forked from AnirudhGP/DrowsyDriverDetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathYawnCNN.py
102 lines (79 loc) · 3.22 KB
/
YawnCNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
from __future__ import absolute_import
from __future__ import print_function
import numpy as np
np.random.seed(1337) # for reproducibility
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.utils import np_utils
from keras.optimizers import SGD, Adadelta, Adagrad, RMSprop, Adam
from sklearn import svm
from six.moves import cPickle as pickle
pickle_files = ['YawnMouths.pickle']
i = 0
for pickle_file in pickle_files:
with open(pickle_file, 'rb') as f:
save = pickle.load(f)
if i == 0:
train_dataset = save['train_dataset']
train_labels = save['train_labels']
test_dataset = save['test_dataset']
test_labels = save['test_labels']
else:
print("here")
train_dataset = np.concatenate((train_dataset, save['train_dataset']))
train_labels = np.concatenate((train_labels, save['train_labels']))
test_dataset = np.concatenate((test_dataset, save['test_dataset']))
test_labels = np.concatenate((test_labels, save['test_labels']))
del save # hint to help gc free up memory
i += 1
print('Training set', train_dataset.shape, train_labels.shape)
print('Test set', test_dataset.shape, test_labels.shape)
batch_size = 1
nb_classes = 1
nb_epoch = 20
X_train = train_dataset
X_train = X_train.reshape((X_train.shape[0], X_train.shape[3]) + X_train.shape[1:3])
#X_train = X_train.reshape(X_train.shape[0:3])
#X_train = X_train.reshape(len(X_train), -1)
Y_train = train_labels
X_test = test_dataset
X_test = X_test.reshape((X_test.shape[0], X_test.shape[3]) + X_test.shape[1:3])
#X_test = X_test.reshape(X_test.shape[0:3])
#X_test = X_test.reshape(len(X_test), -1)
Y_test = test_labels
# input image dimensions
_, img_channels, img_rows, img_cols = X_train.shape
# convert class vectors to binary class matrices
#Y_train = np_utils.to_categorical(y_train, nb_classes)
#Y_test = np_utils.to_categorical(y_test, nb_classes)
model = Sequential()
model.add(Convolution2D(32, 3, 3, border_mode='same',
input_shape=(img_channels, img_rows, img_cols)))
model.add(Activation('relu'))
model.add(Convolution2D(32, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Convolution2D(64, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(nb_classes))
model.add(Activation('sigmoid'))
# let's train the model using SGD + momentum (how original).
sgd = SGD(lr=0.001, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='binary_crossentropy', optimizer=RMSprop(lr=0.0005), metrics=['accuracy'])
model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=2, validation_data=[X_test, Y_test])
#model.save('yawnModel.h5')
score = model.evaluate(X_test, Y_test, show_accuracy=True, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
'''cls = svm.LinearSVC()
cls.fit(X_train, Y_train)
score = cls.score(X_test, Y_test)'''