-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnonlinear_regression.go
355 lines (319 loc) · 9.7 KB
/
nonlinear_regression.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
package nonlinear_regression
import (
"bufio"
"fmt"
"log"
"math"
"math/rand"
"os"
"path/filepath"
"slices"
"sort"
"strconv"
"strings"
"github.com/lamrongol/regression"
)
func FloatToString(f float64) string {
return strconv.FormatFloat(f, 'g', -1, 64)
}
type Evaluation int
const (
STEPWISE_AIC Evaluation = iota
STEPWISE_BIC
R2
)
var PracticalMax = math.Log(math.MaxFloat32)
var PracticalMin = 1.0 / PracticalMax
// first line is
func NonlinearRegression(tsv_file string,
evaluate Evaluation,
minus_possible_list []bool,
is_all_plus bool,
record_file string,
INDIVIDUAL_NUM int,
TOP_SELECTION_NUM int,
MUTATION_RATE float64,
MIN_LOOP_COUNT int,
MAX_LOOP_COUNT int,
STOP_DIFF_RATE float64,
MAX_DATA_NUM int) {
if INDIVIDUAL_NUM == 0 {
INDIVIDUAL_NUM = 500
}
if TOP_SELECTION_NUM == 0 {
TOP_SELECTION_NUM = 5
}
if MUTATION_RATE == 0.0 {
MUTATION_RATE = 0.10
}
// if MIN_LOOP_COUNT == 0 {
// MIN_LOOP_COUNT = 3
// }
if MAX_LOOP_COUNT == 0 {
MAX_LOOP_COUNT = 1000
}
if STOP_DIFF_RATE == 0 {
STOP_DIFF_RATE = 0.000001
}
// if MAX_DATA_NUM == 0 {
// MAX_DATA_NUM = 1000
// }
fmt.Println("target_file: ", tsv_file)
if record_file == "" {
base := filepath.Base(tsv_file)
record_file = base[:len(base)-4] + "_result.tsv"
}
dependent_list := []float64{}
parameter_list := [][]float64{}
abs_sum_list := []float64{}
file, err := os.Open(tsv_file)
if err != nil {
log.Fatal(err)
}
defer file.Close()
scanner := bufio.NewScanner(file)
//first line
scanner.Scan()
line := strings.Split(scanner.Text(), "\t")
if line[len(line)-1] == "" {
line = line[:len(line)-1]
}
param_names := line[1:]
gene_num := len(param_names)
if minus_possible_list == nil {
minus_possible_list = slices.Repeat([]bool{!is_all_plus}, gene_num)
}
for range gene_num {
abs_sum_list = append(abs_sum_list, 0.0)
}
count := 0
for scanner.Scan() {
l := scanner.Text()
line := strings.Split(l, "\t")
dependent, _ := strconv.ParseFloat(line[0], 64)
dependent_list = append(dependent_list, dependent)
parameters := []float64{}
for i, s := range line[1:] {
param, _ := strconv.ParseFloat(s, 64)
parameters = append(parameters, param)
abs_sum_list[i] += math.Abs(param)
}
parameter_list = append(parameter_list, parameters)
count++
if MAX_DATA_NUM > 0 && count > MAX_DATA_NUM {
break
}
}
average_list := []float64{}
scale_list := []float64{}
for _, sum := range abs_sum_list {
average := sum / float64(count)
average_list = append(average_list, average)
scale_list = append(scale_list, 1.0/average)
}
individuals := []*Individual{}
for {
individual := InitializeIndividual(gene_num, minus_possible_list, scale_list, param_names)
////For test, force correct genes
// if len(individuals) == 0 {
// individual.gene_list = []*GeneEnum{GetGeneByName("Linear"), GetGeneByName("Unused"), GetGeneByName("Exp"), GetGeneByName("Squared"), GetGeneByName("Sqrt"), GetGeneByName("Inverse")}
// individual.gene_list[2].SetScaleFactor(72)
// }
success := calc_evaluation(&individual, dependent_list, parameter_list, param_names)
if success {
individuals = append(individuals, &individual)
if len(individuals) == INDIVIDUAL_NUM {
break
}
}
}
var pre_best_evaluation float64
switch evaluate {
case R2:
//For R2, bigger is better so reverse "<"
sort.Slice(individuals, func(i, j int) bool { return individuals[i].R2 > individuals[j].R2 })
pre_best_evaluation = individuals[0].R2
case STEPWISE_AIC:
sort.Slice(individuals, func(i, j int) bool { return individuals[i].AIC < individuals[j].AIC })
pre_best_evaluation = individuals[0].AIC
case STEPWISE_BIC:
sort.Slice(individuals, func(i, j int) bool { return individuals[i].BIC < individuals[j].BIC })
pre_best_evaluation = individuals[0].BIC
}
loop_count := 0
for loop_count < MAX_LOOP_COUNT {
fmt.Println("loop_count:", loop_count)
next_individuals := []*Individual{}
for i := range TOP_SELECTION_NUM {
next_individuals = append(next_individuals, individuals[i])
}
for i := range INDIVIDUAL_NUM - TOP_SELECTION_NUM {
idx := i + TOP_SELECTION_NUM
if rand.Float64() < float64(TOP_SELECTION_NUM)/float64(idx) {
next_individuals = append(next_individuals, individuals[idx])
}
}
survivor_count := len(next_individuals)
fmt.Println("survivor_count=", survivor_count)
for len(next_individuals) < INDIVIDUAL_NUM {
mother_idx := rand.Intn(survivor_count)
father_idx := rand.Intn(survivor_count)
if father_idx == mother_idx {
father_idx = (father_idx + 1) % survivor_count
}
child1, child2 := next_individuals[mother_idx].Combine(next_individuals[father_idx], scale_list)
next_individuals = append(next_individuals, child1)
if len(next_individuals) < INDIVIDUAL_NUM {
next_individuals = append(next_individuals, child2)
}
}
//mutation
for idx, i := range next_individuals {
if idx < TOP_SELECTION_NUM {
continue
}
if rand.Float64() < MUTATION_RATE {
mutation_idx := rand.Intn(gene_num)
gene := RandomGene(i.minus_possible[mutation_idx], scale_list[mutation_idx])
i.gene_list[mutation_idx] = gene
}
}
for _, i := range next_individuals {
calc_evaluation(i, dependent_list, parameter_list, param_names)
}
var best_evaluation float64
switch evaluate {
case R2:
//For R2, bigger is better so reverse "<"
sort.Slice(next_individuals, func(i, j int) bool { return next_individuals[i].R2 > next_individuals[j].R2 })
best_evaluation = next_individuals[0].R2
case STEPWISE_AIC:
sort.Slice(next_individuals, func(i, j int) bool { return next_individuals[i].AIC < next_individuals[j].AIC })
best_evaluation = next_individuals[0].AIC
case STEPWISE_BIC:
sort.Slice(next_individuals, func(i, j int) bool { return next_individuals[i].BIC < next_individuals[j].BIC })
best_evaluation = next_individuals[0].BIC
}
best := next_individuals[0]
fmt.Println(best)
diff_rate := math.Abs(1.0 - best_evaluation/pre_best_evaluation)
fmt.Println("diff_rate=", diff_rate)
switch evaluate {
case R2:
fmt.Println("first=", next_individuals[0].R2)
fmt.Println("second=", next_individuals[1].R2)
case STEPWISE_AIC:
fmt.Println("first=", next_individuals[0].AIC)
fmt.Println("second=", next_individuals[1].AIC)
case STEPWISE_BIC:
fmt.Println("first=", next_individuals[0].BIC)
fmt.Println("second=", next_individuals[1].BIC)
}
individuals = next_individuals
if loop_count > MIN_LOOP_COUNT && diff_rate < STOP_DIFF_RATE {
// term_avg := 0.0
// term_cnt := 0
// avg_values := make([]float64, gene_num)
// for i := range gene_num {
// if best.gene_list[i].Name() == "Unused" {
// continue
// }
// term := best.coefficient_list[i] * best.gene_list[i].Calc(average_list[i])
// avg_values[i] = term
// term_avg += term
// term_cnt++
// }
// term_avg /= float64(term_cnt)
// change_exist := false
// for i := range gene_num {
// if best.gene_list[i].Name() == "Unused" {
// continue
// }
// if avg_values[i] < term_avg/float64(1000) {
// alt := best.Clone()
// alt.gene_list[i] = GetGeneByName("Unused")
// individuals[TOP_SELECTION_NUM-1] = individuals[1]
// individuals[1] = alt
// change_exist = true
// break
// }
// }
// if change_exist {
// continue
// }
break
}
//println(preBestEvaluation, bestEvaluation, Math.abs(preBestEvaluation - bestEvaluation), Math.abs(preBestEvaluation - bestEvaluation) / preBestEvaluation)
pre_best_evaluation = best_evaluation
loop_count++
fmt.Println("------------------------------------------------------------------------")
}
best := individuals[0]
wf, err := os.Create(record_file)
if err != nil {
log.Fatal(err)
}
defer wf.Close()
wf.WriteString(best.String())
fmt.Println("output:", record_file)
}
func calc_evaluation(individual *Individual, dependent_list []float64, parameter_list [][]float64, param_names []string) bool {
data_num := len(dependent_list)
r := new(regression.Regression)
r.SetObserved("Profit")
use_count := 0
idx_relation := []int{}
for i, name := range param_names {
if individual.gene_list[i].Name() == "Unused" {
continue
}
r.SetVar(i, name)
idx_relation = append(idx_relation, i)
use_count++
}
for i, parameters := range parameter_list {
processed_parameter_list := []float64{}
for j, param := range parameters {
if individual.gene_list[j].Name() == "Unused" {
continue
}
val := individual.gene_list[j].Calc(param)
if math.IsNaN(val) || math.IsInf(val, 0) {
fmt.Println("Invalid Value:", val, "Gene:", individual.gene_list[j], "Raw Value:", param)
panic("Cause may be minus_possible list is invalid or program itself has bug")
}
processed_parameter_list = append(processed_parameter_list, val)
}
r.Train(regression.DataPoint(dependent_list[i], processed_parameter_list))
}
r.Run()
for i, c := range r.GetCoeffs() {
//TODO
if math.IsNaN(c) || math.IsInf(c, 0) {
individual.R2 = 0.0
individual.AIC = math.MaxFloat64
individual.BIC = math.MaxFloat64
// fmt.Println("Failed:", individual.gene_list)
// fmt.Println("Coefficients are invalid.")
return false
}
// fmt.Println("Succeeded:", individual.gene_list)
if i == 0 {
individual.Intercept = c
continue
}
individual.coefficient_list[idx_relation[i-1]] = c
}
dim_sum := 0
for _, gene := range individual.gene_list {
dim_sum += gene.Dim()
}
//@see https://qiita.com/WolfMoon/items/6164c09b93ca043690b3
d := float64(data_num) * math.Log(r.GetResidualSumOfSquares()/float64(data_num))
individual.AIC = d + 2*float64(dim_sum+1)
individual.BIC = d + math.Log(float64(data_num))*float64(dim_sum+1)
individual.R2 = r.R2
// fmt.Printf("Regression formula:\n%v\n", r.Formula)
//fmt.Printf("Regression:\n%s\n", r)
return true
}