-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathget_pitch_yaw.py
114 lines (101 loc) · 4.59 KB
/
get_pitch_yaw.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from scipy.linalg import inv
from scipy.spatial.transform import Rotation
from typing import Tuple, List, Any, IO, Dict
FILE_KF: str = "slam/run/build/keyframe_trajectory.txt"
FILE_F: str = "slam/run/build/frame_trajectory.txt"
kf: bool = False
try:
DATAS: np.ndarray = np.loadtxt(FILE_KF) if kf else np.loadtxt(FILE_F)
except:
ret_error_msg: str = f"no data file corresponding to {FILE_KF}" if kf else f"no data file corresponding to {FILE_F}"
print(ret_error_msg)
exit()
ts_idx: Dict = dict() # map the timestamp of the key frame to the index of the frame for extrapolation
for l in np.loadtxt(FILE_F):
ts_idx[l[1]] = int(l[0]-221)
eon_f_focal_length: int = 910
eon_f_frame_size: Tuple[int, int] = (1164, 874)
eon_fcam_intrinsics: np.ndarray = np.array([
[eon_f_focal_length, 0.0, float(eon_f_frame_size[0])/2],
[0.0, eon_f_focal_length, float(eon_f_frame_size[1])/2],
[0.0, 0.0, 1.0]])
pp: Tuple[float, float] = (eon_fcam_intrinsics[0][2], eon_fcam_intrinsics[1][2])
def calib_challenge(coordvp: List[float], video_id: int, complete_from_begin: int, plot: bool=False) -> None:
'''
coordvp: array size 2 [x,y]
complete_from_begin: int number of lines to add at the beginning of the returned file
'''
def pitch_yaw_via_vp(vp: List[float]) -> Tuple[float, float]:
def normalize(img_pts_in: List[float], intrinsics: np.ndarray=eon_fcam_intrinsics) -> np.ndarray:
# normalizes image coordinates
# accepts single pt or array of pts
intrinsics_inv: np.ndarray = np.linalg.inv(intrinsics)
img_pts: np.ndarray = np.array(img_pts_in)
input_shape: Tuple[int,...] = img_pts.shape
img_pts = np.atleast_2d(img_pts)
img_pts = np.hstack((img_pts, np.ones((img_pts.shape[0], 1))))
img_pts_normalized: np.ndarray = img_pts.dot(intrinsics_inv.T)
img_pts_normalized[(img_pts < 0).any(axis=1)] = np.nan
return img_pts_normalized[:, :2].reshape(input_shape)
def get_calib_from_vp(vp: List[float]) -> Tuple[float, float]:
vp_norm = normalize(vp)
yaw_calib = np.arctan(vp_norm[0])
pitch_calib = -np.arctan(vp_norm[1]*np.cos(yaw_calib))
roll_calib = 0
return pitch_calib, yaw_calib
return get_calib_from_vp(vp)
offset_pitch, offset_yaw = pitch_yaw_via_vp(coordvp)
def get_pose(offset_pitch: float=offset_pitch, offset_yaw: float=offset_yaw, video: int=video_id, plot: bool=False, complete_from_begin: int=complete_from_begin) -> None:
ret: IO[str] = open(f"{video}.txt", "w")
translations: List[List[float]] = []
rotations: List[Any] = []
rpy: List[List[float]] = []
pitch: List[float] = []
yaw: List[float] = []
for l in DATAS:
quat = l[-4:]
t_wc = l[1:4] if kf else l[2:5]
R = Rotation.from_quat(quat)
rotations.append(R)
translations.append(t_wc)
for i in range(1, len(rotations)):
R_prev: Any = rotations[i-1].inv()
R_curr: Any = rotations[i]
R_rel: Any = R_prev * R_curr
rpy.append(R_rel.as_euler('XYZ', degrees=False))
pitch.append(offset_pitch+rpy[-1][0])
yaw.append(offset_yaw+rpy[-1][1])
if i == 1 and complete_from_begin > 0:
for i in range(complete_from_begin):
ret.write(f"{pitch[-1]} {yaw[-1]}\n")
ret.write(f"{pitch[-1]} {yaw[-1]}\n")
def plot_g() -> None:
plt.plot(pitch, color='red')
plt.plot(yaw, color='blue')
plt.show()
if plot:
plot_g()
def extrapolation() -> None:
'''
when using key frames
'''
rpy_rel: List[List[float]] = []
for i in range(1, len(rpy)):
temp: List[float] = [rpy[i][l]-rpy[i-1][l] for l in range(3)]
if i > 2:
f = lambda x, k: ((temp[k]-rpy_rel[-1][k])/(ts_idx[rpy[i][0]]-ts_idx[rpy[i-1][0]]))*x + rpy_rel[-1][k]
for j in range(ts_idx[rpy[i-1][0]], ts_idx[rpy[i][0]]):
rpy_rel.append([f(j, 0), f(j, 1), f(j, 2)])
rpy_rel.append(temp)
get_pose()
def plt_img(path: str) -> None:
img = mpimg.imread(path)
imgplot = plt.imshow(img)
plt.show()
if __name__ == "__main__":
vp_coord = [638.7, 435.5]
video_id = 0
calib_challenge(vp_coord, video_id, 17, True)