e5aab1dcfa35a75f4817f5c4f677931d4234afcd75f0e6a66ca/pandas-2.2.3-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:22a9d949bfc9a502d320aa04e5d02feab689d61da4e7764b62c30b991c42c5f0", size = 15196085 }, + { url = "https://files.pythonhosted.org/packages/e8/31/aa8da88ca0eadbabd0a639788a6da13bb2ff6edbbb9f29aa786450a30a91/pandas-2.2.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f3a255b2c19987fbbe62a9dfd6cff7ff2aa9ccab3fc75218fd4b7530f01efa24", size = 12711809 }, + { url = "https://files.pythonhosted.org/packages/ee/7c/c6dbdb0cb2a4344cacfb8de1c5808ca885b2e4dcfde8008266608f9372af/pandas-2.2.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:800250ecdadb6d9c78eae4990da62743b857b470883fa27f652db8bdde7f6659", size = 16356316 }, + { url = "https://files.pythonhosted.org/packages/57/b7/8b757e7d92023b832869fa8881a992696a0bfe2e26f72c9ae9f255988d42/pandas-2.2.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:6374c452ff3ec675a8f46fd9ab25c4ad0ba590b71cf0656f8b6daa5202bca3fb", size = 14022055 }, + { url = "https://files.pythonhosted.org/packages/3b/bc/4b18e2b8c002572c5a441a64826252ce5da2aa738855747247a971988043/pandas-2.2.3-cp313-cp313-win_amd64.whl", hash = "sha256:61c5ad4043f791b61dd4752191d9f07f0ae412515d59ba8f005832a532f8736d", size = 11481175 }, + { url = "https://files.pythonhosted.org/packages/76/a3/a5d88146815e972d40d19247b2c162e88213ef51c7c25993942c39dbf41d/pandas-2.2.3-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:3b71f27954685ee685317063bf13c7709a7ba74fc996b84fc6821c59b0f06468", size = 12615650 }, + { url = "https://files.pythonhosted.org/packages/9c/8c/f0fd18f6140ddafc0c24122c8a964e48294acc579d47def376fef12bcb4a/pandas-2.2.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:38cf8125c40dae9d5acc10fa66af8ea6fdf760b2714ee482ca691fc66e6fcb18", size = 11290177 }, + { url = "https://files.pythonhosted.org/packages/ed/f9/e995754eab9c0f14c6777401f7eece0943840b7a9fc932221c19d1abee9f/pandas-2.2.3-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:ba96630bc17c875161df3818780af30e43be9b166ce51c9a18c1feae342906c2", size = 14651526 }, + { url = "https://files.pythonhosted.org/packages/25/b0/98d6ae2e1abac4f35230aa756005e8654649d305df9a28b16b9ae4353bff/pandas-2.2.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1db71525a1538b30142094edb9adc10be3f3e176748cd7acc2240c2f2e5aa3a4", size = 11871013 }, + { url = "https://files.pythonhosted.org/packages/cc/57/0f72a10f9db6a4628744c8e8f0df4e6e21de01212c7c981d31e50ffc8328/pandas-2.2.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:15c0e1e02e93116177d29ff83e8b1619c93ddc9c49083f237d4312337a61165d", size = 15711620 }, + { url = "https://files.pythonhosted.org/packages/ab/5f/b38085618b950b79d2d9164a711c52b10aefc0ae6833b96f626b7021b2ed/pandas-2.2.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:ad5b65698ab28ed8d7f18790a0dc58005c7629f227be9ecc1072aa74c0c1d43a", size = 13098436 }, +] + +[[package]] +name = "pandocfilters" +version = "1.5.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/70/6f/3dd4940bbe001c06a65f88e36bad298bc7a0de5036115639926b0c5c0458/pandocfilters-1.5.1.tar.gz", hash = "sha256:002b4a555ee4ebc03f8b66307e287fa492e4a77b4ea14d3f934328297bb4939e", size = 8454 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ef/af/4fbc8cab944db5d21b7e2a5b8e9211a03a79852b1157e2c102fcc61ac440/pandocfilters-1.5.1-py2.py3-none-any.whl", hash = "sha256:93be382804a9cdb0a7267585f157e5d1731bbe5545a85b268d6f5fe6232de2bc", size = 8663 }, +] + +[[package]] +name = "parso" +version = "0.8.4" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/66/94/68e2e17afaa9169cf6412ab0f28623903be73d1b32e208d9e8e541bb086d/parso-0.8.4.tar.gz", hash = "sha256:eb3a7b58240fb99099a345571deecc0f9540ea5f4dd2fe14c2a99d6b281ab92d", size = 400609 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/c6/ac/dac4a63f978e4dcb3c6d3a78c4d8e0192a113d288502a1216950c41b1027/parso-0.8.4-py2.py3-none-any.whl", hash = "sha256:a418670a20291dacd2dddc80c377c5c3791378ee1e8d12bffc35420643d43f18", size = 103650 }, +] + +[[package]] +name = "pdoc" +version = "15.0.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "jinja2" }, + { name = "markupsafe" }, + { name = "pygments" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/bf/16/1b542af6f18a27de059f722c487a596681127897b6d31f78e46d6e5bf2fe/pdoc-15.0.1.tar.gz", hash = "sha256:3b08382c9d312243ee6c2a1813d0ff517a6ab84d596fa2c6c6b5255b17c3d666", size = 154174 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/2f/4d/60d856a1b12fbf6ac1539efccfa138e57c6b88675c9867d84bbb46455cc1/pdoc-15.0.1-py3-none-any.whl", hash = "sha256:fd437ab8eb55f9b942226af7865a3801e2fb731665199b74fd9a44737dbe20f9", size = 144186 }, +] + +[[package]] +name = "pexpect" +version = "4.9.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "ptyprocess" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/42/92/cc564bf6381ff43ce1f4d06852fc19a2f11d180f23dc32d9588bee2f149d/pexpect-4.9.0.tar.gz", hash = "sha256:ee7d41123f3c9911050ea2c2dac107568dc43b2d3b0c7557a33212c398ead30f", size = 166450 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/9e/c3/059298687310d527a58bb01f3b1965787ee3b40dce76752eda8b44e9a2c5/pexpect-4.9.0-py2.py3-none-any.whl", hash = "sha256:7236d1e080e4936be2dc3e326cec0af72acf9212a7e1d060210e70a47e253523", size = 63772 }, +] + +[[package]] +name = "pillow" +version = "11.1.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/f3/af/c097e544e7bd278333db77933e535098c259609c4eb3b85381109602fb5b/pillow-11.1.0.tar.gz", hash = "sha256:368da70808b36d73b4b390a8ffac11069f8a5c85f29eff1f1b01bcf3ef5b2a20", size = 46742715 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/50/1c/2dcea34ac3d7bc96a1fd1bd0a6e06a57c67167fec2cff8d95d88229a8817/pillow-11.1.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:e1abe69aca89514737465752b4bcaf8016de61b3be1397a8fc260ba33321b3a8", size = 3229983 }, + { url = "https://files.pythonhosted.org/packages/14/ca/6bec3df25e4c88432681de94a3531cc738bd85dea6c7aa6ab6f81ad8bd11/pillow-11.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c640e5a06869c75994624551f45e5506e4256562ead981cce820d5ab39ae2192", size = 3101831 }, + { url = "https://files.pythonhosted.org/packages/d4/2c/668e18e5521e46eb9667b09e501d8e07049eb5bfe39d56be0724a43117e6/pillow-11.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a07dba04c5e22824816b2615ad7a7484432d7f540e6fa86af60d2de57b0fcee2", size = 4314074 }, + { url = "https://files.pythonhosted.org/packages/02/80/79f99b714f0fc25f6a8499ecfd1f810df12aec170ea1e32a4f75746051ce/pillow-11.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e267b0ed063341f3e60acd25c05200df4193e15a4a5807075cd71225a2386e26", size = 4394933 }, + { url = "https://files.pythonhosted.org/packages/81/aa/8d4ad25dc11fd10a2001d5b8a80fdc0e564ac33b293bdfe04ed387e0fd95/pillow-11.1.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:bd165131fd51697e22421d0e467997ad31621b74bfc0b75956608cb2906dda07", size = 4353349 }, + { url = "https://files.pythonhosted.org/packages/84/7a/cd0c3eaf4a28cb2a74bdd19129f7726277a7f30c4f8424cd27a62987d864/pillow-11.1.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:abc56501c3fd148d60659aae0af6ddc149660469082859fa7b066a298bde9482", size = 4476532 }, + { url = "https://files.pythonhosted.org/packages/8f/8b/a907fdd3ae8f01c7670dfb1499c53c28e217c338b47a813af8d815e7ce97/pillow-11.1.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:54ce1c9a16a9561b6d6d8cb30089ab1e5eb66918cb47d457bd996ef34182922e", size = 4279789 }, + { url = "https://files.pythonhosted.org/packages/6f/9a/9f139d9e8cccd661c3efbf6898967a9a337eb2e9be2b454ba0a09533100d/pillow-11.1.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:73ddde795ee9b06257dac5ad42fcb07f3b9b813f8c1f7f870f402f4dc54b5269", size = 4413131 }, + { url = "https://files.pythonhosted.org/packages/a8/68/0d8d461f42a3f37432203c8e6df94da10ac8081b6d35af1c203bf3111088/pillow-11.1.0-cp310-cp310-win32.whl", hash = "sha256:3a5fe20a7b66e8135d7fd617b13272626a28278d0e578c98720d9ba4b2439d49", size = 2291213 }, + { url = "https://files.pythonhosted.org/packages/14/81/d0dff759a74ba87715509af9f6cb21fa21d93b02b3316ed43bda83664db9/pillow-11.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:b6123aa4a59d75f06e9dd3dac5bf8bc9aa383121bb3dd9a7a612e05eabc9961a", size = 2625725 }, + { url = "https://files.pythonhosted.org/packages/ce/1f/8d50c096a1d58ef0584ddc37e6f602828515219e9d2428e14ce50f5ecad1/pillow-11.1.0-cp310-cp310-win_arm64.whl", hash = "sha256:a76da0a31da6fcae4210aa94fd779c65c75786bc9af06289cd1c184451ef7a65", size = 2375213 }, + { url = "https://files.pythonhosted.org/packages/dd/d6/2000bfd8d5414fb70cbbe52c8332f2283ff30ed66a9cde42716c8ecbe22c/pillow-11.1.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:e06695e0326d05b06833b40b7ef477e475d0b1ba3a6d27da1bb48c23209bf457", size = 3229968 }, + { url = "https://files.pythonhosted.org/packages/d9/45/3fe487010dd9ce0a06adf9b8ff4f273cc0a44536e234b0fad3532a42c15b/pillow-11.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:96f82000e12f23e4f29346e42702b6ed9a2f2fea34a740dd5ffffcc8c539eb35", size = 3101806 }, + { url = "https://files.pythonhosted.org/packages/e3/72/776b3629c47d9d5f1c160113158a7a7ad177688d3a1159cd3b62ded5a33a/pillow-11.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a3cd561ded2cf2bbae44d4605837221b987c216cff94f49dfeed63488bb228d2", size = 4322283 }, + { url = "https://files.pythonhosted.org/packages/e4/c2/e25199e7e4e71d64eeb869f5b72c7ddec70e0a87926398785ab944d92375/pillow-11.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f189805c8be5ca5add39e6f899e6ce2ed824e65fb45f3c28cb2841911da19070", size = 4402945 }, + { url = "https://files.pythonhosted.org/packages/c1/ed/51d6136c9d5911f78632b1b86c45241c712c5a80ed7fa7f9120a5dff1eba/pillow-11.1.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:dd0052e9db3474df30433f83a71b9b23bd9e4ef1de13d92df21a52c0303b8ab6", size = 4361228 }, + { url = "https://files.pythonhosted.org/packages/48/a4/fbfe9d5581d7b111b28f1d8c2762dee92e9821bb209af9fa83c940e507a0/pillow-11.1.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:837060a8599b8f5d402e97197d4924f05a2e0d68756998345c829c33186217b1", size = 4484021 }, + { url = "https://files.pythonhosted.org/packages/39/db/0b3c1a5018117f3c1d4df671fb8e47d08937f27519e8614bbe86153b65a5/pillow-11.1.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:aa8dd43daa836b9a8128dbe7d923423e5ad86f50a7a14dc688194b7be5c0dea2", size = 4287449 }, + { url = "https://files.pythonhosted.org/packages/d9/58/bc128da7fea8c89fc85e09f773c4901e95b5936000e6f303222490c052f3/pillow-11.1.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:0a2f91f8a8b367e7a57c6e91cd25af510168091fb89ec5146003e424e1558a96", size = 4419972 }, + { url = "https://files.pythonhosted.org/packages/5f/bb/58f34379bde9fe197f51841c5bbe8830c28bbb6d3801f16a83b8f2ad37df/pillow-11.1.0-cp311-cp311-win32.whl", hash = "sha256:c12fc111ef090845de2bb15009372175d76ac99969bdf31e2ce9b42e4b8cd88f", size = 2291201 }, + { url = "https://files.pythonhosted.org/packages/3a/c6/fce9255272bcf0c39e15abd2f8fd8429a954cf344469eaceb9d0d1366913/pillow-11.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:fbd43429d0d7ed6533b25fc993861b8fd512c42d04514a0dd6337fb3ccf22761", size = 2625686 }, + { url = "https://files.pythonhosted.org/packages/c8/52/8ba066d569d932365509054859f74f2a9abee273edcef5cd75e4bc3e831e/pillow-11.1.0-cp311-cp311-win_arm64.whl", hash = "sha256:f7955ecf5609dee9442cbface754f2c6e541d9e6eda87fad7f7a989b0bdb9d71", size = 2375194 }, + { url = "https://files.pythonhosted.org/packages/95/20/9ce6ed62c91c073fcaa23d216e68289e19d95fb8188b9fb7a63d36771db8/pillow-11.1.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:2062ffb1d36544d42fcaa277b069c88b01bb7298f4efa06731a7fd6cc290b81a", size = 3226818 }, + { url = "https://files.pythonhosted.org/packages/b9/d8/f6004d98579a2596c098d1e30d10b248798cceff82d2b77aa914875bfea1/pillow-11.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a85b653980faad27e88b141348707ceeef8a1186f75ecc600c395dcac19f385b", size = 3101662 }, + { url = "https://files.pythonhosted.org/packages/08/d9/892e705f90051c7a2574d9f24579c9e100c828700d78a63239676f960b74/pillow-11.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9409c080586d1f683df3f184f20e36fb647f2e0bc3988094d4fd8c9f4eb1b3b3", size = 4329317 }, + { url = "https://files.pythonhosted.org/packages/8c/aa/7f29711f26680eab0bcd3ecdd6d23ed6bce180d82e3f6380fb7ae35fcf3b/pillow-11.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7fdadc077553621911f27ce206ffcbec7d3f8d7b50e0da39f10997e8e2bb7f6a", size = 4412999 }, + { url = "https://files.pythonhosted.org/packages/c8/c4/8f0fe3b9e0f7196f6d0bbb151f9fba323d72a41da068610c4c960b16632a/pillow-11.1.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:93a18841d09bcdd774dcdc308e4537e1f867b3dec059c131fde0327899734aa1", size = 4368819 }, + { url = "https://files.pythonhosted.org/packages/38/0d/84200ed6a871ce386ddc82904bfadc0c6b28b0c0ec78176871a4679e40b3/pillow-11.1.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:9aa9aeddeed452b2f616ff5507459e7bab436916ccb10961c4a382cd3e03f47f", size = 4496081 }, + { url = "https://files.pythonhosted.org/packages/84/9c/9bcd66f714d7e25b64118e3952d52841a4babc6d97b6d28e2261c52045d4/pillow-11.1.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:3cdcdb0b896e981678eee140d882b70092dac83ac1cdf6b3a60e2216a73f2b91", size = 4296513 }, + { url = "https://files.pythonhosted.org/packages/db/61/ada2a226e22da011b45f7104c95ebda1b63dcbb0c378ad0f7c2a710f8fd2/pillow-11.1.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:36ba10b9cb413e7c7dfa3e189aba252deee0602c86c309799da5a74009ac7a1c", size = 4431298 }, + { url = "https://files.pythonhosted.org/packages/e7/c4/fc6e86750523f367923522014b821c11ebc5ad402e659d8c9d09b3c9d70c/pillow-11.1.0-cp312-cp312-win32.whl", hash = "sha256:cfd5cd998c2e36a862d0e27b2df63237e67273f2fc78f47445b14e73a810e7e6", size = 2291630 }, + { url = "https://files.pythonhosted.org/packages/08/5c/2104299949b9d504baf3f4d35f73dbd14ef31bbd1ddc2c1b66a5b7dfda44/pillow-11.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:a697cd8ba0383bba3d2d3ada02b34ed268cb548b369943cd349007730c92bddf", size = 2626369 }, + { url = "https://files.pythonhosted.org/packages/37/f3/9b18362206b244167c958984b57c7f70a0289bfb59a530dd8af5f699b910/pillow-11.1.0-cp312-cp312-win_arm64.whl", hash = "sha256:4dd43a78897793f60766563969442020e90eb7847463eca901e41ba186a7d4a5", size = 2375240 }, + { url = "https://files.pythonhosted.org/packages/b3/31/9ca79cafdce364fd5c980cd3416c20ce1bebd235b470d262f9d24d810184/pillow-11.1.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:ae98e14432d458fc3de11a77ccb3ae65ddce70f730e7c76140653048c71bfcbc", size = 3226640 }, + { url = "https://files.pythonhosted.org/packages/ac/0f/ff07ad45a1f172a497aa393b13a9d81a32e1477ef0e869d030e3c1532521/pillow-11.1.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:cc1331b6d5a6e144aeb5e626f4375f5b7ae9934ba620c0ac6b3e43d5e683a0f0", size = 3101437 }, + { url = "https://files.pythonhosted.org/packages/08/2f/9906fca87a68d29ec4530be1f893149e0cb64a86d1f9f70a7cfcdfe8ae44/pillow-11.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:758e9d4ef15d3560214cddbc97b8ef3ef86ce04d62ddac17ad39ba87e89bd3b1", size = 4326605 }, + { url = "https://files.pythonhosted.org/packages/b0/0f/f3547ee15b145bc5c8b336401b2d4c9d9da67da9dcb572d7c0d4103d2c69/pillow-11.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b523466b1a31d0dcef7c5be1f20b942919b62fd6e9a9be199d035509cbefc0ec", size = 4411173 }, + { url = "https://files.pythonhosted.org/packages/b1/df/bf8176aa5db515c5de584c5e00df9bab0713548fd780c82a86cba2c2fedb/pillow-11.1.0-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:9044b5e4f7083f209c4e35aa5dd54b1dd5b112b108648f5c902ad586d4f945c5", size = 4369145 }, + { url = "https://files.pythonhosted.org/packages/de/7c/7433122d1cfadc740f577cb55526fdc39129a648ac65ce64db2eb7209277/pillow-11.1.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:3764d53e09cdedd91bee65c2527815d315c6b90d7b8b79759cc48d7bf5d4f114", size = 4496340 }, + { url = "https://files.pythonhosted.org/packages/25/46/dd94b93ca6bd555588835f2504bd90c00d5438fe131cf01cfa0c5131a19d/pillow-11.1.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:31eba6bbdd27dde97b0174ddf0297d7a9c3a507a8a1480e1e60ef914fe23d352", size = 4296906 }, + { url = "https://files.pythonhosted.org/packages/a8/28/2f9d32014dfc7753e586db9add35b8a41b7a3b46540e965cb6d6bc607bd2/pillow-11.1.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:b5d658fbd9f0d6eea113aea286b21d3cd4d3fd978157cbf2447a6035916506d3", size = 4431759 }, + { url = "https://files.pythonhosted.org/packages/33/48/19c2cbe7403870fbe8b7737d19eb013f46299cdfe4501573367f6396c775/pillow-11.1.0-cp313-cp313-win32.whl", hash = "sha256:f86d3a7a9af5d826744fabf4afd15b9dfef44fe69a98541f666f66fbb8d3fef9", size = 2291657 }, + { url = "https://files.pythonhosted.org/packages/3b/ad/285c556747d34c399f332ba7c1a595ba245796ef3e22eae190f5364bb62b/pillow-11.1.0-cp313-cp313-win_amd64.whl", hash = "sha256:593c5fd6be85da83656b93ffcccc2312d2d149d251e98588b14fbc288fd8909c", size = 2626304 }, + { url = "https://files.pythonhosted.org/packages/e5/7b/ef35a71163bf36db06e9c8729608f78dedf032fc8313d19bd4be5c2588f3/pillow-11.1.0-cp313-cp313-win_arm64.whl", hash = "sha256:11633d58b6ee5733bde153a8dafd25e505ea3d32e261accd388827ee987baf65", size = 2375117 }, + { url = "https://files.pythonhosted.org/packages/79/30/77f54228401e84d6791354888549b45824ab0ffde659bafa67956303a09f/pillow-11.1.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:70ca5ef3b3b1c4a0812b5c63c57c23b63e53bc38e758b37a951e5bc466449861", size = 3230060 }, + { url = "https://files.pythonhosted.org/packages/ce/b1/56723b74b07dd64c1010fee011951ea9c35a43d8020acd03111f14298225/pillow-11.1.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:8000376f139d4d38d6851eb149b321a52bb8893a88dae8ee7d95840431977081", size = 3106192 }, + { url = "https://files.pythonhosted.org/packages/e1/cd/7bf7180e08f80a4dcc6b4c3a0aa9e0b0ae57168562726a05dc8aa8fa66b0/pillow-11.1.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ee85f0696a17dd28fbcfceb59f9510aa71934b483d1f5601d1030c3c8304f3c", size = 4446805 }, + { url = "https://files.pythonhosted.org/packages/97/42/87c856ea30c8ed97e8efbe672b58c8304dee0573f8c7cab62ae9e31db6ae/pillow-11.1.0-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:dd0e081319328928531df7a0e63621caf67652c8464303fd102141b785ef9547", size = 4530623 }, + { url = "https://files.pythonhosted.org/packages/ff/41/026879e90c84a88e33fb00cc6bd915ac2743c67e87a18f80270dfe3c2041/pillow-11.1.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:e63e4e5081de46517099dc30abe418122f54531a6ae2ebc8680bcd7096860eab", size = 4465191 }, + { url = "https://files.pythonhosted.org/packages/e5/fb/a7960e838bc5df57a2ce23183bfd2290d97c33028b96bde332a9057834d3/pillow-11.1.0-cp313-cp313t-win32.whl", hash = "sha256:dda60aa465b861324e65a78c9f5cf0f4bc713e4309f83bc387be158b077963d9", size = 2295494 }, + { url = "https://files.pythonhosted.org/packages/d7/6c/6ec83ee2f6f0fda8d4cf89045c6be4b0373ebfc363ba8538f8c999f63fcd/pillow-11.1.0-cp313-cp313t-win_amd64.whl", hash = "sha256:ad5db5781c774ab9a9b2c4302bbf0c1014960a0a7be63278d13ae6fdf88126fe", size = 2631595 }, + { url = "https://files.pythonhosted.org/packages/cf/6c/41c21c6c8af92b9fea313aa47c75de49e2f9a467964ee33eb0135d47eb64/pillow-11.1.0-cp313-cp313t-win_arm64.whl", hash = "sha256:67cd427c68926108778a9005f2a04adbd5e67c442ed21d95389fe1d595458756", size = 2377651 }, + { url = "https://files.pythonhosted.org/packages/fa/c5/389961578fb677b8b3244fcd934f720ed25a148b9a5cc81c91bdf59d8588/pillow-11.1.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:8c730dc3a83e5ac137fbc92dfcfe1511ce3b2b5d7578315b63dbbb76f7f51d90", size = 3198345 }, + { url = "https://files.pythonhosted.org/packages/c4/fa/803c0e50ffee74d4b965229e816af55276eac1d5806712de86f9371858fd/pillow-11.1.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:7d33d2fae0e8b170b6a6c57400e077412240f6f5bb2a342cf1ee512a787942bb", size = 3072938 }, + { url = "https://files.pythonhosted.org/packages/dc/67/2a3a5f8012b5d8c63fe53958ba906c1b1d0482ebed5618057ef4d22f8076/pillow-11.1.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a8d65b38173085f24bc07f8b6c505cbb7418009fa1a1fcb111b1f4961814a442", size = 3400049 }, + { url = "https://files.pythonhosted.org/packages/e5/a0/514f0d317446c98c478d1872497eb92e7cde67003fed74f696441e647446/pillow-11.1.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:015c6e863faa4779251436db398ae75051469f7c903b043a48f078e437656f83", size = 3422431 }, + { url = "https://files.pythonhosted.org/packages/cd/00/20f40a935514037b7d3f87adfc87d2c538430ea625b63b3af8c3f5578e72/pillow-11.1.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:d44ff19eea13ae4acdaaab0179fa68c0c6f2f45d66a4d8ec1eda7d6cecbcc15f", size = 3446208 }, + { url = "https://files.pythonhosted.org/packages/28/3c/7de681727963043e093c72e6c3348411b0185eab3263100d4490234ba2f6/pillow-11.1.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:d3d8da4a631471dfaf94c10c85f5277b1f8e42ac42bade1ac67da4b4a7359b73", size = 3509746 }, + { url = "https://files.pythonhosted.org/packages/41/67/936f9814bdd74b2dfd4822f1f7725ab5d8ff4103919a1664eb4874c58b2f/pillow-11.1.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:4637b88343166249fe8aa94e7c4a62a180c4b3898283bb5d3d2fd5fe10d8e4e0", size = 2626353 }, +] + +[[package]] +name = "platformdirs" +version = "4.3.6" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/13/fc/128cc9cb8f03208bdbf93d3aa862e16d376844a14f9a0ce5cf4507372de4/platformdirs-4.3.6.tar.gz", hash = "sha256:357fb2acbc885b0419afd3ce3ed34564c13c9b95c89360cd9563f73aa5e2b907", size = 21302 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/3c/a6/bc1012356d8ece4d66dd75c4b9fc6c1f6650ddd5991e421177d9f8f671be/platformdirs-4.3.6-py3-none-any.whl", hash = "sha256:73e575e1408ab8103900836b97580d5307456908a03e92031bab39e4554cc3fb", size = 18439 }, +] + +[[package]] +name = "pluggy" +version = "1.5.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/96/2d/02d4312c973c6050a18b314a5ad0b3210edb65a906f868e31c111dede4a6/pluggy-1.5.0.tar.gz", hash = "sha256:2cffa88e94fdc978c4c574f15f9e59b7f4201d439195c3715ca9e2486f1d0cf1", size = 67955 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/88/5f/e351af9a41f866ac3f1fac4ca0613908d9a41741cfcf2228f4ad853b697d/pluggy-1.5.0-py3-none-any.whl", hash = "sha256:44e1ad92c8ca002de6377e165f3e0f1be63266ab4d554740532335b9d75ea669", size = 20556 }, +] + +[[package]] +name = "prometheus-client" +version = "0.21.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/62/14/7d0f567991f3a9af8d1cd4f619040c93b68f09a02b6d0b6ab1b2d1ded5fe/prometheus_client-0.21.1.tar.gz", hash = "sha256:252505a722ac04b0456be05c05f75f45d760c2911ffc45f2a06bcaed9f3ae3fb", size = 78551 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ff/c2/ab7d37426c179ceb9aeb109a85cda8948bb269b7561a0be870cc656eefe4/prometheus_client-0.21.1-py3-none-any.whl", hash = "sha256:594b45c410d6f4f8888940fe80b5cc2521b305a1fafe1c58609ef715a001f301", size = 54682 }, +] + +[[package]] +name = "prompt-toolkit" +version = "3.0.48" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "wcwidth" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/2d/4f/feb5e137aff82f7c7f3248267b97451da3644f6cdc218edfe549fb354127/prompt_toolkit-3.0.48.tar.gz", hash = "sha256:d6623ab0477a80df74e646bdbc93621143f5caf104206aa29294d53de1a03d90", size = 424684 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a9/6a/fd08d94654f7e67c52ca30523a178b3f8ccc4237fce4be90d39c938a831a/prompt_toolkit-3.0.48-py3-none-any.whl", hash = "sha256:f49a827f90062e411f1ce1f854f2aedb3c23353244f8108b89283587397ac10e", size = 386595 }, +] + +[[package]] +name = "psutil" +version = "6.1.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/1f/5a/07871137bb752428aa4b659f910b399ba6f291156bdea939be3e96cae7cb/psutil-6.1.1.tar.gz", hash = "sha256:cf8496728c18f2d0b45198f06895be52f36611711746b7f30c464b422b50e2f5", size = 508502 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/61/99/ca79d302be46f7bdd8321089762dd4476ee725fce16fc2b2e1dbba8cac17/psutil-6.1.1-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:fc0ed7fe2231a444fc219b9c42d0376e0a9a1a72f16c5cfa0f68d19f1a0663e8", size = 247511 }, + { url = "https://files.pythonhosted.org/packages/0b/6b/73dbde0dd38f3782905d4587049b9be64d76671042fdcaf60e2430c6796d/psutil-6.1.1-cp36-abi3-macosx_11_0_arm64.whl", hash = "sha256:0bdd4eab935276290ad3cb718e9809412895ca6b5b334f5a9111ee6d9aff9377", size = 248985 }, + { url = "https://files.pythonhosted.org/packages/17/38/c319d31a1d3f88c5b79c68b3116c129e5133f1822157dd6da34043e32ed6/psutil-6.1.1-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b6e06c20c05fe95a3d7302d74e7097756d4ba1247975ad6905441ae1b5b66003", size = 284488 }, + { url = "https://files.pythonhosted.org/packages/9c/39/0f88a830a1c8a3aba27fededc642da37613c57cbff143412e3536f89784f/psutil-6.1.1-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:97f7cb9921fbec4904f522d972f0c0e1f4fabbdd4e0287813b21215074a0f160", size = 287477 }, + { url = "https://files.pythonhosted.org/packages/47/da/99f4345d4ddf2845cb5b5bd0d93d554e84542d116934fde07a0c50bd4e9f/psutil-6.1.1-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:33431e84fee02bc84ea36d9e2c4a6d395d479c9dd9bba2376c1f6ee8f3a4e0b3", size = 289017 }, + { url = "https://files.pythonhosted.org/packages/38/53/bd755c2896f4461fd4f36fa6a6dcb66a88a9e4b9fd4e5b66a77cf9d4a584/psutil-6.1.1-cp37-abi3-win32.whl", hash = "sha256:eaa912e0b11848c4d9279a93d7e2783df352b082f40111e078388701fd479e53", size = 250602 }, + { url = "https://files.pythonhosted.org/packages/7b/d7/7831438e6c3ebbfa6e01a927127a6cb42ad3ab844247f3c5b96bea25d73d/psutil-6.1.1-cp37-abi3-win_amd64.whl", hash = "sha256:f35cfccb065fff93529d2afb4a2e89e363fe63ca1e4a5da22b603a85833c2649", size = 254444 }, +] + +[[package]] +name = "ptyprocess" +version = "0.7.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/20/e5/16ff212c1e452235a90aeb09066144d0c5a6a8c0834397e03f5224495c4e/ptyprocess-0.7.0.tar.gz", hash = "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220", size = 70762 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/22/a6/858897256d0deac81a172289110f31629fc4cee19b6f01283303e18c8db3/ptyprocess-0.7.0-py2.py3-none-any.whl", hash = "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35", size = 13993 }, +] + +[[package]] +name = "pure-eval" +version = "0.2.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/cd/05/0a34433a064256a578f1783a10da6df098ceaa4a57bbeaa96a6c0352786b/pure_eval-0.2.3.tar.gz", hash = "sha256:5f4e983f40564c576c7c8635ae88db5956bb2229d7e9237d03b3c0b0190eaf42", size = 19752 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/8e/37/efad0257dc6e593a18957422533ff0f87ede7c9c6ea010a2177d738fb82f/pure_eval-0.2.3-py3-none-any.whl", hash = "sha256:1db8e35b67b3d218d818ae653e27f06c3aa420901fa7b081ca98cbedc874e0d0", size = 11842 }, +] + +[[package]] +name = "pycparser" +version = "2.22" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/1d/b2/31537cf4b1ca988837256c910a668b553fceb8f069bedc4b1c826024b52c/pycparser-2.22.tar.gz", hash = "sha256:491c8be9c040f5390f5bf44a5b07752bd07f56edf992381b05c701439eec10f6", size = 172736 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/13/a3/a812df4e2dd5696d1f351d58b8fe16a405b234ad2886a0dab9183fb78109/pycparser-2.22-py3-none-any.whl", hash = "sha256:c3702b6d3dd8c7abc1afa565d7e63d53a1d0bd86cdc24edd75470f4de499cfcc", size = 117552 }, +] + +[[package]] +name = "pygments" +version = "2.19.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/7c/2d/c3338d48ea6cc0feb8446d8e6937e1408088a72a39937982cc6111d17f84/pygments-2.19.1.tar.gz", hash = "sha256:61c16d2a8576dc0649d9f39e089b5f02bcd27fba10d8fb4dcc28173f7a45151f", size = 4968581 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/8a/0b/9fcc47d19c48b59121088dd6da2488a49d5f72dacf8262e2790a1d2c7d15/pygments-2.19.1-py3-none-any.whl", hash = "sha256:9ea1544ad55cecf4b8242fab6dd35a93bbce657034b0611ee383099054ab6d8c", size = 1225293 }, +] + +[[package]] +name = "pyparsing" +version = "3.2.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/8b/1a/3544f4f299a47911c2ab3710f534e52fea62a633c96806995da5d25be4b2/pyparsing-3.2.1.tar.gz", hash = "sha256:61980854fd66de3a90028d679a954d5f2623e83144b5afe5ee86f43d762e5f0a", size = 1067694 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/1c/a7/c8a2d361bf89c0d9577c934ebb7421b25dc84bf3a8e3ac0a40aed9acc547/pyparsing-3.2.1-py3-none-any.whl", hash = "sha256:506ff4f4386c4cec0590ec19e6302d3aedb992fdc02c761e90416f158dacf8e1", size = 107716 }, +] + +[[package]] +name = "pytest" +version = "8.3.4" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "colorama", marker = "sys_platform == 'win32'" }, + { name = "exceptiongroup", marker = "python_full_version < '3.11'" }, + { name = "iniconfig" }, + { name = "packaging" }, + { name = "pluggy" }, + { name = "tomli", marker = "python_full_version < '3.11'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/05/35/30e0d83068951d90a01852cb1cef56e5d8a09d20c7f511634cc2f7e0372a/pytest-8.3.4.tar.gz", hash = "sha256:965370d062bce11e73868e0335abac31b4d3de0e82f4007408d242b4f8610761", size = 1445919 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/11/92/76a1c94d3afee238333bc0a42b82935dd8f9cf8ce9e336ff87ee14d9e1cf/pytest-8.3.4-py3-none-any.whl", hash = "sha256:50e16d954148559c9a74109af1eaf0c945ba2d8f30f0a3d3335edde19788b6f6", size = 343083 }, +] + +[[package]] +name = "python-dateutil" +version = "2.9.0.post0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "six" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/66/c0/0c8b6ad9f17a802ee498c46e004a0eb49bc148f2fd230864601a86dcf6db/python-dateutil-2.9.0.post0.tar.gz", hash = "sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3", size = 342432 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ec/57/56b9bcc3c9c6a792fcbaf139543cee77261f3651ca9da0c93f5c1221264b/python_dateutil-2.9.0.post0-py2.py3-none-any.whl", hash = "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427", size = 229892 }, +] + +[[package]] +name = "python-json-logger" +version = "3.2.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/e3/c4/358cd13daa1d912ef795010897a483ab2f0b41c9ea1b35235a8b2f7d15a7/python_json_logger-3.2.1.tar.gz", hash = "sha256:8eb0554ea17cb75b05d2848bc14fb02fbdbd9d6972120781b974380bfa162008", size = 16287 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/4b/72/2f30cf26664fcfa0bd8ec5ee62ec90c03bd485e4a294d92aabc76c5203a5/python_json_logger-3.2.1-py3-none-any.whl", hash = "sha256:cdc17047eb5374bd311e748b42f99d71223f3b0e186f4206cc5d52aefe85b090", size = 14924 }, +] + +[[package]] +name = "pytz" +version = "2024.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/3a/31/3c70bf7603cc2dca0f19bdc53b4537a797747a58875b552c8c413d963a3f/pytz-2024.2.tar.gz", hash = "sha256:2aa355083c50a0f93fa581709deac0c9ad65cca8a9e9beac660adcbd493c798a", size = 319692 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/11/c3/005fcca25ce078d2cc29fd559379817424e94885510568bc1bc53d7d5846/pytz-2024.2-py2.py3-none-any.whl", hash = "sha256:31c7c1817eb7fae7ca4b8c7ee50c72f93aa2dd863de768e1ef4245d426aa0725", size = 508002 }, +] + +[[package]] +name = "pywin32" +version = "308" +source = { registry = "https://pypi.org/simple" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/72/a6/3e9f2c474895c1bb61b11fa9640be00067b5c5b363c501ee9c3fa53aec01/pywin32-308-cp310-cp310-win32.whl", hash = "sha256:796ff4426437896550d2981b9c2ac0ffd75238ad9ea2d3bfa67a1abd546d262e", size = 5927028 }, + { url = "https://files.pythonhosted.org/packages/d9/b4/84e2463422f869b4b718f79eb7530a4c1693e96b8a4e5e968de38be4d2ba/pywin32-308-cp310-cp310-win_amd64.whl", hash = "sha256:4fc888c59b3c0bef905ce7eb7e2106a07712015ea1c8234b703a088d46110e8e", size = 6558484 }, + { url = "https://files.pythonhosted.org/packages/9f/8f/fb84ab789713f7c6feacaa08dad3ec8105b88ade8d1c4f0f0dfcaaa017d6/pywin32-308-cp310-cp310-win_arm64.whl", hash = "sha256:a5ab5381813b40f264fa3495b98af850098f814a25a63589a8e9eb12560f450c", size = 7971454 }, + { url = "https://files.pythonhosted.org/packages/eb/e2/02652007469263fe1466e98439831d65d4ca80ea1a2df29abecedf7e47b7/pywin32-308-cp311-cp311-win32.whl", hash = "sha256:5d8c8015b24a7d6855b1550d8e660d8daa09983c80e5daf89a273e5c6fb5095a", size = 5928156 }, + { url = "https://files.pythonhosted.org/packages/48/ef/f4fb45e2196bc7ffe09cad0542d9aff66b0e33f6c0954b43e49c33cad7bd/pywin32-308-cp311-cp311-win_amd64.whl", hash = "sha256:575621b90f0dc2695fec346b2d6302faebd4f0f45c05ea29404cefe35d89442b", size = 6559559 }, + { url = "https://files.pythonhosted.org/packages/79/ef/68bb6aa865c5c9b11a35771329e95917b5559845bd75b65549407f9fc6b4/pywin32-308-cp311-cp311-win_arm64.whl", hash = "sha256:100a5442b7332070983c4cd03f2e906a5648a5104b8a7f50175f7906efd16bb6", size = 7972495 }, + { url = "https://files.pythonhosted.org/packages/00/7c/d00d6bdd96de4344e06c4afbf218bc86b54436a94c01c71a8701f613aa56/pywin32-308-cp312-cp312-win32.whl", hash = "sha256:587f3e19696f4bf96fde9d8a57cec74a57021ad5f204c9e627e15c33ff568897", size = 5939729 }, + { url = "https://files.pythonhosted.org/packages/21/27/0c8811fbc3ca188f93b5354e7c286eb91f80a53afa4e11007ef661afa746/pywin32-308-cp312-cp312-win_amd64.whl", hash = "sha256:00b3e11ef09ede56c6a43c71f2d31857cf7c54b0ab6e78ac659497abd2834f47", size = 6543015 }, + { url = "https://files.pythonhosted.org/packages/9d/0f/d40f8373608caed2255781a3ad9a51d03a594a1248cd632d6a298daca693/pywin32-308-cp312-cp312-win_arm64.whl", hash = "sha256:9b4de86c8d909aed15b7011182c8cab38c8850de36e6afb1f0db22b8959e3091", size = 7976033 }, + { url = "https://files.pythonhosted.org/packages/a9/a4/aa562d8935e3df5e49c161b427a3a2efad2ed4e9cf81c3de636f1fdddfd0/pywin32-308-cp313-cp313-win32.whl", hash = "sha256:1c44539a37a5b7b21d02ab34e6a4d314e0788f1690d65b48e9b0b89f31abbbed", size = 5938579 }, + { url = "https://files.pythonhosted.org/packages/c7/50/b0efb8bb66210da67a53ab95fd7a98826a97ee21f1d22949863e6d588b22/pywin32-308-cp313-cp313-win_amd64.whl", hash = "sha256:fd380990e792eaf6827fcb7e187b2b4b1cede0585e3d0c9e84201ec27b9905e4", size = 6542056 }, + { url = "https://files.pythonhosted.org/packages/26/df/2b63e3e4f2df0224f8aaf6d131f54fe4e8c96400eb9df563e2aae2e1a1f9/pywin32-308-cp313-cp313-win_arm64.whl", hash = "sha256:ef313c46d4c18dfb82a2431e3051ac8f112ccee1a34f29c263c583c568db63cd", size = 7974986 }, +] + +[[package]] +name = "pywinpty" +version = "2.0.14" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/f1/82/90f8750423cba4b9b6c842df227609fb60704482d7abf6dd47e2babc055a/pywinpty-2.0.14.tar.gz", hash = "sha256:18bd9529e4a5daf2d9719aa17788ba6013e594ae94c5a0c27e83df3278b0660e", size = 27769 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/07/09/56376af256eab8cc5f8982a3b138d387136eca27fa1a8a68660e8ed59e4b/pywinpty-2.0.14-cp310-none-win_amd64.whl", hash = "sha256:0b149c2918c7974f575ba79f5a4aad58bd859a52fa9eb1296cc22aa412aa411f", size = 1397115 }, + { url = "https://files.pythonhosted.org/packages/be/e2/af1a99c0432e4e58c9ac8e334ee191790ec9793d33559189b9d2069bdc1d/pywinpty-2.0.14-cp311-none-win_amd64.whl", hash = "sha256:cf2a43ac7065b3e0dc8510f8c1f13a75fb8fde805efa3b8cff7599a1ef497bc7", size = 1397223 }, + { url = "https://files.pythonhosted.org/packages/ad/79/759ae767a3b78d340446efd54dd1fe4f7dafa4fc7be96ed757e44bcdba54/pywinpty-2.0.14-cp312-none-win_amd64.whl", hash = "sha256:55dad362ef3e9408ade68fd173e4f9032b3ce08f68cfe7eacb2c263ea1179737", size = 1397207 }, + { url = "https://files.pythonhosted.org/packages/7d/34/b77b3c209bf2eaa6455390c8d5449241637f5957f41636a2204065d52bfa/pywinpty-2.0.14-cp313-none-win_amd64.whl", hash = "sha256:074fb988a56ec79ca90ed03a896d40707131897cefb8f76f926e3834227f2819", size = 1396698 }, +] + +[[package]] +name = "pyyaml" +version = "6.0.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/54/ed/79a089b6be93607fa5cdaedf301d7dfb23af5f25c398d5ead2525b063e17/pyyaml-6.0.2.tar.gz", hash = "sha256:d584d9ec91ad65861cc08d42e834324ef890a082e591037abe114850ff7bbc3e", size = 130631 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/9b/95/a3fac87cb7158e231b5a6012e438c647e1a87f09f8e0d123acec8ab8bf71/PyYAML-6.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0a9a2848a5b7feac301353437eb7d5957887edbf81d56e903999a75a3d743086", size = 184199 }, + { url = "https://files.pythonhosted.org/packages/c7/7a/68bd47624dab8fd4afbfd3c48e3b79efe09098ae941de5b58abcbadff5cb/PyYAML-6.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:29717114e51c84ddfba879543fb232a6ed60086602313ca38cce623c1d62cfbf", size = 171758 }, + { url = "https://files.pythonhosted.org/packages/49/ee/14c54df452143b9ee9f0f29074d7ca5516a36edb0b4cc40c3f280131656f/PyYAML-6.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8824b5a04a04a047e72eea5cec3bc266db09e35de6bdfe34c9436ac5ee27d237", size = 718463 }, + { url = "https://files.pythonhosted.org/packages/4d/61/de363a97476e766574650d742205be468921a7b532aa2499fcd886b62530/PyYAML-6.0.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c36280e6fb8385e520936c3cb3b8042851904eba0e58d277dca80a5cfed590b", size = 719280 }, + { url = "https://files.pythonhosted.org/packages/6b/4e/1523cb902fd98355e2e9ea5e5eb237cbc5f3ad5f3075fa65087aa0ecb669/PyYAML-6.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec031d5d2feb36d1d1a24380e4db6d43695f3748343d99434e6f5f9156aaa2ed", size = 751239 }, + { url = "https://files.pythonhosted.org/packages/b7/33/5504b3a9a4464893c32f118a9cc045190a91637b119a9c881da1cf6b7a72/PyYAML-6.0.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:936d68689298c36b53b29f23c6dbb74de12b4ac12ca6cfe0e047bedceea56180", size = 695802 }, + { url = "https://files.pythonhosted.org/packages/5c/20/8347dcabd41ef3a3cdc4f7b7a2aff3d06598c8779faa189cdbf878b626a4/PyYAML-6.0.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:23502f431948090f597378482b4812b0caae32c22213aecf3b55325e049a6c68", size = 720527 }, + { url = "https://files.pythonhosted.org/packages/be/aa/5afe99233fb360d0ff37377145a949ae258aaab831bde4792b32650a4378/PyYAML-6.0.2-cp310-cp310-win32.whl", hash = "sha256:2e99c6826ffa974fe6e27cdb5ed0021786b03fc98e5ee3c5bfe1fd5015f42b99", size = 144052 }, + { url = "https://files.pythonhosted.org/packages/b5/84/0fa4b06f6d6c958d207620fc60005e241ecedceee58931bb20138e1e5776/PyYAML-6.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:a4d3091415f010369ae4ed1fc6b79def9416358877534caf6a0fdd2146c87a3e", size = 161774 }, + { url = "https://files.pythonhosted.org/packages/f8/aa/7af4e81f7acba21a4c6be026da38fd2b872ca46226673c89a758ebdc4fd2/PyYAML-6.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:cc1c1159b3d456576af7a3e4d1ba7e6924cb39de8f67111c735f6fc832082774", size = 184612 }, + { url = "https://files.pythonhosted.org/packages/8b/62/b9faa998fd185f65c1371643678e4d58254add437edb764a08c5a98fb986/PyYAML-6.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1e2120ef853f59c7419231f3bf4e7021f1b936f6ebd222406c3b60212205d2ee", size = 172040 }, + { url = "https://files.pythonhosted.org/packages/ad/0c/c804f5f922a9a6563bab712d8dcc70251e8af811fce4524d57c2c0fd49a4/PyYAML-6.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5d225db5a45f21e78dd9358e58a98702a0302f2659a3c6cd320564b75b86f47c", size = 736829 }, + { url = "https://files.pythonhosted.org/packages/51/16/6af8d6a6b210c8e54f1406a6b9481febf9c64a3109c541567e35a49aa2e7/PyYAML-6.0.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5ac9328ec4831237bec75defaf839f7d4564be1e6b25ac710bd1a96321cc8317", size = 764167 }, + { url = "https://files.pythonhosted.org/packages/75/e4/2c27590dfc9992f73aabbeb9241ae20220bd9452df27483b6e56d3975cc5/PyYAML-6.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ad2a3decf9aaba3d29c8f537ac4b243e36bef957511b4766cb0057d32b0be85", size = 762952 }, + { url = "https://files.pythonhosted.org/packages/9b/97/ecc1abf4a823f5ac61941a9c00fe501b02ac3ab0e373c3857f7d4b83e2b6/PyYAML-6.0.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ff3824dc5261f50c9b0dfb3be22b4567a6f938ccce4587b38952d85fd9e9afe4", size = 735301 }, + { url = "https://files.pythonhosted.org/packages/45/73/0f49dacd6e82c9430e46f4a027baa4ca205e8b0a9dce1397f44edc23559d/PyYAML-6.0.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:797b4f722ffa07cc8d62053e4cff1486fa6dc094105d13fea7b1de7d8bf71c9e", size = 756638 }, + { url = "https://files.pythonhosted.org/packages/22/5f/956f0f9fc65223a58fbc14459bf34b4cc48dec52e00535c79b8db361aabd/PyYAML-6.0.2-cp311-cp311-win32.whl", hash = "sha256:11d8f3dd2b9c1207dcaf2ee0bbbfd5991f571186ec9cc78427ba5bd32afae4b5", size = 143850 }, + { url = "https://files.pythonhosted.org/packages/ed/23/8da0bbe2ab9dcdd11f4f4557ccaf95c10b9811b13ecced089d43ce59c3c8/PyYAML-6.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:e10ce637b18caea04431ce14fabcf5c64a1c61ec9c56b071a4b7ca131ca52d44", size = 161980 }, + { url = "https://files.pythonhosted.org/packages/86/0c/c581167fc46d6d6d7ddcfb8c843a4de25bdd27e4466938109ca68492292c/PyYAML-6.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:c70c95198c015b85feafc136515252a261a84561b7b1d51e3384e0655ddf25ab", size = 183873 }, + { url = "https://files.pythonhosted.org/packages/a8/0c/38374f5bb272c051e2a69281d71cba6fdb983413e6758b84482905e29a5d/PyYAML-6.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ce826d6ef20b1bc864f0a68340c8b3287705cae2f8b4b1d932177dcc76721725", size = 173302 }, + { url = "https://files.pythonhosted.org/packages/c3/93/9916574aa8c00aa06bbac729972eb1071d002b8e158bd0e83a3b9a20a1f7/PyYAML-6.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f71ea527786de97d1a0cc0eacd1defc0985dcf6b3f17bb77dcfc8c34bec4dc5", size = 739154 }, + { url = "https://files.pythonhosted.org/packages/95/0f/b8938f1cbd09739c6da569d172531567dbcc9789e0029aa070856f123984/PyYAML-6.0.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9b22676e8097e9e22e36d6b7bda33190d0d400f345f23d4065d48f4ca7ae0425", size = 766223 }, + { url = "https://files.pythonhosted.org/packages/b9/2b/614b4752f2e127db5cc206abc23a8c19678e92b23c3db30fc86ab731d3bd/PyYAML-6.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:80bab7bfc629882493af4aa31a4cfa43a4c57c83813253626916b8c7ada83476", size = 767542 }, + { url = "https://files.pythonhosted.org/packages/d4/00/dd137d5bcc7efea1836d6264f049359861cf548469d18da90cd8216cf05f/PyYAML-6.0.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:0833f8694549e586547b576dcfaba4a6b55b9e96098b36cdc7ebefe667dfed48", size = 731164 }, + { url = "https://files.pythonhosted.org/packages/c9/1f/4f998c900485e5c0ef43838363ba4a9723ac0ad73a9dc42068b12aaba4e4/PyYAML-6.0.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8b9c7197f7cb2738065c481a0461e50ad02f18c78cd75775628afb4d7137fb3b", size = 756611 }, + { url = "https://files.pythonhosted.org/packages/df/d1/f5a275fdb252768b7a11ec63585bc38d0e87c9e05668a139fea92b80634c/PyYAML-6.0.2-cp312-cp312-win32.whl", hash = "sha256:ef6107725bd54b262d6dedcc2af448a266975032bc85ef0172c5f059da6325b4", size = 140591 }, + { url = "https://files.pythonhosted.org/packages/0c/e8/4f648c598b17c3d06e8753d7d13d57542b30d56e6c2dedf9c331ae56312e/PyYAML-6.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:7e7401d0de89a9a855c839bc697c079a4af81cf878373abd7dc625847d25cbd8", size = 156338 }, + { url = "https://files.pythonhosted.org/packages/ef/e3/3af305b830494fa85d95f6d95ef7fa73f2ee1cc8ef5b495c7c3269fb835f/PyYAML-6.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:efdca5630322a10774e8e98e1af481aad470dd62c3170801852d752aa7a783ba", size = 181309 }, + { url = "https://files.pythonhosted.org/packages/45/9f/3b1c20a0b7a3200524eb0076cc027a970d320bd3a6592873c85c92a08731/PyYAML-6.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:50187695423ffe49e2deacb8cd10510bc361faac997de9efef88badc3bb9e2d1", size = 171679 }, + { url = "https://files.pythonhosted.org/packages/7c/9a/337322f27005c33bcb656c655fa78325b730324c78620e8328ae28b64d0c/PyYAML-6.0.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0ffe8360bab4910ef1b9e87fb812d8bc0a308b0d0eef8c8f44e0254ab3b07133", size = 733428 }, + { url = "https://files.pythonhosted.org/packages/a3/69/864fbe19e6c18ea3cc196cbe5d392175b4cf3d5d0ac1403ec3f2d237ebb5/PyYAML-6.0.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:17e311b6c678207928d649faa7cb0d7b4c26a0ba73d41e99c4fff6b6c3276484", size = 763361 }, + { url = "https://files.pythonhosted.org/packages/04/24/b7721e4845c2f162d26f50521b825fb061bc0a5afcf9a386840f23ea19fa/PyYAML-6.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:70b189594dbe54f75ab3a1acec5f1e3faa7e8cf2f1e08d9b561cb41b845f69d5", size = 759523 }, + { url = "https://files.pythonhosted.org/packages/2b/b2/e3234f59ba06559c6ff63c4e10baea10e5e7df868092bf9ab40e5b9c56b6/PyYAML-6.0.2-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:41e4e3953a79407c794916fa277a82531dd93aad34e29c2a514c2c0c5fe971cc", size = 726660 }, + { url = "https://files.pythonhosted.org/packages/fe/0f/25911a9f080464c59fab9027482f822b86bf0608957a5fcc6eaac85aa515/PyYAML-6.0.2-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:68ccc6023a3400877818152ad9a1033e3db8625d899c72eacb5a668902e4d652", size = 751597 }, + { url = "https://files.pythonhosted.org/packages/14/0d/e2c3b43bbce3cf6bd97c840b46088a3031085179e596d4929729d8d68270/PyYAML-6.0.2-cp313-cp313-win32.whl", hash = "sha256:bc2fa7c6b47d6bc618dd7fb02ef6fdedb1090ec036abab80d4681424b84c1183", size = 140527 }, + { url = "https://files.pythonhosted.org/packages/fa/de/02b54f42487e3d3c6efb3f89428677074ca7bf43aae402517bc7cca949f3/PyYAML-6.0.2-cp313-cp313-win_amd64.whl", hash = "sha256:8388ee1976c416731879ac16da0aff3f63b286ffdd57cdeb95f3f2e085687563", size = 156446 }, +] + +[[package]] +name = "pyzmq" +version = "26.2.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "cffi", marker = "implementation_name == 'pypy'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/fd/05/bed626b9f7bb2322cdbbf7b4bd8f54b1b617b0d2ab2d3547d6e39428a48e/pyzmq-26.2.0.tar.gz", hash = "sha256:070672c258581c8e4f640b5159297580a9974b026043bd4ab0470be9ed324f1f", size = 271975 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/1f/a8/9837c39aba390eb7d01924ace49d761c8dbe7bc2d6082346d00c8332e431/pyzmq-26.2.0-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:ddf33d97d2f52d89f6e6e7ae66ee35a4d9ca6f36eda89c24591b0c40205a3629", size = 1340058 }, + { url = "https://files.pythonhosted.org/packages/a2/1f/a006f2e8e4f7d41d464272012695da17fb95f33b54342612a6890da96ff6/pyzmq-26.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:dacd995031a01d16eec825bf30802fceb2c3791ef24bcce48fa98ce40918c27b", size = 1008818 }, + { url = "https://files.pythonhosted.org/packages/b6/09/b51b6683fde5ca04593a57bbe81788b6b43114d8f8ee4e80afc991e14760/pyzmq-26.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:89289a5ee32ef6c439086184529ae060c741334b8970a6855ec0b6ad3ff28764", size = 673199 }, + { url = "https://files.pythonhosted.org/packages/c9/78/486f3e2e824f3a645238332bf5a4c4b4477c3063033a27c1e4052358dee2/pyzmq-26.2.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5506f06d7dc6ecf1efacb4a013b1f05071bb24b76350832c96449f4a2d95091c", size = 911762 }, + { url = "https://files.pythonhosted.org/packages/5e/3b/2eb1667c9b866f53e76ee8b0c301b0469745a23bd5a87b7ee3d5dd9eb6e5/pyzmq-26.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ea039387c10202ce304af74def5021e9adc6297067f3441d348d2b633e8166a", size = 868773 }, + { url = "https://files.pythonhosted.org/packages/16/29/ca99b4598a9dc7e468b5417eda91f372b595be1e3eec9b7cbe8e5d3584e8/pyzmq-26.2.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:a2224fa4a4c2ee872886ed00a571f5e967c85e078e8e8c2530a2fb01b3309b88", size = 868834 }, + { url = "https://files.pythonhosted.org/packages/ad/e5/9efaeb1d2f4f8c50da04144f639b042bc52869d3a206d6bf672ab3522163/pyzmq-26.2.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:28ad5233e9c3b52d76196c696e362508959741e1a005fb8fa03b51aea156088f", size = 1202861 }, + { url = "https://files.pythonhosted.org/packages/c3/62/c721b5608a8ac0a69bb83cbb7d07a56f3ff00b3991a138e44198a16f94c7/pyzmq-26.2.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:1c17211bc037c7d88e85ed8b7d8f7e52db6dc8eca5590d162717c654550f7282", size = 1515304 }, + { url = "https://files.pythonhosted.org/packages/87/84/e8bd321aa99b72f48d4606fc5a0a920154125bd0a4608c67eab742dab087/pyzmq-26.2.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b8f86dd868d41bea9a5f873ee13bf5551c94cf6bc51baebc6f85075971fe6eea", size = 1414712 }, + { url = "https://files.pythonhosted.org/packages/cd/cd/420e3fd1ac6977b008b72e7ad2dae6350cc84d4c5027fc390b024e61738f/pyzmq-26.2.0-cp310-cp310-win32.whl", hash = "sha256:46a446c212e58456b23af260f3d9fb785054f3e3653dbf7279d8f2b5546b21c2", size = 578113 }, + { url = "https://files.pythonhosted.org/packages/5c/57/73930d56ed45ae0cb4946f383f985c855c9b3d4063f26416998f07523c0e/pyzmq-26.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:49d34ab71db5a9c292a7644ce74190b1dd5a3475612eefb1f8be1d6961441971", size = 641631 }, + { url = "https://files.pythonhosted.org/packages/61/d2/ae6ac5c397f1ccad59031c64beaafce7a0d6182e0452cc48f1c9c87d2dd0/pyzmq-26.2.0-cp310-cp310-win_arm64.whl", hash = "sha256:bfa832bfa540e5b5c27dcf5de5d82ebc431b82c453a43d141afb1e5d2de025fa", size = 543528 }, + { url = "https://files.pythonhosted.org/packages/12/20/de7442172f77f7c96299a0ac70e7d4fb78cd51eca67aa2cf552b66c14196/pyzmq-26.2.0-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:8f7e66c7113c684c2b3f1c83cdd3376103ee0ce4c49ff80a648643e57fb22218", size = 1340639 }, + { url = "https://files.pythonhosted.org/packages/98/4d/5000468bd64c7910190ed0a6c76a1ca59a68189ec1f007c451dc181a22f4/pyzmq-26.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3a495b30fc91db2db25120df5847d9833af237546fd59170701acd816ccc01c4", size = 1008710 }, + { url = "https://files.pythonhosted.org/packages/e1/bf/c67fd638c2f9fbbab8090a3ee779370b97c82b84cc12d0c498b285d7b2c0/pyzmq-26.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:77eb0968da535cba0470a5165468b2cac7772cfb569977cff92e240f57e31bef", size = 673129 }, + { url = "https://files.pythonhosted.org/packages/86/94/99085a3f492aa538161cbf27246e8886ff850e113e0c294a5b8245f13b52/pyzmq-26.2.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ace4f71f1900a548f48407fc9be59c6ba9d9aaf658c2eea6cf2779e72f9f317", size = 910107 }, + { url = "https://files.pythonhosted.org/packages/31/1d/346809e8a9b999646d03f21096428453465b1bca5cd5c64ecd048d9ecb01/pyzmq-26.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:92a78853d7280bffb93df0a4a6a2498cba10ee793cc8076ef797ef2f74d107cf", size = 867960 }, + { url = "https://files.pythonhosted.org/packages/ab/68/6fb6ae5551846ad5beca295b7bca32bf0a7ce19f135cb30e55fa2314e6b6/pyzmq-26.2.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:689c5d781014956a4a6de61d74ba97b23547e431e9e7d64f27d4922ba96e9d6e", size = 869204 }, + { url = "https://files.pythonhosted.org/packages/0f/f9/18417771dee223ccf0f48e29adf8b4e25ba6d0e8285e33bcbce078070bc3/pyzmq-26.2.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0aca98bc423eb7d153214b2df397c6421ba6373d3397b26c057af3c904452e37", size = 1203351 }, + { url = "https://files.pythonhosted.org/packages/e0/46/f13e67fe0d4f8a2315782cbad50493de6203ea0d744610faf4d5f5b16e90/pyzmq-26.2.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:1f3496d76b89d9429a656293744ceca4d2ac2a10ae59b84c1da9b5165f429ad3", size = 1514204 }, + { url = "https://files.pythonhosted.org/packages/50/11/ddcf7343b7b7a226e0fc7b68cbf5a5bb56291fac07f5c3023bb4c319ebb4/pyzmq-26.2.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5c2b3bfd4b9689919db068ac6c9911f3fcb231c39f7dd30e3138be94896d18e6", size = 1414339 }, + { url = "https://files.pythonhosted.org/packages/01/14/1c18d7d5b7be2708f513f37c61bfadfa62161c10624f8733f1c8451b3509/pyzmq-26.2.0-cp311-cp311-win32.whl", hash = "sha256:eac5174677da084abf378739dbf4ad245661635f1600edd1221f150b165343f4", size = 576928 }, + { url = "https://files.pythonhosted.org/packages/3b/1b/0a540edd75a41df14ec416a9a500b9fec66e554aac920d4c58fbd5756776/pyzmq-26.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:5a509df7d0a83a4b178d0f937ef14286659225ef4e8812e05580776c70e155d5", size = 642317 }, + { url = "https://files.pythonhosted.org/packages/98/77/1cbfec0358078a4c5add529d8a70892db1be900980cdb5dd0898b3d6ab9d/pyzmq-26.2.0-cp311-cp311-win_arm64.whl", hash = "sha256:c0e6091b157d48cbe37bd67233318dbb53e1e6327d6fc3bb284afd585d141003", size = 543834 }, + { url = "https://files.pythonhosted.org/packages/28/2f/78a766c8913ad62b28581777ac4ede50c6d9f249d39c2963e279524a1bbe/pyzmq-26.2.0-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:ded0fc7d90fe93ae0b18059930086c51e640cdd3baebdc783a695c77f123dcd9", size = 1343105 }, + { url = "https://files.pythonhosted.org/packages/b7/9c/4b1e2d3d4065be715e007fe063ec7885978fad285f87eae1436e6c3201f4/pyzmq-26.2.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:17bf5a931c7f6618023cdacc7081f3f266aecb68ca692adac015c383a134ca52", size = 1008365 }, + { url = "https://files.pythonhosted.org/packages/4f/ef/5a23ec689ff36d7625b38d121ef15abfc3631a9aecb417baf7a4245e4124/pyzmq-26.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:55cf66647e49d4621a7e20c8d13511ef1fe1efbbccf670811864452487007e08", size = 665923 }, + { url = "https://files.pythonhosted.org/packages/ae/61/d436461a47437d63c6302c90724cf0981883ec57ceb6073873f32172d676/pyzmq-26.2.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4661c88db4a9e0f958c8abc2b97472e23061f0bc737f6f6179d7a27024e1faa5", size = 903400 }, + { url = "https://files.pythonhosted.org/packages/47/42/fc6d35ecefe1739a819afaf6f8e686f7f02a4dd241c78972d316f403474c/pyzmq-26.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ea7f69de383cb47522c9c208aec6dd17697db7875a4674c4af3f8cfdac0bdeae", size = 860034 }, + { url = "https://files.pythonhosted.org/packages/07/3b/44ea6266a6761e9eefaa37d98fabefa112328808ac41aa87b4bbb668af30/pyzmq-26.2.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:7f98f6dfa8b8ccaf39163ce872bddacca38f6a67289116c8937a02e30bbe9711", size = 860579 }, + { url = "https://files.pythonhosted.org/packages/38/6f/4df2014ab553a6052b0e551b37da55166991510f9e1002c89cab7ce3b3f2/pyzmq-26.2.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:e3e0210287329272539eea617830a6a28161fbbd8a3271bf4150ae3e58c5d0e6", size = 1196246 }, + { url = "https://files.pythonhosted.org/packages/38/9d/ee240fc0c9fe9817f0c9127a43238a3e28048795483c403cc10720ddef22/pyzmq-26.2.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:6b274e0762c33c7471f1a7471d1a2085b1a35eba5cdc48d2ae319f28b6fc4de3", size = 1507441 }, + { url = "https://files.pythonhosted.org/packages/85/4f/01711edaa58d535eac4a26c294c617c9a01f09857c0ce191fd574d06f359/pyzmq-26.2.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:29c6a4635eef69d68a00321e12a7d2559fe2dfccfa8efae3ffb8e91cd0b36a8b", size = 1406498 }, + { url = "https://files.pythonhosted.org/packages/07/18/907134c85c7152f679ed744e73e645b365f3ad571f38bdb62e36f347699a/pyzmq-26.2.0-cp312-cp312-win32.whl", hash = "sha256:989d842dc06dc59feea09e58c74ca3e1678c812a4a8a2a419046d711031f69c7", size = 575533 }, + { url = "https://files.pythonhosted.org/packages/ce/2c/a6f4a20202a4d3c582ad93f95ee78d79bbdc26803495aec2912b17dbbb6c/pyzmq-26.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:2a50625acdc7801bc6f74698c5c583a491c61d73c6b7ea4dee3901bb99adb27a", size = 637768 }, + { url = "https://files.pythonhosted.org/packages/5f/0e/eb16ff731632d30554bf5af4dbba3ffcd04518219d82028aea4ae1b02ca5/pyzmq-26.2.0-cp312-cp312-win_arm64.whl", hash = "sha256:4d29ab8592b6ad12ebbf92ac2ed2bedcfd1cec192d8e559e2e099f648570e19b", size = 540675 }, + { url = "https://files.pythonhosted.org/packages/04/a7/0f7e2f6c126fe6e62dbae0bc93b1bd3f1099cf7fea47a5468defebe3f39d/pyzmq-26.2.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:9dd8cd1aeb00775f527ec60022004d030ddc51d783d056e3e23e74e623e33726", size = 1006564 }, + { url = "https://files.pythonhosted.org/packages/31/b6/a187165c852c5d49f826a690857684333a6a4a065af0a6015572d2284f6a/pyzmq-26.2.0-cp313-cp313-macosx_10_15_universal2.whl", hash = "sha256:28c812d9757fe8acecc910c9ac9dafd2ce968c00f9e619db09e9f8f54c3a68a3", size = 1340447 }, + { url = "https://files.pythonhosted.org/packages/68/ba/f4280c58ff71f321602a6e24fd19879b7e79793fb8ab14027027c0fb58ef/pyzmq-26.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d80b1dd99c1942f74ed608ddb38b181b87476c6a966a88a950c7dee118fdf50", size = 665485 }, + { url = "https://files.pythonhosted.org/packages/77/b5/c987a5c53c7d8704216f29fc3d810b32f156bcea488a940e330e1bcbb88d/pyzmq-26.2.0-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8c997098cc65e3208eca09303630e84d42718620e83b733d0fd69543a9cab9cb", size = 903484 }, + { url = "https://files.pythonhosted.org/packages/29/c9/07da157d2db18c72a7eccef8e684cefc155b712a88e3d479d930aa9eceba/pyzmq-26.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ad1bc8d1b7a18497dda9600b12dc193c577beb391beae5cd2349184db40f187", size = 859981 }, + { url = "https://files.pythonhosted.org/packages/43/09/e12501bd0b8394b7d02c41efd35c537a1988da67fc9c745cae9c6c776d31/pyzmq-26.2.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:bea2acdd8ea4275e1278350ced63da0b166421928276c7c8e3f9729d7402a57b", size = 860334 }, + { url = "https://files.pythonhosted.org/packages/eb/ff/f5ec1d455f8f7385cc0a8b2acd8c807d7fade875c14c44b85c1bddabae21/pyzmq-26.2.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:23f4aad749d13698f3f7b64aad34f5fc02d6f20f05999eebc96b89b01262fb18", size = 1196179 }, + { url = "https://files.pythonhosted.org/packages/ec/8a/bb2ac43295b1950fe436a81fc5b298be0b96ac76fb029b514d3ed58f7b27/pyzmq-26.2.0-cp313-cp313-musllinux_1_1_i686.whl", hash = "sha256:a4f96f0d88accc3dbe4a9025f785ba830f968e21e3e2c6321ccdfc9aef755115", size = 1507668 }, + { url = "https://files.pythonhosted.org/packages/a9/49/dbc284ebcfd2dca23f6349227ff1616a7ee2c4a35fe0a5d6c3deff2b4fed/pyzmq-26.2.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ced65e5a985398827cc9276b93ef6dfabe0273c23de8c7931339d7e141c2818e", size = 1406539 }, + { url = "https://files.pythonhosted.org/packages/00/68/093cdce3fe31e30a341d8e52a1ad86392e13c57970d722c1f62a1d1a54b6/pyzmq-26.2.0-cp313-cp313-win32.whl", hash = "sha256:31507f7b47cc1ead1f6e86927f8ebb196a0bab043f6345ce070f412a59bf87b5", size = 575567 }, + { url = "https://files.pythonhosted.org/packages/92/ae/6cc4657148143412b5819b05e362ae7dd09fb9fe76e2a539dcff3d0386bc/pyzmq-26.2.0-cp313-cp313-win_amd64.whl", hash = "sha256:70fc7fcf0410d16ebdda9b26cbd8bf8d803d220a7f3522e060a69a9c87bf7bad", size = 637551 }, + { url = "https://files.pythonhosted.org/packages/6c/67/fbff102e201688f97c8092e4c3445d1c1068c2f27bbd45a578df97ed5f94/pyzmq-26.2.0-cp313-cp313-win_arm64.whl", hash = "sha256:c3789bd5768ab5618ebf09cef6ec2b35fed88709b104351748a63045f0ff9797", size = 540378 }, + { url = "https://files.pythonhosted.org/packages/3f/fe/2d998380b6e0122c6c4bdf9b6caf490831e5f5e2d08a203b5adff060c226/pyzmq-26.2.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:034da5fc55d9f8da09015d368f519478a52675e558c989bfcb5cf6d4e16a7d2a", size = 1007378 }, + { url = "https://files.pythonhosted.org/packages/4a/f4/30d6e7157f12b3a0390bde94d6a8567cdb88846ed068a6e17238a4ccf600/pyzmq-26.2.0-cp313-cp313t-macosx_10_15_universal2.whl", hash = "sha256:c92d73464b886931308ccc45b2744e5968cbaade0b1d6aeb40d8ab537765f5bc", size = 1329532 }, + { url = "https://files.pythonhosted.org/packages/82/86/3fe917870e15ee1c3ad48229a2a64458e36036e64b4afa9659045d82bfa8/pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:794a4562dcb374f7dbbfb3f51d28fb40123b5a2abadee7b4091f93054909add5", size = 653242 }, + { url = "https://files.pythonhosted.org/packages/50/2d/242e7e6ef6c8c19e6cb52d095834508cd581ffb925699fd3c640cdc758f1/pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:aee22939bb6075e7afededabad1a56a905da0b3c4e3e0c45e75810ebe3a52672", size = 888404 }, + { url = "https://files.pythonhosted.org/packages/ac/11/7270566e1f31e4ea73c81ec821a4b1688fd551009a3d2bab11ec66cb1e8f/pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2ae90ff9dad33a1cfe947d2c40cb9cb5e600d759ac4f0fd22616ce6540f72797", size = 845858 }, + { url = "https://files.pythonhosted.org/packages/91/d5/72b38fbc69867795c8711bdd735312f9fef1e3d9204e2f63ab57085434b9/pyzmq-26.2.0-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:43a47408ac52647dfabbc66a25b05b6a61700b5165807e3fbd40063fcaf46386", size = 847375 }, + { url = "https://files.pythonhosted.org/packages/dd/9a/10ed3c7f72b4c24e719c59359fbadd1a27556a28b36cdf1cd9e4fb7845d5/pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_aarch64.whl", hash = "sha256:25bf2374a2a8433633c65ccb9553350d5e17e60c8eb4de4d92cc6bd60f01d306", size = 1183489 }, + { url = "https://files.pythonhosted.org/packages/72/2d/8660892543fabf1fe41861efa222455811adac9f3c0818d6c3170a1153e3/pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_i686.whl", hash = "sha256:007137c9ac9ad5ea21e6ad97d3489af654381324d5d3ba614c323f60dab8fae6", size = 1492932 }, + { url = "https://files.pythonhosted.org/packages/7b/d6/32fd69744afb53995619bc5effa2a405ae0d343cd3e747d0fbc43fe894ee/pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_x86_64.whl", hash = "sha256:470d4a4f6d48fb34e92d768b4e8a5cc3780db0d69107abf1cd7ff734b9766eb0", size = 1392485 }, + { url = "https://files.pythonhosted.org/packages/53/fb/36b2b2548286e9444e52fcd198760af99fd89102b5be50f0660fcfe902df/pyzmq-26.2.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:706e794564bec25819d21a41c31d4df2d48e1cc4b061e8d345d7fb4dd3e94072", size = 906955 }, + { url = "https://files.pythonhosted.org/packages/77/8f/6ce54f8979a01656e894946db6299e2273fcee21c8e5fa57c6295ef11f57/pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8b435f2753621cd36e7c1762156815e21c985c72b19135dac43a7f4f31d28dd1", size = 565701 }, + { url = "https://files.pythonhosted.org/packages/ee/1c/bf8cd66730a866b16db8483286078892b7f6536f8c389fb46e4beba0a970/pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:160c7e0a5eb178011e72892f99f918c04a131f36056d10d9c1afb223fc952c2d", size = 794312 }, + { url = "https://files.pythonhosted.org/packages/71/43/91fa4ff25bbfdc914ab6bafa0f03241d69370ef31a761d16bb859f346582/pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2c4a71d5d6e7b28a47a394c0471b7e77a0661e2d651e7ae91e0cab0a587859ca", size = 752775 }, + { url = "https://files.pythonhosted.org/packages/ec/d2/3b2ab40f455a256cb6672186bea95cd97b459ce4594050132d71e76f0d6f/pyzmq-26.2.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:90412f2db8c02a3864cbfc67db0e3dcdbda336acf1c469526d3e869394fe001c", size = 550762 }, +] + +[[package]] +name = "referencing" +version = "0.35.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "attrs" }, + { name = "rpds-py" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/99/5b/73ca1f8e72fff6fa52119dbd185f73a907b1989428917b24cff660129b6d/referencing-0.35.1.tar.gz", hash = "sha256:25b42124a6c8b632a425174f24087783efb348a6f1e0008e63cd4466fedf703c", size = 62991 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/b7/59/2056f61236782a2c86b33906c025d4f4a0b17be0161b63b70fd9e8775d36/referencing-0.35.1-py3-none-any.whl", hash = "sha256:eda6d3234d62814d1c64e305c1331c9a3a6132da475ab6382eaa997b21ee75de", size = 26684 }, +] + +[[package]] +name = "requests" +version = "2.32.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "certifi" }, + { name = "charset-normalizer" }, + { name = "idna" }, + { name = "urllib3" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/63/70/2bf7780ad2d390a8d301ad0b550f1581eadbd9a20f896afe06353c2a2913/requests-2.32.3.tar.gz", hash = "sha256:55365417734eb18255590a9ff9eb97e9e1da868d4ccd6402399eaf68af20a760", size = 131218 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f9/9b/335f9764261e915ed497fcdeb11df5dfd6f7bf257d4a6a2a686d80da4d54/requests-2.32.3-py3-none-any.whl", hash = "sha256:70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6", size = 64928 }, +] + +[[package]] +name = "rfc3339-validator" +version = "0.1.4" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "six" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/28/ea/a9387748e2d111c3c2b275ba970b735e04e15cdb1eb30693b6b5708c4dbd/rfc3339_validator-0.1.4.tar.gz", hash = "sha256:138a2abdf93304ad60530167e51d2dfb9549521a836871b88d7f4695d0022f6b", size = 5513 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/7b/44/4e421b96b67b2daff264473f7465db72fbdf36a07e05494f50300cc7b0c6/rfc3339_validator-0.1.4-py2.py3-none-any.whl", hash = "sha256:24f6ec1eda14ef823da9e36ec7113124b39c04d50a4d3d3a3c2859577e7791fa", size = 3490 }, +] + +[[package]] +name = "rfc3986-validator" +version = "0.1.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/da/88/f270de456dd7d11dcc808abfa291ecdd3f45ff44e3b549ffa01b126464d0/rfc3986_validator-0.1.1.tar.gz", hash = "sha256:3d44bde7921b3b9ec3ae4e3adca370438eccebc676456449b145d533b240d055", size = 6760 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/9e/51/17023c0f8f1869d8806b979a2bffa3f861f26a3f1a66b094288323fba52f/rfc3986_validator-0.1.1-py2.py3-none-any.whl", hash = "sha256:2f235c432ef459970b4306369336b9d5dbdda31b510ca1e327636e01f528bfa9", size = 4242 }, +] + +[[package]] +name = "rpds-py" +version = "0.22.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/01/80/cce854d0921ff2f0a9fa831ba3ad3c65cee3a46711addf39a2af52df2cfd/rpds_py-0.22.3.tar.gz", hash = "sha256:e32fee8ab45d3c2db6da19a5323bc3362237c8b653c70194414b892fd06a080d", size = 26771 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/42/2a/ead1d09e57449b99dcc190d8d2323e3a167421d8f8fdf0f217c6f6befe47/rpds_py-0.22.3-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:6c7b99ca52c2c1752b544e310101b98a659b720b21db00e65edca34483259967", size = 359514 }, + { url = "https://files.pythonhosted.org/packages/8f/7e/1254f406b7793b586c68e217a6a24ec79040f85e030fff7e9049069284f4/rpds_py-0.22.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:be2eb3f2495ba669d2a985f9b426c1797b7d48d6963899276d22f23e33d47e37", size = 349031 }, + { url = "https://files.pythonhosted.org/packages/aa/da/17c6a2c73730d426df53675ff9cc6653ac7a60b6438d03c18e1c822a576a/rpds_py-0.22.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:70eb60b3ae9245ddea20f8a4190bd79c705a22f8028aaf8bbdebe4716c3fab24", size = 381485 }, + { url = "https://files.pythonhosted.org/packages/aa/13/2dbacd820466aa2a3c4b747afb18d71209523d353cf865bf8f4796c969ea/rpds_py-0.22.3-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4041711832360a9b75cfb11b25a6a97c8fb49c07b8bd43d0d02b45d0b499a4ff", size = 386794 }, + { url = "https://files.pythonhosted.org/packages/6d/62/96905d0a35ad4e4bc3c098b2f34b2e7266e211d08635baa690643d2227be/rpds_py-0.22.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:64607d4cbf1b7e3c3c8a14948b99345eda0e161b852e122c6bb71aab6d1d798c", size = 423523 }, + { url = "https://files.pythonhosted.org/packages/eb/1b/d12770f2b6a9fc2c3ec0d810d7d440f6d465ccd8b7f16ae5385952c28b89/rpds_py-0.22.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:81e69b0a0e2537f26d73b4e43ad7bc8c8efb39621639b4434b76a3de50c6966e", size = 446695 }, + { url = "https://files.pythonhosted.org/packages/4d/cf/96f1fd75512a017f8e07408b6d5dbeb492d9ed46bfe0555544294f3681b3/rpds_py-0.22.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc27863442d388870c1809a87507727b799c8460573cfbb6dc0eeaef5a11b5ec", size = 381959 }, + { url = "https://files.pythonhosted.org/packages/ab/f0/d1c5b501c8aea85aeb938b555bfdf7612110a2f8cdc21ae0482c93dd0c24/rpds_py-0.22.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e79dd39f1e8c3504be0607e5fc6e86bb60fe3584bec8b782578c3b0fde8d932c", size = 410420 }, + { url = "https://files.pythonhosted.org/packages/33/3b/45b6c58fb6aad5a569ae40fb890fc494c6b02203505a5008ee6dc68e65f7/rpds_py-0.22.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:e0fa2d4ec53dc51cf7d3bb22e0aa0143966119f42a0c3e4998293a3dd2856b09", size = 557620 }, + { url = "https://files.pythonhosted.org/packages/83/62/3fdd2d3d47bf0bb9b931c4c73036b4ab3ec77b25e016ae26fab0f02be2af/rpds_py-0.22.3-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:fda7cb070f442bf80b642cd56483b5548e43d366fe3f39b98e67cce780cded00", size = 584202 }, + { url = "https://files.pythonhosted.org/packages/04/f2/5dced98b64874b84ca824292f9cee2e3f30f3bcf231d15a903126684f74d/rpds_py-0.22.3-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:cff63a0272fcd259dcc3be1657b07c929c466b067ceb1c20060e8d10af56f5bf", size = 552787 }, + { url = "https://files.pythonhosted.org/packages/67/13/2273dea1204eda0aea0ef55145da96a9aa28b3f88bb5c70e994f69eda7c3/rpds_py-0.22.3-cp310-cp310-win32.whl", hash = "sha256:9bd7228827ec7bb817089e2eb301d907c0d9827a9e558f22f762bb690b131652", size = 220088 }, + { url = "https://files.pythonhosted.org/packages/4e/80/8c8176b67ad7f4a894967a7a4014ba039626d96f1d4874d53e409b58d69f/rpds_py-0.22.3-cp310-cp310-win_amd64.whl", hash = "sha256:9beeb01d8c190d7581a4d59522cd3d4b6887040dcfc744af99aa59fef3e041a8", size = 231737 }, + { url = "https://files.pythonhosted.org/packages/15/ad/8d1ddf78f2805a71253fcd388017e7b4a0615c22c762b6d35301fef20106/rpds_py-0.22.3-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d20cfb4e099748ea39e6f7b16c91ab057989712d31761d3300d43134e26e165f", size = 359773 }, + { url = "https://files.pythonhosted.org/packages/c8/75/68c15732293a8485d79fe4ebe9045525502a067865fa4278f178851b2d87/rpds_py-0.22.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:68049202f67380ff9aa52f12e92b1c30115f32e6895cd7198fa2a7961621fc5a", size = 349214 }, + { url = "https://files.pythonhosted.org/packages/3c/4c/7ce50f3070083c2e1b2bbd0fb7046f3da55f510d19e283222f8f33d7d5f4/rpds_py-0.22.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fb4f868f712b2dd4bcc538b0a0c1f63a2b1d584c925e69a224d759e7070a12d5", size = 380477 }, + { url = "https://files.pythonhosted.org/packages/9a/e9/835196a69cb229d5c31c13b8ae603bd2da9a6695f35fe4270d398e1db44c/rpds_py-0.22.3-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bc51abd01f08117283c5ebf64844a35144a0843ff7b2983e0648e4d3d9f10dbb", size = 386171 }, + { url = "https://files.pythonhosted.org/packages/f9/8e/33fc4eba6683db71e91e6d594a2cf3a8fbceb5316629f0477f7ece5e3f75/rpds_py-0.22.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:0f3cec041684de9a4684b1572fe28c7267410e02450f4561700ca5a3bc6695a2", size = 422676 }, + { url = "https://files.pythonhosted.org/packages/37/47/2e82d58f8046a98bb9497a8319604c92b827b94d558df30877c4b3c6ccb3/rpds_py-0.22.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7ef9d9da710be50ff6809fed8f1963fecdfecc8b86656cadfca3bc24289414b0", size = 446152 }, + { url = "https://files.pythonhosted.org/packages/e1/78/79c128c3e71abbc8e9739ac27af11dc0f91840a86fce67ff83c65d1ba195/rpds_py-0.22.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:59f4a79c19232a5774aee369a0c296712ad0e77f24e62cad53160312b1c1eaa1", size = 381300 }, + { url = "https://files.pythonhosted.org/packages/c9/5b/2e193be0e8b228c1207f31fa3ea79de64dadb4f6a4833111af8145a6bc33/rpds_py-0.22.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:1a60bce91f81ddaac922a40bbb571a12c1070cb20ebd6d49c48e0b101d87300d", size = 409636 }, + { url = "https://files.pythonhosted.org/packages/c2/3f/687c7100b762d62186a1c1100ffdf99825f6fa5ea94556844bbbd2d0f3a9/rpds_py-0.22.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:e89391e6d60251560f0a8f4bd32137b077a80d9b7dbe6d5cab1cd80d2746f648", size = 556708 }, + { url = "https://files.pythonhosted.org/packages/8c/a2/c00cbc4b857e8b3d5e7f7fc4c81e23afd8c138b930f4f3ccf9a41a23e9e4/rpds_py-0.22.3-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:e3fb866d9932a3d7d0c82da76d816996d1667c44891bd861a0f97ba27e84fc74", size = 583554 }, + { url = "https://files.pythonhosted.org/packages/d0/08/696c9872cf56effdad9ed617ac072f6774a898d46b8b8964eab39ec562d2/rpds_py-0.22.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:1352ae4f7c717ae8cba93421a63373e582d19d55d2ee2cbb184344c82d2ae55a", size = 552105 }, + { url = "https://files.pythonhosted.org/packages/18/1f/4df560be1e994f5adf56cabd6c117e02de7c88ee238bb4ce03ed50da9d56/rpds_py-0.22.3-cp311-cp311-win32.whl", hash = "sha256:b0b4136a252cadfa1adb705bb81524eee47d9f6aab4f2ee4fa1e9d3cd4581f64", size = 220199 }, + { url = "https://files.pythonhosted.org/packages/b8/1b/c29b570bc5db8237553002788dc734d6bd71443a2ceac2a58202ec06ef12/rpds_py-0.22.3-cp311-cp311-win_amd64.whl", hash = "sha256:8bd7c8cfc0b8247c8799080fbff54e0b9619e17cdfeb0478ba7295d43f635d7c", size = 231775 }, + { url = "https://files.pythonhosted.org/packages/75/47/3383ee3bd787a2a5e65a9b9edc37ccf8505c0a00170e3a5e6ea5fbcd97f7/rpds_py-0.22.3-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:27e98004595899949bd7a7b34e91fa7c44d7a97c40fcaf1d874168bb652ec67e", size = 352334 }, + { url = "https://files.pythonhosted.org/packages/40/14/aa6400fa8158b90a5a250a77f2077c0d0cd8a76fce31d9f2b289f04c6dec/rpds_py-0.22.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:1978d0021e943aae58b9b0b196fb4895a25cc53d3956b8e35e0b7682eefb6d56", size = 342111 }, + { url = "https://files.pythonhosted.org/packages/7d/06/395a13bfaa8a28b302fb433fb285a67ce0ea2004959a027aea8f9c52bad4/rpds_py-0.22.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:655ca44a831ecb238d124e0402d98f6212ac527a0ba6c55ca26f616604e60a45", size = 384286 }, + { url = "https://files.pythonhosted.org/packages/43/52/d8eeaffab047e6b7b7ef7f00d5ead074a07973968ffa2d5820fa131d7852/rpds_py-0.22.3-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:feea821ee2a9273771bae61194004ee2fc33f8ec7db08117ef9147d4bbcbca8e", size = 391739 }, + { url = "https://files.pythonhosted.org/packages/83/31/52dc4bde85c60b63719610ed6f6d61877effdb5113a72007679b786377b8/rpds_py-0.22.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:22bebe05a9ffc70ebfa127efbc429bc26ec9e9b4ee4d15a740033efda515cf3d", size = 427306 }, + { url = "https://files.pythonhosted.org/packages/70/d5/1bab8e389c2261dba1764e9e793ed6830a63f830fdbec581a242c7c46bda/rpds_py-0.22.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3af6e48651c4e0d2d166dc1b033b7042ea3f871504b6805ba5f4fe31581d8d38", size = 442717 }, + { url = "https://files.pythonhosted.org/packages/82/a1/a45f3e30835b553379b3a56ea6c4eb622cf11e72008229af840e4596a8ea/rpds_py-0.22.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e67ba3c290821343c192f7eae1d8fd5999ca2dc99994114643e2f2d3e6138b15", size = 385721 }, + { url = "https://files.pythonhosted.org/packages/a6/27/780c942de3120bdd4d0e69583f9c96e179dfff082f6ecbb46b8d6488841f/rpds_py-0.22.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:02fbb9c288ae08bcb34fb41d516d5eeb0455ac35b5512d03181d755d80810059", size = 415824 }, + { url = "https://files.pythonhosted.org/packages/94/0b/aa0542ca88ad20ea719b06520f925bae348ea5c1fdf201b7e7202d20871d/rpds_py-0.22.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:f56a6b404f74ab372da986d240e2e002769a7d7102cc73eb238a4f72eec5284e", size = 561227 }, + { url = "https://files.pythonhosted.org/packages/0d/92/3ed77d215f82c8f844d7f98929d56cc321bb0bcfaf8f166559b8ec56e5f1/rpds_py-0.22.3-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:0a0461200769ab3b9ab7e513f6013b7a97fdeee41c29b9db343f3c5a8e2b9e61", size = 587424 }, + { url = "https://files.pythonhosted.org/packages/09/42/cacaeb047a22cab6241f107644f230e2935d4efecf6488859a7dd82fc47d/rpds_py-0.22.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:8633e471c6207a039eff6aa116e35f69f3156b3989ea3e2d755f7bc41754a4a7", size = 555953 }, + { url = "https://files.pythonhosted.org/packages/e6/52/c921dc6d5f5d45b212a456c1f5b17df1a471127e8037eb0972379e39dff4/rpds_py-0.22.3-cp312-cp312-win32.whl", hash = "sha256:593eba61ba0c3baae5bc9be2f5232430453fb4432048de28399ca7376de9c627", size = 221339 }, + { url = "https://files.pythonhosted.org/packages/f2/c7/f82b5be1e8456600395366f86104d1bd8d0faed3802ad511ef6d60c30d98/rpds_py-0.22.3-cp312-cp312-win_amd64.whl", hash = "sha256:d115bffdd417c6d806ea9069237a4ae02f513b778e3789a359bc5856e0404cc4", size = 235786 }, + { url = "https://files.pythonhosted.org/packages/d0/bf/36d5cc1f2c609ae6e8bf0fc35949355ca9d8790eceb66e6385680c951e60/rpds_py-0.22.3-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:ea7433ce7e4bfc3a85654aeb6747babe3f66eaf9a1d0c1e7a4435bbdf27fea84", size = 351657 }, + { url = "https://files.pythonhosted.org/packages/24/2a/f1e0fa124e300c26ea9382e59b2d582cba71cedd340f32d1447f4f29fa4e/rpds_py-0.22.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:6dd9412824c4ce1aca56c47b0991e65bebb7ac3f4edccfd3f156150c96a7bf25", size = 341829 }, + { url = "https://files.pythonhosted.org/packages/cf/c2/0da1231dd16953845bed60d1a586fcd6b15ceaeb965f4d35cdc71f70f606/rpds_py-0.22.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:20070c65396f7373f5df4005862fa162db5d25d56150bddd0b3e8214e8ef45b4", size = 384220 }, + { url = "https://files.pythonhosted.org/packages/c7/73/a4407f4e3a00a9d4b68c532bf2d873d6b562854a8eaff8faa6133b3588ec/rpds_py-0.22.3-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:0b09865a9abc0ddff4e50b5ef65467cd94176bf1e0004184eb915cbc10fc05c5", size = 391009 }, + { url = "https://files.pythonhosted.org/packages/a9/c3/04b7353477ab360fe2563f5f0b176d2105982f97cd9ae80a9c5a18f1ae0f/rpds_py-0.22.3-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3453e8d41fe5f17d1f8e9c383a7473cd46a63661628ec58e07777c2fff7196dc", size = 426989 }, + { url = "https://files.pythonhosted.org/packages/8d/e6/e4b85b722bcf11398e17d59c0f6049d19cd606d35363221951e6d625fcb0/rpds_py-0.22.3-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f5d36399a1b96e1a5fdc91e0522544580dbebeb1f77f27b2b0ab25559e103b8b", size = 441544 }, + { url = "https://files.pythonhosted.org/packages/27/fc/403e65e56f65fff25f2973216974976d3f0a5c3f30e53758589b6dc9b79b/rpds_py-0.22.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:009de23c9c9ee54bf11303a966edf4d9087cd43a6003672e6aa7def643d06518", size = 385179 }, + { url = "https://files.pythonhosted.org/packages/57/9b/2be9ff9700d664d51fd96b33d6595791c496d2778cb0b2a634f048437a55/rpds_py-0.22.3-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:1aef18820ef3e4587ebe8b3bc9ba6e55892a6d7b93bac6d29d9f631a3b4befbd", size = 415103 }, + { url = "https://files.pythonhosted.org/packages/bb/a5/03c2ad8ca10994fcf22dd2150dd1d653bc974fa82d9a590494c84c10c641/rpds_py-0.22.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:f60bd8423be1d9d833f230fdbccf8f57af322d96bcad6599e5a771b151398eb2", size = 560916 }, + { url = "https://files.pythonhosted.org/packages/ba/2e/be4fdfc8b5b576e588782b56978c5b702c5a2307024120d8aeec1ab818f0/rpds_py-0.22.3-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:62d9cfcf4948683a18a9aff0ab7e1474d407b7bab2ca03116109f8464698ab16", size = 587062 }, + { url = "https://files.pythonhosted.org/packages/67/e0/2034c221937709bf9c542603d25ad43a68b4b0a9a0c0b06a742f2756eb66/rpds_py-0.22.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:9253fc214112405f0afa7db88739294295f0e08466987f1d70e29930262b4c8f", size = 555734 }, + { url = "https://files.pythonhosted.org/packages/ea/ce/240bae07b5401a22482b58e18cfbabaa392409b2797da60223cca10d7367/rpds_py-0.22.3-cp313-cp313-win32.whl", hash = "sha256:fb0ba113b4983beac1a2eb16faffd76cb41e176bf58c4afe3e14b9c681f702de", size = 220663 }, + { url = "https://files.pythonhosted.org/packages/cb/f0/d330d08f51126330467edae2fa4efa5cec8923c87551a79299380fdea30d/rpds_py-0.22.3-cp313-cp313-win_amd64.whl", hash = "sha256:c58e2339def52ef6b71b8f36d13c3688ea23fa093353f3a4fee2556e62086ec9", size = 235503 }, + { url = "https://files.pythonhosted.org/packages/f7/c4/dbe1cc03df013bf2feb5ad00615038050e7859f381e96fb5b7b4572cd814/rpds_py-0.22.3-cp313-cp313t-macosx_10_12_x86_64.whl", hash = "sha256:f82a116a1d03628a8ace4859556fb39fd1424c933341a08ea3ed6de1edb0283b", size = 347698 }, + { url = "https://files.pythonhosted.org/packages/a4/3a/684f66dd6b0f37499cad24cd1c0e523541fd768576fa5ce2d0a8799c3cba/rpds_py-0.22.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:3dfcbc95bd7992b16f3f7ba05af8a64ca694331bd24f9157b49dadeeb287493b", size = 337330 }, + { url = "https://files.pythonhosted.org/packages/82/eb/e022c08c2ce2e8f7683baa313476492c0e2c1ca97227fe8a75d9f0181e95/rpds_py-0.22.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:59259dc58e57b10e7e18ce02c311804c10c5a793e6568f8af4dead03264584d1", size = 380022 }, + { url = "https://files.pythonhosted.org/packages/e4/21/5a80e653e4c86aeb28eb4fea4add1f72e1787a3299687a9187105c3ee966/rpds_py-0.22.3-cp313-cp313t-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5725dd9cc02068996d4438d397e255dcb1df776b7ceea3b9cb972bdb11260a83", size = 390754 }, + { url = "https://files.pythonhosted.org/packages/37/a4/d320a04ae90f72d080b3d74597074e62be0a8ecad7d7321312dfe2dc5a6a/rpds_py-0.22.3-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:99b37292234e61325e7a5bb9689e55e48c3f5f603af88b1642666277a81f1fbd", size = 423840 }, + { url = "https://files.pythonhosted.org/packages/87/70/674dc47d93db30a6624279284e5631be4c3a12a0340e8e4f349153546728/rpds_py-0.22.3-cp313-cp313t-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:27b1d3b3915a99208fee9ab092b8184c420f2905b7d7feb4aeb5e4a9c509b8a1", size = 438970 }, + { url = "https://files.pythonhosted.org/packages/3f/64/9500f4d66601d55cadd21e90784cfd5d5f4560e129d72e4339823129171c/rpds_py-0.22.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f612463ac081803f243ff13cccc648578e2279295048f2a8d5eb430af2bae6e3", size = 383146 }, + { url = "https://files.pythonhosted.org/packages/4d/45/630327addb1d17173adcf4af01336fd0ee030c04798027dfcb50106001e0/rpds_py-0.22.3-cp313-cp313t-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f73d3fef726b3243a811121de45193c0ca75f6407fe66f3f4e183c983573e130", size = 408294 }, + { url = "https://files.pythonhosted.org/packages/5f/ef/8efb3373cee54ea9d9980b772e5690a0c9e9214045a4e7fa35046e399fee/rpds_py-0.22.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:3f21f0495edea7fdbaaa87e633a8689cd285f8f4af5c869f27bc8074638ad69c", size = 556345 }, + { url = "https://files.pythonhosted.org/packages/54/01/151d3b9ef4925fc8f15bfb131086c12ec3c3d6dd4a4f7589c335bf8e85ba/rpds_py-0.22.3-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:1e9663daaf7a63ceccbbb8e3808fe90415b0757e2abddbfc2e06c857bf8c5e2b", size = 582292 }, + { url = "https://files.pythonhosted.org/packages/30/89/35fc7a6cdf3477d441c7aca5e9bbf5a14e0f25152aed7f63f4e0b141045d/rpds_py-0.22.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:a76e42402542b1fae59798fab64432b2d015ab9d0c8c47ba7addddbaf7952333", size = 553855 }, + { url = "https://files.pythonhosted.org/packages/8f/e0/830c02b2457c4bd20a8c5bb394d31d81f57fbefce2dbdd2e31feff4f7003/rpds_py-0.22.3-cp313-cp313t-win32.whl", hash = "sha256:69803198097467ee7282750acb507fba35ca22cc3b85f16cf45fb01cb9097730", size = 219100 }, + { url = "https://files.pythonhosted.org/packages/f8/30/7ac943f69855c2db77407ae363484b915d861702dbba1aa82d68d57f42be/rpds_py-0.22.3-cp313-cp313t-win_amd64.whl", hash = "sha256:f5cf2a0c2bdadf3791b5c205d55a37a54025c6e18a71c71f82bb536cf9a454bf", size = 233794 }, + { url = "https://files.pythonhosted.org/packages/8b/63/e29f8ee14fcf383574f73b6bbdcbec0fbc2e5fc36b4de44d1ac389b1de62/rpds_py-0.22.3-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:d48424e39c2611ee1b84ad0f44fb3b2b53d473e65de061e3f460fc0be5f1939d", size = 360786 }, + { url = "https://files.pythonhosted.org/packages/d3/e0/771ee28b02a24e81c8c0e645796a371350a2bb6672753144f36ae2d2afc9/rpds_py-0.22.3-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:24e8abb5878e250f2eb0d7859a8e561846f98910326d06c0d51381fed59357bd", size = 350589 }, + { url = "https://files.pythonhosted.org/packages/cf/49/abad4c4a1e6f3adf04785a99c247bfabe55ed868133e2d1881200aa5d381/rpds_py-0.22.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4b232061ca880db21fa14defe219840ad9b74b6158adb52ddf0e87bead9e8493", size = 381848 }, + { url = "https://files.pythonhosted.org/packages/3a/7d/f4bc6d6fbe6af7a0d2b5f2ee77079efef7c8528712745659ec0026888998/rpds_py-0.22.3-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ac0a03221cdb5058ce0167ecc92a8c89e8d0decdc9e99a2ec23380793c4dcb96", size = 387879 }, + { url = "https://files.pythonhosted.org/packages/13/b0/575c797377fdcd26cedbb00a3324232e4cb2c5d121f6e4b0dbf8468b12ef/rpds_py-0.22.3-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eb0c341fa71df5a4595f9501df4ac5abfb5a09580081dffbd1ddd4654e6e9123", size = 423916 }, + { url = "https://files.pythonhosted.org/packages/54/78/87157fa39d58f32a68d3326f8a81ad8fb99f49fe2aa7ad9a1b7d544f9478/rpds_py-0.22.3-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:bf9db5488121b596dbfc6718c76092fda77b703c1f7533a226a5a9f65248f8ad", size = 448410 }, + { url = "https://files.pythonhosted.org/packages/59/69/860f89996065a88be1b6ff2d60e96a02b920a262d8aadab99e7903986597/rpds_py-0.22.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0b8db6b5b2d4491ad5b6bdc2bc7c017eec108acbf4e6785f42a9eb0ba234f4c9", size = 382841 }, + { url = "https://files.pythonhosted.org/packages/bd/d7/bc144e10d27e3cb350f98df2492a319edd3caaf52ddfe1293f37a9afbfd7/rpds_py-0.22.3-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b3d504047aba448d70cf6fa22e06cb09f7cbd761939fdd47604f5e007675c24e", size = 409662 }, + { url = "https://files.pythonhosted.org/packages/14/2a/6bed0b05233c291a94c7e89bc76ffa1c619d4e1979fbfe5d96024020c1fb/rpds_py-0.22.3-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:e61b02c3f7a1e0b75e20c3978f7135fd13cb6cf551bf4a6d29b999a88830a338", size = 558221 }, + { url = "https://files.pythonhosted.org/packages/11/23/cd8f566de444a137bc1ee5795e47069a947e60810ba4152886fe5308e1b7/rpds_py-0.22.3-pp310-pypy310_pp73-musllinux_1_2_i686.whl", hash = "sha256:e35ba67d65d49080e8e5a1dd40101fccdd9798adb9b050ff670b7d74fa41c566", size = 583780 }, + { url = "https://files.pythonhosted.org/packages/8d/63/79c3602afd14d501f751e615a74a59040328da5ef29ed5754ae80d236b84/rpds_py-0.22.3-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:26fd7cac7dd51011a245f29a2cc6489c4608b5a8ce8d75661bb4a1066c52dfbe", size = 553619 }, + { url = "https://files.pythonhosted.org/packages/9f/2e/c5c1689e80298d4e94c75b70faada4c25445739d91b94c211244a3ed7ed1/rpds_py-0.22.3-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:177c7c0fce2855833819c98e43c262007f42ce86651ffbb84f37883308cb0e7d", size = 233338 }, +] + +[[package]] +name = "scipy" +version = "1.15.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "numpy" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/76/c6/8eb0654ba0c7d0bb1bf67bf8fbace101a8e4f250f7722371105e8b6f68fc/scipy-1.15.1.tar.gz", hash = "sha256:033a75ddad1463970c96a88063a1df87ccfddd526437136b6ee81ff0312ebdf6", size = 59407493 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/86/53/b204ce5a4433f1864001b9d16f103b9c25f5002a602ae83585d0ea5f9c4a/scipy-1.15.1-cp310-cp310-macosx_10_13_x86_64.whl", hash = "sha256:c64ded12dcab08afff9e805a67ff4480f5e69993310e093434b10e85dc9d43e1", size = 41414518 }, + { url = "https://files.pythonhosted.org/packages/c7/fc/54ffa7a8847f7f303197a6ba65a66104724beba2e38f328135a78f0dc480/scipy-1.15.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:5b190b935e7db569960b48840e5bef71dc513314cc4e79a1b7d14664f57fd4ff", size = 32519265 }, + { url = "https://files.pythonhosted.org/packages/f1/77/a98b8ba03d6f371dc31a38719affd53426d4665729dcffbed4afe296784a/scipy-1.15.1-cp310-cp310-macosx_14_0_arm64.whl", hash = "sha256:4b17d4220df99bacb63065c76b0d1126d82bbf00167d1730019d2a30d6ae01ea", size = 24792859 }, + { url = "https://files.pythonhosted.org/packages/a7/78/70bb9f0df7444b18b108580934bfef774822e28fd34a68e5c263c7d2828a/scipy-1.15.1-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:63b9b6cd0333d0eb1a49de6f834e8aeaefe438df8f6372352084535ad095219e", size = 27886506 }, + { url = "https://files.pythonhosted.org/packages/14/a7/f40f6033e06de4176ddd6cc8c3ae9f10a226c3bca5d6b4ab883bc9914a14/scipy-1.15.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9f151e9fb60fbf8e52426132f473221a49362091ce7a5e72f8aa41f8e0da4f25", size = 38375041 }, + { url = "https://files.pythonhosted.org/packages/17/03/390a1c5c61fd76b0fa4b3c5aa3bdd7e60f6c46f712924f1a9df5705ec046/scipy-1.15.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:21e10b1dd56ce92fba3e786007322542361984f8463c6d37f6f25935a5a6ef52", size = 40597556 }, + { url = "https://files.pythonhosted.org/packages/4e/70/fa95b3ae026b97eeca58204a90868802e5155ac71b9d7bdee92b68115dd3/scipy-1.15.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:5dff14e75cdbcf07cdaa1c7707db6017d130f0af9ac41f6ce443a93318d6c6e0", size = 42938505 }, + { url = "https://files.pythonhosted.org/packages/d6/07/427859116bdd71847c898180f01802691f203c3e2455a1eb496130ff07c5/scipy-1.15.1-cp310-cp310-win_amd64.whl", hash = "sha256:f82fcf4e5b377f819542fbc8541f7b5fbcf1c0017d0df0bc22c781bf60abc4d8", size = 43909663 }, + { url = "https://files.pythonhosted.org/packages/8e/2e/7b71312da9c2dabff53e7c9a9d08231bc34d9d8fdabe88a6f1155b44591c/scipy-1.15.1-cp311-cp311-macosx_10_13_x86_64.whl", hash = "sha256:5bd8d27d44e2c13d0c1124e6a556454f52cd3f704742985f6b09e75e163d20d2", size = 41424362 }, + { url = "https://files.pythonhosted.org/packages/81/8c/ab85f1aa1cc200c796532a385b6ebf6a81089747adc1da7482a062acc46c/scipy-1.15.1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:be3deeb32844c27599347faa077b359584ba96664c5c79d71a354b80a0ad0ce0", size = 32535910 }, + { url = "https://files.pythonhosted.org/packages/3b/9c/6f4b787058daa8d8da21ddff881b4320e28de4704a65ec147adb50cb2230/scipy-1.15.1-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:5eb0ca35d4b08e95da99a9f9c400dc9f6c21c424298a0ba876fdc69c7afacedf", size = 24809398 }, + { url = "https://files.pythonhosted.org/packages/16/2b/949460a796df75fc7a1ee1becea202cf072edbe325ebe29f6d2029947aa7/scipy-1.15.1-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:74bb864ff7640dea310a1377d8567dc2cb7599c26a79ca852fc184cc851954ac", size = 27918045 }, + { url = "https://files.pythonhosted.org/packages/5f/36/67fe249dd7ccfcd2a38b25a640e3af7e59d9169c802478b6035ba91dfd6d/scipy-1.15.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:667f950bf8b7c3a23b4199db24cb9bf7512e27e86d0e3813f015b74ec2c6e3df", size = 38332074 }, + { url = "https://files.pythonhosted.org/packages/fc/da/452e1119e6f720df3feb588cce3c42c5e3d628d4bfd4aec097bd30b7de0c/scipy-1.15.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:395be70220d1189756068b3173853029a013d8c8dd5fd3d1361d505b2aa58fa7", size = 40588469 }, + { url = "https://files.pythonhosted.org/packages/7f/71/5f94aceeac99a4941478af94fe9f459c6752d497035b6b0761a700f5f9ff/scipy-1.15.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:ce3a000cd28b4430426db2ca44d96636f701ed12e2b3ca1f2b1dd7abdd84b39a", size = 42965214 }, + { url = "https://files.pythonhosted.org/packages/af/25/caa430865749d504271757cafd24066d596217e83326155993980bc22f97/scipy-1.15.1-cp311-cp311-win_amd64.whl", hash = "sha256:3fe1d95944f9cf6ba77aa28b82dd6bb2a5b52f2026beb39ecf05304b8392864b", size = 43896034 }, + { url = "https://files.pythonhosted.org/packages/d8/6e/a9c42d0d39e09ed7fd203d0ac17adfea759cba61ab457671fe66e523dbec/scipy-1.15.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:c09aa9d90f3500ea4c9b393ee96f96b0ccb27f2f350d09a47f533293c78ea776", size = 41478318 }, + { url = "https://files.pythonhosted.org/packages/04/ee/e3e535c81828618878a7433992fecc92fa4df79393f31a8fea1d05615091/scipy-1.15.1-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:0ac102ce99934b162914b1e4a6b94ca7da0f4058b6d6fd65b0cef330c0f3346f", size = 32596696 }, + { url = "https://files.pythonhosted.org/packages/c4/5e/b1b0124be8e76f87115f16b8915003eec4b7060298117715baf13f51942c/scipy-1.15.1-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:09c52320c42d7f5c7748b69e9f0389266fd4f82cf34c38485c14ee976cb8cb04", size = 24870366 }, + { url = "https://files.pythonhosted.org/packages/14/36/c00cb73eefda85946172c27913ab995c6ad4eee00fa4f007572e8c50cd51/scipy-1.15.1-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:cdde8414154054763b42b74fe8ce89d7f3d17a7ac5dd77204f0e142cdc9239e9", size = 28007461 }, + { url = "https://files.pythonhosted.org/packages/68/94/aff5c51b3799349a9d1e67a056772a0f8a47db371e83b498d43467806557/scipy-1.15.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4c9d8fc81d6a3b6844235e6fd175ee1d4c060163905a2becce8e74cb0d7554ce", size = 38068174 }, + { url = "https://files.pythonhosted.org/packages/b0/3c/0de11ca154e24a57b579fb648151d901326d3102115bc4f9a7a86526ce54/scipy-1.15.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0fb57b30f0017d4afa5fe5f5b150b8f807618819287c21cbe51130de7ccdaed2", size = 40249869 }, + { url = "https://files.pythonhosted.org/packages/15/09/472e8d0a6b33199d1bb95e49bedcabc0976c3724edd9b0ef7602ccacf41e/scipy-1.15.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:491d57fe89927fa1aafbe260f4cfa5ffa20ab9f1435025045a5315006a91b8f5", size = 42629068 }, + { url = "https://files.pythonhosted.org/packages/ff/ba/31c7a8131152822b3a2cdeba76398ffb404d81d640de98287d236da90c49/scipy-1.15.1-cp312-cp312-win_amd64.whl", hash = "sha256:900f3fa3db87257510f011c292a5779eb627043dd89731b9c461cd16ef76ab3d", size = 43621992 }, + { url = "https://files.pythonhosted.org/packages/2b/bf/dd68965a4c5138a630eeed0baec9ae96e5d598887835bdde96cdd2fe4780/scipy-1.15.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:100193bb72fbff37dbd0bf14322314fc7cbe08b7ff3137f11a34d06dc0ee6b85", size = 41441136 }, + { url = "https://files.pythonhosted.org/packages/ef/5e/4928581312922d7e4d416d74c416a660addec4dd5ea185401df2269ba5a0/scipy-1.15.1-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:2114a08daec64980e4b4cbdf5bee90935af66d750146b1d2feb0d3ac30613692", size = 32533699 }, + { url = "https://files.pythonhosted.org/packages/32/90/03f99c43041852837686898c66767787cd41c5843d7a1509c39ffef683e9/scipy-1.15.1-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:6b3e71893c6687fc5e29208d518900c24ea372a862854c9888368c0b267387ab", size = 24807289 }, + { url = "https://files.pythonhosted.org/packages/9d/52/bfe82b42ae112eaba1af2f3e556275b8727d55ac6e4932e7aef337a9d9d4/scipy-1.15.1-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:837299eec3d19b7e042923448d17d95a86e43941104d33f00da7e31a0f715d3c", size = 27929844 }, + { url = "https://files.pythonhosted.org/packages/f6/77/54ff610bad600462c313326acdb035783accc6a3d5f566d22757ad297564/scipy-1.15.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:82add84e8a9fb12af5c2c1a3a3f1cb51849d27a580cb9e6bd66226195142be6e", size = 38031272 }, + { url = "https://files.pythonhosted.org/packages/f1/26/98585cbf04c7cf503d7eb0a1966df8a268154b5d923c5fe0c1ed13154c49/scipy-1.15.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:070d10654f0cb6abd295bc96c12656f948e623ec5f9a4eab0ddb1466c000716e", size = 40210217 }, + { url = "https://files.pythonhosted.org/packages/fd/3f/3d2285eb6fece8bc5dbb2f9f94d61157d61d155e854fd5fea825b8218f12/scipy-1.15.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:55cc79ce4085c702ac31e49b1e69b27ef41111f22beafb9b49fea67142b696c4", size = 42587785 }, + { url = "https://files.pythonhosted.org/packages/48/7d/5b5251984bf0160d6533695a74a5fddb1fa36edd6f26ffa8c871fbd4782a/scipy-1.15.1-cp313-cp313-win_amd64.whl", hash = "sha256:c352c1b6d7cac452534517e022f8f7b8d139cd9f27e6fbd9f3cbd0bfd39f5bef", size = 43640439 }, + { url = "https://files.pythonhosted.org/packages/e7/b8/0e092f592d280496de52e152582030f8a270b194f87f890e1a97c5599b81/scipy-1.15.1-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:0458839c9f873062db69a03de9a9765ae2e694352c76a16be44f93ea45c28d2b", size = 41619862 }, + { url = "https://files.pythonhosted.org/packages/f6/19/0b6e1173aba4db9e0b7aa27fe45019857fb90d6904038b83927cbe0a6c1d/scipy-1.15.1-cp313-cp313t-macosx_12_0_arm64.whl", hash = "sha256:af0b61c1de46d0565b4b39c6417373304c1d4f5220004058bdad3061c9fa8a95", size = 32610387 }, + { url = "https://files.pythonhosted.org/packages/e7/02/754aae3bd1fa0f2479ade3cfdf1732ecd6b05853f63eee6066a32684563a/scipy-1.15.1-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:71ba9a76c2390eca6e359be81a3e879614af3a71dfdabb96d1d7ab33da6f2364", size = 24883814 }, + { url = "https://files.pythonhosted.org/packages/1f/ac/d7906201604a2ea3b143bb0de51b3966f66441ba50b7dc182c4505b3edf9/scipy-1.15.1-cp313-cp313t-macosx_14_0_x86_64.whl", hash = "sha256:14eaa373c89eaf553be73c3affb11ec6c37493b7eaaf31cf9ac5dffae700c2e0", size = 27944865 }, + { url = "https://files.pythonhosted.org/packages/84/9d/8f539002b5e203723af6a6f513a45e0a7671e9dabeedb08f417ac17e4edc/scipy-1.15.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f735bc41bd1c792c96bc426dece66c8723283695f02df61dcc4d0a707a42fc54", size = 39883261 }, + { url = "https://files.pythonhosted.org/packages/97/c0/62fd3bab828bcccc9b864c5997645a3b86372a35941cdaf677565c25c98d/scipy-1.15.1-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:2722a021a7929d21168830790202a75dbb20b468a8133c74a2c0230c72626b6c", size = 42093299 }, + { url = "https://files.pythonhosted.org/packages/e4/1f/5d46a8d94e9f6d2c913cbb109e57e7eed914de38ea99e2c4d69a9fc93140/scipy-1.15.1-cp313-cp313t-win_amd64.whl", hash = "sha256:bc7136626261ac1ed988dca56cfc4ab5180f75e0ee52e58f1e6aa74b5f3eacd5", size = 43181730 }, +] + +[[package]] +name = "seaborn" +version = "0.13.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "matplotlib" }, + { name = "numpy" }, + { name = "pandas" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/86/59/a451d7420a77ab0b98f7affa3a1d78a313d2f7281a57afb1a34bae8ab412/seaborn-0.13.2.tar.gz", hash = "sha256:93e60a40988f4d65e9f4885df477e2fdaff6b73a9ded434c1ab356dd57eefff7", size = 1457696 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/83/11/00d3c3dfc25ad54e731d91449895a79e4bf2384dc3ac01809010ba88f6d5/seaborn-0.13.2-py3-none-any.whl", hash = "sha256:636f8336facf092165e27924f223d3c62ca560b1f2bb5dff7ab7fad265361987", size = 294914 }, +] + +[[package]] +name = "send2trash" +version = "1.8.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/fd/3a/aec9b02217bb79b87bbc1a21bc6abc51e3d5dcf65c30487ac96c0908c722/Send2Trash-1.8.3.tar.gz", hash = "sha256:b18e7a3966d99871aefeb00cfbcfdced55ce4871194810fc71f4aa484b953abf", size = 17394 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/40/b0/4562db6223154aa4e22f939003cb92514c79f3d4dccca3444253fd17f902/Send2Trash-1.8.3-py3-none-any.whl", hash = "sha256:0c31227e0bd08961c7665474a3d1ef7193929fedda4233843689baa056be46c9", size = 18072 }, +] + +[[package]] +name = "setuptools" +version = "75.8.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/92/ec/089608b791d210aec4e7f97488e67ab0d33add3efccb83a056cbafe3a2a6/setuptools-75.8.0.tar.gz", hash = "sha256:c5afc8f407c626b8313a86e10311dd3f661c6cd9c09d4bf8c15c0e11f9f2b0e6", size = 1343222 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/69/8a/b9dc7678803429e4a3bc9ba462fa3dd9066824d3c607490235c6a796be5a/setuptools-75.8.0-py3-none-any.whl", hash = "sha256:e3982f444617239225d675215d51f6ba05f845d4eec313da4418fdbb56fb27e3", size = 1228782 }, +] + +[[package]] +name = "six" +version = "1.17.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/94/e7/b2c673351809dca68a0e064b6af791aa332cf192da575fd474ed7d6f16a2/six-1.17.0.tar.gz", hash = "sha256:ff70335d468e7eb6ec65b95b99d3a2836546063f63acc5171de367e834932a81", size = 34031 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/b7/ce/149a00dd41f10bc29e5921b496af8b574d8413afcd5e30dfa0ed46c2cc5e/six-1.17.0-py2.py3-none-any.whl", hash = "sha256:4721f391ed90541fddacab5acf947aa0d3dc7d27b2e1e8eda2be8970586c3274", size = 11050 }, +] + +[[package]] +name = "sniffio" +version = "1.3.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/a2/87/a6771e1546d97e7e041b6ae58d80074f81b7d5121207425c964ddf5cfdbd/sniffio-1.3.1.tar.gz", hash = "sha256:f4324edc670a0f49750a81b895f35c3adb843cca46f0530f79fc1babb23789dc", size = 20372 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e9/44/75a9c9421471a6c4805dbf2356f7c181a29c1879239abab1ea2cc8f38b40/sniffio-1.3.1-py3-none-any.whl", hash = "sha256:2f6da418d1f1e0fddd844478f41680e794e6051915791a034ff65e5f100525a2", size = 10235 }, +] + +[[package]] +name = "soupsieve" +version = "2.6" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/d7/ce/fbaeed4f9fb8b2daa961f90591662df6a86c1abf25c548329a86920aedfb/soupsieve-2.6.tar.gz", hash = "sha256:e2e68417777af359ec65daac1057404a3c8a5455bb8abc36f1a9866ab1a51abb", size = 101569 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d1/c2/fe97d779f3ef3b15f05c94a2f1e3d21732574ed441687474db9d342a7315/soupsieve-2.6-py3-none-any.whl", hash = "sha256:e72c4ff06e4fb6e4b5a9f0f55fe6e81514581fca1515028625d0f299c602ccc9", size = 36186 }, +] + +[[package]] +name = "stack-data" +version = "0.6.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "asttokens" }, + { name = "executing" }, + { name = "pure-eval" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/28/e3/55dcc2cfbc3ca9c29519eb6884dd1415ecb53b0e934862d3559ddcb7e20b/stack_data-0.6.3.tar.gz", hash = "sha256:836a778de4fec4dcd1dcd89ed8abff8a221f58308462e1c4aa2a3cf30148f0b9", size = 44707 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f1/7b/ce1eafaf1a76852e2ec9b22edecf1daa58175c090266e9f6c64afcd81d91/stack_data-0.6.3-py3-none-any.whl", hash = "sha256:d5558e0c25a4cb0853cddad3d77da9891a08cb85dd9f9f91b9f8cd66e511e695", size = 24521 }, +] + +[[package]] +name = "terminado" +version = "0.18.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "ptyprocess", marker = "os_name != 'nt'" }, + { name = "pywinpty", marker = "os_name == 'nt'" }, + { name = "tornado" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/8a/11/965c6fd8e5cc254f1fe142d547387da17a8ebfd75a3455f637c663fb38a0/terminado-0.18.1.tar.gz", hash = "sha256:de09f2c4b85de4765f7714688fff57d3e75bad1f909b589fde880460c753fd2e", size = 32701 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/6a/9e/2064975477fdc887e47ad42157e214526dcad8f317a948dee17e1659a62f/terminado-0.18.1-py3-none-any.whl", hash = "sha256:a4468e1b37bb318f8a86514f65814e1afc977cf29b3992a4500d9dd305dcceb0", size = 14154 }, +] + +[[package]] +name = "tinycss2" +version = "1.4.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "webencodings" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/7a/fd/7a5ee21fd08ff70d3d33a5781c255cbe779659bd03278feb98b19ee550f4/tinycss2-1.4.0.tar.gz", hash = "sha256:10c0972f6fc0fbee87c3edb76549357415e94548c1ae10ebccdea16fb404a9b7", size = 87085 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e6/34/ebdc18bae6aa14fbee1a08b63c015c72b64868ff7dae68808ab500c492e2/tinycss2-1.4.0-py3-none-any.whl", hash = "sha256:3a49cf47b7675da0b15d0c6e1df8df4ebd96e9394bb905a5775adb0d884c5289", size = 26610 }, +] + +[[package]] +name = "tomli" +version = "2.2.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/18/87/302344fed471e44a87289cf4967697d07e532f2421fdaf868a303cbae4ff/tomli-2.2.1.tar.gz", hash = "sha256:cd45e1dc79c835ce60f7404ec8119f2eb06d38b1deba146f07ced3bbc44505ff", size = 17175 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/43/ca/75707e6efa2b37c77dadb324ae7d9571cb424e61ea73fad7c56c2d14527f/tomli-2.2.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:678e4fa69e4575eb77d103de3df8a895e1591b48e740211bd1067378c69e8249", size = 131077 }, + { url = "https://files.pythonhosted.org/packages/c7/16/51ae563a8615d472fdbffc43a3f3d46588c264ac4f024f63f01283becfbb/tomli-2.2.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:023aa114dd824ade0100497eb2318602af309e5a55595f76b626d6d9f3b7b0a6", size = 123429 }, + { url = "https://files.pythonhosted.org/packages/f1/dd/4f6cd1e7b160041db83c694abc78e100473c15d54620083dbd5aae7b990e/tomli-2.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ece47d672db52ac607a3d9599a9d48dcb2f2f735c6c2d1f34130085bb12b112a", size = 226067 }, + { url = "https://files.pythonhosted.org/packages/a9/6b/c54ede5dc70d648cc6361eaf429304b02f2871a345bbdd51e993d6cdf550/tomli-2.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6972ca9c9cc9f0acaa56a8ca1ff51e7af152a9f87fb64623e31d5c83700080ee", size = 236030 }, + { url = "https://files.pythonhosted.org/packages/1f/47/999514fa49cfaf7a92c805a86c3c43f4215621855d151b61c602abb38091/tomli-2.2.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c954d2250168d28797dd4e3ac5cf812a406cd5a92674ee4c8f123c889786aa8e", size = 240898 }, + { url = "https://files.pythonhosted.org/packages/73/41/0a01279a7ae09ee1573b423318e7934674ce06eb33f50936655071d81a24/tomli-2.2.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:8dd28b3e155b80f4d54beb40a441d366adcfe740969820caf156c019fb5c7ec4", size = 229894 }, + { url = "https://files.pythonhosted.org/packages/55/18/5d8bc5b0a0362311ce4d18830a5d28943667599a60d20118074ea1b01bb7/tomli-2.2.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:e59e304978767a54663af13c07b3d1af22ddee3bb2fb0618ca1593e4f593a106", size = 245319 }, + { url = "https://files.pythonhosted.org/packages/92/a3/7ade0576d17f3cdf5ff44d61390d4b3febb8a9fc2b480c75c47ea048c646/tomli-2.2.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:33580bccab0338d00994d7f16f4c4ec25b776af3ffaac1ed74e0b3fc95e885a8", size = 238273 }, + { url = "https://files.pythonhosted.org/packages/72/6f/fa64ef058ac1446a1e51110c375339b3ec6be245af9d14c87c4a6412dd32/tomli-2.2.1-cp311-cp311-win32.whl", hash = "sha256:465af0e0875402f1d226519c9904f37254b3045fc5084697cefb9bdde1ff99ff", size = 98310 }, + { url = "https://files.pythonhosted.org/packages/6a/1c/4a2dcde4a51b81be3530565e92eda625d94dafb46dbeb15069df4caffc34/tomli-2.2.1-cp311-cp311-win_amd64.whl", hash = "sha256:2d0f2fdd22b02c6d81637a3c95f8cd77f995846af7414c5c4b8d0545afa1bc4b", size = 108309 }, + { url = "https://files.pythonhosted.org/packages/52/e1/f8af4c2fcde17500422858155aeb0d7e93477a0d59a98e56cbfe75070fd0/tomli-2.2.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:4a8f6e44de52d5e6c657c9fe83b562f5f4256d8ebbfe4ff922c495620a7f6cea", size = 132762 }, + { url = "https://files.pythonhosted.org/packages/03/b8/152c68bb84fc00396b83e7bbddd5ec0bd3dd409db4195e2a9b3e398ad2e3/tomli-2.2.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8d57ca8095a641b8237d5b079147646153d22552f1c637fd3ba7f4b0b29167a8", size = 123453 }, + { url = "https://files.pythonhosted.org/packages/c8/d6/fc9267af9166f79ac528ff7e8c55c8181ded34eb4b0e93daa767b8841573/tomli-2.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4e340144ad7ae1533cb897d406382b4b6fede8890a03738ff1683af800d54192", size = 233486 }, + { url = "https://files.pythonhosted.org/packages/5c/51/51c3f2884d7bab89af25f678447ea7d297b53b5a3b5730a7cb2ef6069f07/tomli-2.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:db2b95f9de79181805df90bedc5a5ab4c165e6ec3fe99f970d0e302f384ad222", size = 242349 }, + { url = "https://files.pythonhosted.org/packages/ab/df/bfa89627d13a5cc22402e441e8a931ef2108403db390ff3345c05253935e/tomli-2.2.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:40741994320b232529c802f8bc86da4e1aa9f413db394617b9a256ae0f9a7f77", size = 252159 }, + { url = "https://files.pythonhosted.org/packages/9e/6e/fa2b916dced65763a5168c6ccb91066f7639bdc88b48adda990db10c8c0b/tomli-2.2.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:400e720fe168c0f8521520190686ef8ef033fb19fc493da09779e592861b78c6", size = 237243 }, + { url = "https://files.pythonhosted.org/packages/b4/04/885d3b1f650e1153cbb93a6a9782c58a972b94ea4483ae4ac5cedd5e4a09/tomli-2.2.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:02abe224de6ae62c19f090f68da4e27b10af2b93213d36cf44e6e1c5abd19fdd", size = 259645 }, + { url = "https://files.pythonhosted.org/packages/9c/de/6b432d66e986e501586da298e28ebeefd3edc2c780f3ad73d22566034239/tomli-2.2.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:b82ebccc8c8a36f2094e969560a1b836758481f3dc360ce9a3277c65f374285e", size = 244584 }, + { url = "https://files.pythonhosted.org/packages/1c/9a/47c0449b98e6e7d1be6cbac02f93dd79003234ddc4aaab6ba07a9a7482e2/tomli-2.2.1-cp312-cp312-win32.whl", hash = "sha256:889f80ef92701b9dbb224e49ec87c645ce5df3fa2cc548664eb8a25e03127a98", size = 98875 }, + { url = "https://files.pythonhosted.org/packages/ef/60/9b9638f081c6f1261e2688bd487625cd1e660d0a85bd469e91d8db969734/tomli-2.2.1-cp312-cp312-win_amd64.whl", hash = "sha256:7fc04e92e1d624a4a63c76474610238576942d6b8950a2d7f908a340494e67e4", size = 109418 }, + { url = "https://files.pythonhosted.org/packages/04/90/2ee5f2e0362cb8a0b6499dc44f4d7d48f8fff06d28ba46e6f1eaa61a1388/tomli-2.2.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f4039b9cbc3048b2416cc57ab3bda989a6fcf9b36cf8937f01a6e731b64f80d7", size = 132708 }, + { url = "https://files.pythonhosted.org/packages/c0/ec/46b4108816de6b385141f082ba99e315501ccd0a2ea23db4a100dd3990ea/tomli-2.2.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:286f0ca2ffeeb5b9bd4fcc8d6c330534323ec51b2f52da063b11c502da16f30c", size = 123582 }, + { url = "https://files.pythonhosted.org/packages/a0/bd/b470466d0137b37b68d24556c38a0cc819e8febe392d5b199dcd7f578365/tomli-2.2.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a92ef1a44547e894e2a17d24e7557a5e85a9e1d0048b0b5e7541f76c5032cb13", size = 232543 }, + { url = "https://files.pythonhosted.org/packages/d9/e5/82e80ff3b751373f7cead2815bcbe2d51c895b3c990686741a8e56ec42ab/tomli-2.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9316dc65bed1684c9a98ee68759ceaed29d229e985297003e494aa825ebb0281", size = 241691 }, + { url = "https://files.pythonhosted.org/packages/05/7e/2a110bc2713557d6a1bfb06af23dd01e7dde52b6ee7dadc589868f9abfac/tomli-2.2.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e85e99945e688e32d5a35c1ff38ed0b3f41f43fad8df0bdf79f72b2ba7bc5272", size = 251170 }, + { url = "https://files.pythonhosted.org/packages/64/7b/22d713946efe00e0adbcdfd6d1aa119ae03fd0b60ebed51ebb3fa9f5a2e5/tomli-2.2.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:ac065718db92ca818f8d6141b5f66369833d4a80a9d74435a268c52bdfa73140", size = 236530 }, + { url = "https://files.pythonhosted.org/packages/38/31/3a76f67da4b0cf37b742ca76beaf819dca0ebef26d78fc794a576e08accf/tomli-2.2.1-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:d920f33822747519673ee656a4b6ac33e382eca9d331c87770faa3eef562aeb2", size = 258666 }, + { url = "https://files.pythonhosted.org/packages/07/10/5af1293da642aded87e8a988753945d0cf7e00a9452d3911dd3bb354c9e2/tomli-2.2.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:a198f10c4d1b1375d7687bc25294306e551bf1abfa4eace6650070a5c1ae2744", size = 243954 }, + { url = "https://files.pythonhosted.org/packages/5b/b9/1ed31d167be802da0fc95020d04cd27b7d7065cc6fbefdd2f9186f60d7bd/tomli-2.2.1-cp313-cp313-win32.whl", hash = "sha256:d3f5614314d758649ab2ab3a62d4f2004c825922f9e370b29416484086b264ec", size = 98724 }, + { url = "https://files.pythonhosted.org/packages/c7/32/b0963458706accd9afcfeb867c0f9175a741bf7b19cd424230714d722198/tomli-2.2.1-cp313-cp313-win_amd64.whl", hash = "sha256:a38aa0308e754b0e3c67e344754dff64999ff9b513e691d0e786265c93583c69", size = 109383 }, + { url = "https://files.pythonhosted.org/packages/6e/c2/61d3e0f47e2b74ef40a68b9e6ad5984f6241a942f7cd3bbfbdbd03861ea9/tomli-2.2.1-py3-none-any.whl", hash = "sha256:cb55c73c5f4408779d0cf3eef9f762b9c9f147a77de7b258bef0a5628adc85cc", size = 14257 }, +] + +[[package]] +name = "tornado" +version = "6.4.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/59/45/a0daf161f7d6f36c3ea5fc0c2de619746cc3dd4c76402e9db545bd920f63/tornado-6.4.2.tar.gz", hash = "sha256:92bad5b4746e9879fd7bf1eb21dce4e3fc5128d71601f80005afa39237ad620b", size = 501135 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/26/7e/71f604d8cea1b58f82ba3590290b66da1e72d840aeb37e0d5f7291bd30db/tornado-6.4.2-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:e828cce1123e9e44ae2a50a9de3055497ab1d0aeb440c5ac23064d9e44880da1", size = 436299 }, + { url = "https://files.pythonhosted.org/packages/96/44/87543a3b99016d0bf54fdaab30d24bf0af2e848f1d13d34a3a5380aabe16/tornado-6.4.2-cp38-abi3-macosx_10_9_x86_64.whl", hash = "sha256:072ce12ada169c5b00b7d92a99ba089447ccc993ea2143c9ede887e0937aa803", size = 434253 }, + { url = "https://files.pythonhosted.org/packages/cb/fb/fdf679b4ce51bcb7210801ef4f11fdac96e9885daa402861751353beea6e/tornado-6.4.2-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1a017d239bd1bb0919f72af256a970624241f070496635784d9bf0db640d3fec", size = 437602 }, + { url = "https://files.pythonhosted.org/packages/4f/3b/e31aeffffc22b475a64dbeb273026a21b5b566f74dee48742817626c47dc/tornado-6.4.2-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c36e62ce8f63409301537222faffcef7dfc5284f27eec227389f2ad11b09d946", size = 436972 }, + { url = "https://files.pythonhosted.org/packages/22/55/b78a464de78051a30599ceb6983b01d8f732e6f69bf37b4ed07f642ac0fc/tornado-6.4.2-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bca9eb02196e789c9cb5c3c7c0f04fb447dc2adffd95265b2c7223a8a615ccbf", size = 437173 }, + { url = "https://files.pythonhosted.org/packages/79/5e/be4fb0d1684eb822c9a62fb18a3e44a06188f78aa466b2ad991d2ee31104/tornado-6.4.2-cp38-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:304463bd0772442ff4d0f5149c6f1c2135a1fae045adf070821c6cdc76980634", size = 437892 }, + { url = "https://files.pythonhosted.org/packages/f5/33/4f91fdd94ea36e1d796147003b490fe60a0215ac5737b6f9c65e160d4fe0/tornado-6.4.2-cp38-abi3-musllinux_1_2_i686.whl", hash = "sha256:c82c46813ba483a385ab2a99caeaedf92585a1f90defb5693351fa7e4ea0bf73", size = 437334 }, + { url = "https://files.pythonhosted.org/packages/2b/ae/c1b22d4524b0e10da2f29a176fb2890386f7bd1f63aacf186444873a88a0/tornado-6.4.2-cp38-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:932d195ca9015956fa502c6b56af9eb06106140d844a335590c1ec7f5277d10c", size = 437261 }, + { url = "https://files.pythonhosted.org/packages/b5/25/36dbd49ab6d179bcfc4c6c093a51795a4f3bed380543a8242ac3517a1751/tornado-6.4.2-cp38-abi3-win32.whl", hash = "sha256:2876cef82e6c5978fde1e0d5b1f919d756968d5b4282418f3146b79b58556482", size = 438463 }, + { url = "https://files.pythonhosted.org/packages/61/cc/58b1adeb1bb46228442081e746fcdbc4540905c87e8add7c277540934edb/tornado-6.4.2-cp38-abi3-win_amd64.whl", hash = "sha256:908b71bf3ff37d81073356a5fadcc660eb10c1476ee6e2725588626ce7e5ca38", size = 438907 }, +] + +[[package]] +name = "tqdm" +version = "4.67.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "colorama", marker = "sys_platform == 'win32'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/a8/4b/29b4ef32e036bb34e4ab51796dd745cdba7ed47ad142a9f4a1eb8e0c744d/tqdm-4.67.1.tar.gz", hash = "sha256:f8aef9c52c08c13a65f30ea34f4e5aac3fd1a34959879d7e59e63027286627f2", size = 169737 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d0/30/dc54f88dd4a2b5dc8a0279bdd7270e735851848b762aeb1c1184ed1f6b14/tqdm-4.67.1-py3-none-any.whl", hash = "sha256:26445eca388f82e72884e0d580d5464cd801a3ea01e63e5601bdff9ba6a48de2", size = 78540 }, +] + +[[package]] +name = "traitlets" +version = "5.14.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/eb/79/72064e6a701c2183016abbbfedaba506d81e30e232a68c9f0d6f6fcd1574/traitlets-5.14.3.tar.gz", hash = "sha256:9ed0579d3502c94b4b3732ac120375cda96f923114522847de4b3bb98b96b6b7", size = 161621 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/00/c0/8f5d070730d7836adc9c9b6408dec68c6ced86b304a9b26a14df072a6e8c/traitlets-5.14.3-py3-none-any.whl", hash = "sha256:b74e89e397b1ed28cc831db7aea759ba6640cb3de13090ca145426688ff1ac4f", size = 85359 }, +] + +[[package]] +name = "types-python-dateutil" +version = "2.9.0.20241206" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/a9/60/47d92293d9bc521cd2301e423a358abfac0ad409b3a1606d8fbae1321961/types_python_dateutil-2.9.0.20241206.tar.gz", hash = "sha256:18f493414c26ffba692a72369fea7a154c502646301ebfe3d56a04b3767284cb", size = 13802 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/0f/b3/ca41df24db5eb99b00d97f89d7674a90cb6b3134c52fb8121b6d8d30f15c/types_python_dateutil-2.9.0.20241206-py3-none-any.whl", hash = "sha256:e248a4bc70a486d3e3ec84d0dc30eec3a5f979d6e7ee4123ae043eedbb987f53", size = 14384 }, +] + +[[package]] +name = "typing-extensions" +version = "4.12.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/df/db/f35a00659bc03fec321ba8bce9420de607a1d37f8342eee1863174c69557/typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8", size = 85321 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/26/9f/ad63fc0248c5379346306f8668cda6e2e2e9c95e01216d2b8ffd9ff037d0/typing_extensions-4.12.2-py3-none-any.whl", hash = "sha256:04e5ca0351e0f3f85c6853954072df659d0d13fac324d0072316b67d7794700d", size = 37438 }, +] + +[[package]] +name = "tzdata" +version = "2024.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/e1/34/943888654477a574a86a98e9896bae89c7aa15078ec29f490fef2f1e5384/tzdata-2024.2.tar.gz", hash = "sha256:7d85cc416e9382e69095b7bdf4afd9e3880418a2413feec7069d533d6b4e31cc", size = 193282 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a6/ab/7e5f53c3b9d14972843a647d8d7a853969a58aecc7559cb3267302c94774/tzdata-2024.2-py2.py3-none-any.whl", hash = "sha256:a48093786cdcde33cad18c2555e8532f34422074448fbc874186f0abd79565cd", size = 346586 }, +] + +[[package]] +name = "uri-template" +version = "1.3.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/31/c7/0336f2bd0bcbada6ccef7aaa25e443c118a704f828a0620c6fa0207c1b64/uri-template-1.3.0.tar.gz", hash = "sha256:0e00f8eb65e18c7de20d595a14336e9f337ead580c70934141624b6d1ffdacc7", size = 21678 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e7/00/3fca040d7cf8a32776d3d81a00c8ee7457e00f80c649f1e4a863c8321ae9/uri_template-1.3.0-py3-none-any.whl", hash = "sha256:a44a133ea12d44a0c0f06d7d42a52d71282e77e2f937d8abd5655b8d56fc1363", size = 11140 }, +] + +[[package]] +name = "urllib3" +version = "2.3.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/aa/63/e53da845320b757bf29ef6a9062f5c669fe997973f966045cb019c3f4b66/urllib3-2.3.0.tar.gz", hash = "sha256:f8c5449b3cf0861679ce7e0503c7b44b5ec981bec0d1d3795a07f1ba96f0204d", size = 307268 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/c8/19/4ec628951a74043532ca2cf5d97b7b14863931476d117c471e8e2b1eb39f/urllib3-2.3.0-py3-none-any.whl", hash = "sha256:1cee9ad369867bfdbbb48b7dd50374c0967a0bb7710050facf0dd6911440e3df", size = 128369 }, +] + +[[package]] +name = "watchdog" +version = "6.0.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/db/7d/7f3d619e951c88ed75c6037b246ddcf2d322812ee8ea189be89511721d54/watchdog-6.0.0.tar.gz", hash = "sha256:9ddf7c82fda3ae8e24decda1338ede66e1c99883db93711d8fb941eaa2d8c282", size = 131220 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/0c/56/90994d789c61df619bfc5ce2ecdabd5eeff564e1eb47512bd01b5e019569/watchdog-6.0.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:d1cdb490583ebd691c012b3d6dae011000fe42edb7a82ece80965b42abd61f26", size = 96390 }, + { url = "https://files.pythonhosted.org/packages/55/46/9a67ee697342ddf3c6daa97e3a587a56d6c4052f881ed926a849fcf7371c/watchdog-6.0.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:bc64ab3bdb6a04d69d4023b29422170b74681784ffb9463ed4870cf2f3e66112", size = 88389 }, + { url = "https://files.pythonhosted.org/packages/44/65/91b0985747c52064d8701e1075eb96f8c40a79df889e59a399453adfb882/watchdog-6.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c897ac1b55c5a1461e16dae288d22bb2e412ba9807df8397a635d88f671d36c3", size = 89020 }, + { url = "https://files.pythonhosted.org/packages/e0/24/d9be5cd6642a6aa68352ded4b4b10fb0d7889cb7f45814fb92cecd35f101/watchdog-6.0.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:6eb11feb5a0d452ee41f824e271ca311a09e250441c262ca2fd7ebcf2461a06c", size = 96393 }, + { url = "https://files.pythonhosted.org/packages/63/7a/6013b0d8dbc56adca7fdd4f0beed381c59f6752341b12fa0886fa7afc78b/watchdog-6.0.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:ef810fbf7b781a5a593894e4f439773830bdecb885e6880d957d5b9382a960d2", size = 88392 }, + { url = "https://files.pythonhosted.org/packages/d1/40/b75381494851556de56281e053700e46bff5b37bf4c7267e858640af5a7f/watchdog-6.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:afd0fe1b2270917c5e23c2a65ce50c2a4abb63daafb0d419fde368e272a76b7c", size = 89019 }, + { url = "https://files.pythonhosted.org/packages/39/ea/3930d07dafc9e286ed356a679aa02d777c06e9bfd1164fa7c19c288a5483/watchdog-6.0.0-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:bdd4e6f14b8b18c334febb9c4425a878a2ac20efd1e0b231978e7b150f92a948", size = 96471 }, + { url = "https://files.pythonhosted.org/packages/12/87/48361531f70b1f87928b045df868a9fd4e253d9ae087fa4cf3f7113be363/watchdog-6.0.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:c7c15dda13c4eb00d6fb6fc508b3c0ed88b9d5d374056b239c4ad1611125c860", size = 88449 }, + { url = "https://files.pythonhosted.org/packages/5b/7e/8f322f5e600812e6f9a31b75d242631068ca8f4ef0582dd3ae6e72daecc8/watchdog-6.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:6f10cb2d5902447c7d0da897e2c6768bca89174d0c6e1e30abec5421af97a5b0", size = 89054 }, + { url = "https://files.pythonhosted.org/packages/68/98/b0345cabdce2041a01293ba483333582891a3bd5769b08eceb0d406056ef/watchdog-6.0.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:490ab2ef84f11129844c23fb14ecf30ef3d8a6abafd3754a6f75ca1e6654136c", size = 96480 }, + { url = "https://files.pythonhosted.org/packages/85/83/cdf13902c626b28eedef7ec4f10745c52aad8a8fe7eb04ed7b1f111ca20e/watchdog-6.0.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:76aae96b00ae814b181bb25b1b98076d5fc84e8a53cd8885a318b42b6d3a5134", size = 88451 }, + { url = "https://files.pythonhosted.org/packages/fe/c4/225c87bae08c8b9ec99030cd48ae9c4eca050a59bf5c2255853e18c87b50/watchdog-6.0.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:a175f755fc2279e0b7312c0035d52e27211a5bc39719dd529625b1930917345b", size = 89057 }, + { url = "https://files.pythonhosted.org/packages/30/ad/d17b5d42e28a8b91f8ed01cb949da092827afb9995d4559fd448d0472763/watchdog-6.0.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:c7ac31a19f4545dd92fc25d200694098f42c9a8e391bc00bdd362c5736dbf881", size = 87902 }, + { url = "https://files.pythonhosted.org/packages/5c/ca/c3649991d140ff6ab67bfc85ab42b165ead119c9e12211e08089d763ece5/watchdog-6.0.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:9513f27a1a582d9808cf21a07dae516f0fab1cf2d7683a742c498b93eedabb11", size = 88380 }, + { url = "https://files.pythonhosted.org/packages/a9/c7/ca4bf3e518cb57a686b2feb4f55a1892fd9a3dd13f470fca14e00f80ea36/watchdog-6.0.0-py3-none-manylinux2014_aarch64.whl", hash = "sha256:7607498efa04a3542ae3e05e64da8202e58159aa1fa4acddf7678d34a35d4f13", size = 79079 }, + { url = "https://files.pythonhosted.org/packages/5c/51/d46dc9332f9a647593c947b4b88e2381c8dfc0942d15b8edc0310fa4abb1/watchdog-6.0.0-py3-none-manylinux2014_armv7l.whl", hash = "sha256:9041567ee8953024c83343288ccc458fd0a2d811d6a0fd68c4c22609e3490379", size = 79078 }, + { url = "https://files.pythonhosted.org/packages/d4/57/04edbf5e169cd318d5f07b4766fee38e825d64b6913ca157ca32d1a42267/watchdog-6.0.0-py3-none-manylinux2014_i686.whl", hash = "sha256:82dc3e3143c7e38ec49d61af98d6558288c415eac98486a5c581726e0737c00e", size = 79076 }, + { url = "https://files.pythonhosted.org/packages/ab/cc/da8422b300e13cb187d2203f20b9253e91058aaf7db65b74142013478e66/watchdog-6.0.0-py3-none-manylinux2014_ppc64.whl", hash = "sha256:212ac9b8bf1161dc91bd09c048048a95ca3a4c4f5e5d4a7d1b1a7d5752a7f96f", size = 79077 }, + { url = "https://files.pythonhosted.org/packages/2c/3b/b8964e04ae1a025c44ba8e4291f86e97fac443bca31de8bd98d3263d2fcf/watchdog-6.0.0-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:e3df4cbb9a450c6d49318f6d14f4bbc80d763fa587ba46ec86f99f9e6876bb26", size = 79078 }, + { url = "https://files.pythonhosted.org/packages/62/ae/a696eb424bedff7407801c257d4b1afda455fe40821a2be430e173660e81/watchdog-6.0.0-py3-none-manylinux2014_s390x.whl", hash = "sha256:2cce7cfc2008eb51feb6aab51251fd79b85d9894e98ba847408f662b3395ca3c", size = 79077 }, + { url = "https://files.pythonhosted.org/packages/b5/e8/dbf020b4d98251a9860752a094d09a65e1b436ad181faf929983f697048f/watchdog-6.0.0-py3-none-manylinux2014_x86_64.whl", hash = "sha256:20ffe5b202af80ab4266dcd3e91aae72bf2da48c0d33bdb15c66658e685e94e2", size = 79078 }, + { url = "https://files.pythonhosted.org/packages/07/f6/d0e5b343768e8bcb4cda79f0f2f55051bf26177ecd5651f84c07567461cf/watchdog-6.0.0-py3-none-win32.whl", hash = "sha256:07df1fdd701c5d4c8e55ef6cf55b8f0120fe1aef7ef39a1c6fc6bc2e606d517a", size = 79065 }, + { url = "https://files.pythonhosted.org/packages/db/d9/c495884c6e548fce18a8f40568ff120bc3a4b7b99813081c8ac0c936fa64/watchdog-6.0.0-py3-none-win_amd64.whl", hash = "sha256:cbafb470cf848d93b5d013e2ecb245d4aa1c8fd0504e863ccefa32445359d680", size = 79070 }, + { url = "https://files.pythonhosted.org/packages/33/e8/e40370e6d74ddba47f002a32919d91310d6074130fe4e17dabcafc15cbf1/watchdog-6.0.0-py3-none-win_ia64.whl", hash = "sha256:a1914259fa9e1454315171103c6a30961236f508b9b623eae470268bbcc6a22f", size = 79067 }, +] + +[[package]] +name = "wcwidth" +version = "0.2.13" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/6c/63/53559446a878410fc5a5974feb13d31d78d752eb18aeba59c7fef1af7598/wcwidth-0.2.13.tar.gz", hash = "sha256:72ea0c06399eb286d978fdedb6923a9eb47e1c486ce63e9b4e64fc18303972b5", size = 101301 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/fd/84/fd2ba7aafacbad3c4201d395674fc6348826569da3c0937e75505ead3528/wcwidth-0.2.13-py2.py3-none-any.whl", hash = "sha256:3da69048e4540d84af32131829ff948f1e022c1c6bdb8d6102117aac784f6859", size = 34166 }, +] + +[[package]] +name = "webcolors" +version = "24.11.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/7b/29/061ec845fb58521848f3739e466efd8250b4b7b98c1b6c5bf4d40b419b7e/webcolors-24.11.1.tar.gz", hash = "sha256:ecb3d768f32202af770477b8b65f318fa4f566c22948673a977b00d589dd80f6", size = 45064 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/60/e8/c0e05e4684d13459f93d312077a9a2efbe04d59c393bc2b8802248c908d4/webcolors-24.11.1-py3-none-any.whl", hash = "sha256:515291393b4cdf0eb19c155749a096f779f7d909f7cceea072791cb9095b92e9", size = 14934 }, +] + +[[package]] +name = "webencodings" +version = "0.5.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/0b/02/ae6ceac1baeda530866a85075641cec12989bd8d31af6d5ab4a3e8c92f47/webencodings-0.5.1.tar.gz", hash = "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923", size = 9721 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f4/24/2a3e3df732393fed8b3ebf2ec078f05546de641fe1b667ee316ec1dcf3b7/webencodings-0.5.1-py2.py3-none-any.whl", hash = "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78", size = 11774 }, +] + +[[package]] +name = "websocket-client" +version = "1.8.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/e6/30/fba0d96b4b5fbf5948ed3f4681f7da2f9f64512e1d303f94b4cc174c24a5/websocket_client-1.8.0.tar.gz", hash = "sha256:3239df9f44da632f96012472805d40a23281a991027ce11d2f45a6f24ac4c3da", size = 54648 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/5a/84/44687a29792a70e111c5c477230a72c4b957d88d16141199bf9acb7537a3/websocket_client-1.8.0-py3-none-any.whl", hash = "sha256:17b44cc997f5c498e809b22cdf2d9c7a9e71c02c8cc2b6c56e7c2d1239bfa526", size = 58826 }, +]