-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathrun.py
205 lines (176 loc) · 8.65 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
from typing import Iterator, List, Dict
import torch
import torch.optim as optim
import numpy as np
import os
import time
import argparse
import json
from pathlib import Path
from allennlp.data import Instance
from allennlp.data.fields import TextField
from allennlp.data.dataset_readers import DatasetReader
from allennlp.data.token_indexers import TokenIndexer, SingleIdTokenIndexer
from allennlp.data.tokenizers import Token
from allennlp.data.vocabulary import Vocabulary
from allennlp.models import Model
from allennlp.nn.util import get_text_field_mask, sequence_cross_entropy_with_logits
from allennlp.training.metrics import CategoricalAccuracy
from allennlp.data.iterators import BucketIterator, BasicIterator
from trainer import Trainer
from allennlp.nn import util
from allennlp.common.tqdm import Tqdm
from metrics import SequenceAccuracy, calc_bleu_score
from models.seq2seq import Seq2Seq
from predictor import Predictor
parser = argparse.ArgumentParser(description='train.py')
parser.add_argument('-emb_size', type=int, default=256, help="Embedding size")
parser.add_argument('-hidden_size', type=int, default=256, help="Hidden size")
parser.add_argument('-enc_layers', type=int, default=2, help="Number of encoder layer")
parser.add_argument('-dec_layers', type=int, default=2, help="Number of decoder layer")
parser.add_argument('-batch_size', type=int, default=64, help="Batch size")
parser.add_argument('-beam_size', type=int, default=10, help="Beam size")
parser.add_argument('-vocab_size', type=int, default=50000, help="Vocabulary size")
parser.add_argument('-epoch', type=int, default=100, help="Number of epoch")
parser.add_argument('-report', type=int, default=500, help="Number of report interval")
parser.add_argument('-lr', type=float, default=1e-3, help="Learning rate")
parser.add_argument('-lr_decay', type=float, default=1.0, help="Learning rate Decay")
parser.add_argument('-ema_decay', type=float, default=1.000, help="Moving Average rate Decay")
parser.add_argument('-dropout', type=float, default=0.4, help="Dropout rate")
parser.add_argument('-label_smoothing', type=float, default=0.0, help="Dropout rate")
parser.add_argument('-restore', type=str, default='', help="Restoring model path")
parser.add_argument('-mode', type=str, default='train', help="Train or test")
parser.add_argument('-dir', type=str, default='', help="Checkpoint directory")
parser.add_argument('-max_len', type=int, default=50, help="Limited length for text")
parser.add_argument('-max_step', type=int, default=50, help="Max decoding step")
parser.add_argument('-gpu', type=int, default=0, help="GPU device")
parser.add_argument('-lazy', action='store_true', help="Lazyness of dataset")
parser.add_argument('-bidirectional', action='store_true', help="Bidirectional model")
opt = parser.parse_args()
torch.manual_seed(1234)
torch.cuda.manual_seed(1234)
torch.cuda.set_device(opt.gpu)
data_path = os.path.expanduser('/data/data-simplification/wikismall/')
train_path, dev_path = os.path.join(data_path, 'train.jsonl'), os.path.join(data_path, 'dev.jsonl')
test_path = os.path.join(data_path, 'test.jsonl')
ner_path = os.path.join(data_path, 'aner.json')
vocab_dir = os.path.join(data_path, 'dicts-{0}'.format(opt.vocab_size))
if opt.dir == '':
save_dir = Path(data_path) / 'log' / time.strftime("%Y-%m-%dT%H_%M_%S")
else:
save_dir = Path(data_path) / 'log' / opt.dir
save_dir.mkdir(parents=True, exist_ok=True)
save_dir = str(save_dir)
class PWKPReader(DatasetReader):
"""
DatasetReader for Bookcorpus data, one sentence per line, like
{"short_text": "chapter 20", "summary": "ch 20"}
"""
def __init__(self, token_indexers: Dict[str, TokenIndexer] = None) -> None:
super().__init__(lazy=opt.lazy)
self.token_indexers = token_indexers or {"tokens": SingleIdTokenIndexer()}
def text_to_instance(self, src: List[Token], tgt: List[Token]) -> Instance:
src_field = TextField(src, self.token_indexers)
tgt_field = TextField(tgt, self.token_indexers)
fields = {"src": src_field, "tgt": tgt_field}
return Instance(fields)
def _read(self, file_path: str) -> Iterator[Instance]:
with open(file_path) as f:
for line in f:
pairs = json.loads(line)
src, tgt = pairs['source'].split(' '), pairs['target'].split(' ')
if opt.max_len > 0:
src = src[:opt.max_len]
tgt = tgt[:opt.max_len]
tgt = ['@@BOS@@'] + tgt + ['@@EOS@@']
src = [Token(word) for word in src]
tgt = [Token(word) for word in tgt]
yield self.text_to_instance(src, tgt)
def read_raw(self, file_path: str) -> Iterator[Dict]:
with open(file_path) as f:
for line in f:
pairs = json.loads(line)
yield pairs
def train():
reader = PWKPReader()
train_dataset = reader.read(train_path)
valid_dataset = reader.read(dev_path)
if os.path.exists(vocab_dir):
vocab = Vocabulary.from_files(vocab_dir)
else:
vocab = Vocabulary.from_instances(instances=train_dataset,
max_vocab_size=opt.vocab_size)
vocab.save_to_files(vocab_dir)
iterator = BucketIterator(batch_size=opt.batch_size, sorting_keys=[("src", "num_tokens"), ("tgt", "num_tokens")])
iterator.index_with(vocab)
model = Seq2Seq(emb_size=opt.emb_size,
hidden_size=opt.hidden_size,
enc_layers = opt.enc_layers,
dec_layers = opt.dec_layers,
dropout=opt.dropout,
bidirectional=opt.bidirectional,
beam_size=opt.beam_size,
label_smoothing=opt.label_smoothing,
vocab=vocab)
optimizer = optim.Adam(model.parameters(), lr=opt.lr)
#learning_rate_scheduler = torch.optim.lr_scheduler.StepLR(optimizer=optimizer, step_size=1, gamma=opt.lr_decay)
val_iterator = BasicIterator(batch_size=opt.batch_size)
val_iterator.index_with(vocab)
predictor = Predictor(iterator=val_iterator,
max_decoding_step=opt.max_step,
vocab=vocab,
reader=reader,
data_path=test_path,
log_dir=save_dir,
map_path=ner_path,
cuda_device=opt.gpu)
trainer = Trainer(model=model,
optimizer=optimizer,
#learning_rate_scheduler=learning_rate_scheduler,
learning_rate_decay=opt.lr_decay,
ema_decay=opt.ema_decay,
predictor=predictor,
iterator=iterator,
train_dataset=train_dataset,
validation_dataset=valid_dataset,
validation_metric='+bleu',
cuda_device=opt.gpu,
num_epochs=opt.epoch,
serialization_dir=save_dir,
num_serialized_models_to_keep=5,
#model_save_interval=60,
#summary_interval=500,
should_log_parameter_statistics=False,
grad_norm=10)
trainer.train()
def evaluate():
reader = PWKPReader()
vocab = Vocabulary.from_files(vocab_dir)
iterator = BasicIterator(batch_size=opt.batch_size)
iterator.index_with(vocab)
model = Seq2Seq(emb_size=opt.emb_size,
hidden_size=opt.hidden_size,
enc_layers = opt.enc_layers,
dec_layers = opt.dec_layers,
dropout=opt.dropout,
bidirectional=opt.bidirectional,
beam_size=opt.beam_size,
label_smoothing=opt.label_smoothing,
vocab=vocab)
model = model.cuda(opt.gpu)
model_state = torch.load(opt.restore, map_location=util.device_mapping(-1))
model.load_state_dict(model_state)
predictor = Predictor(iterator=iterator,
max_decoding_step=opt.max_step,
vocab=vocab,
reader=reader,
data_path=test_path,
log_dir=save_dir,
map_path=ner_path,
cuda_device=opt.gpu)
predictor.evaluate(model)
if __name__ == '__main__':
if opt.mode == 'train':
train()
else:
evaluate()