-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathknown.py
122 lines (79 loc) · 2.21 KB
/
known.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
from autograd import elementwise_grad as grad
from autograd.numpy import cos, sin
from config import E, h, nu
dx, dy = 0, 1
D = (E * h**3) / (12 * (1 - nu**2))
def nabla4(w):
def fn(x, y):
return (
grad(grad(grad(grad(w, dx), dx), dx), dx)(x, y)
+ 2 * grad(grad(grad(grad(w, dx), dx), dy), dy)(x, y)
+ grad(grad(grad(grad(w, dy), dy), dy), dy)(x, y)
)
return fn
def phi_x(w):
def fn(x, y):
return grad(w, dx)(x, y)
return fn
def phi_y(w):
def fn(x, y):
return grad(w, dy)(x, y)
return fn
def phi_n(w, alpha):
def fn(x, y):
return phi_x(w)(x, y) * cos(alpha) + phi_y(w)(x, y) * sin(alpha)
return fn
def M_x(w):
def fn(x, y):
return -D * (grad(grad(w, dx), dx)(x, y) + nu * grad(grad(w, dy), dy)(x, y))
return fn
def M_y(w):
def fn(x, y):
return -D * (grad(grad(w, dy), dy)(x, y) + nu * grad(grad(w, dx), dx)(x, y))
return fn
def M_xy(w):
def fn(x, y):
return D * (1 - nu) * grad(grad(w, dx), dy)(x, y)
return fn
def M_n(w, alpha):
def fn(x, y):
return (
M_x(w)(x, y) * cos(alpha) ** 2
+ M_y(w)(x, y) * sin(alpha) ** 2
- 2 * M_xy(w)(x, y) * sin(alpha) * cos(alpha)
)
return fn
def M_nt(w, alpha):
def fn(x, y):
return M_xy(w)(x, y) * (cos(alpha) ** 2 - sin(alpha) ** 2) + (
M_x(w)(x, y) - M_y(w)(x, y)
) * sin(alpha) * cos(alpha)
return fn
def Q_x(w):
def fn(x, y):
return -D * (
grad(grad(grad(w, dx), dx), dx)(x, y)
+ grad(grad(grad(w, dx), dy), dy)(x, y)
)
return fn
def Q_y(w):
def fn(x, y):
return -D * (
grad(grad(grad(w, dx), dx), dy)(x, y)
+ grad(grad(grad(w, dy), dy), dy)(x, y)
)
return fn
def V_x(w):
def fn(x, y):
return -D * (
grad(grad(grad(w, dx), dx), dx)(x, y)
+ (2 - nu) * grad(grad(grad(w, dx), dy), dy)(x, y)
)
return fn
def V_y(w):
def fn(x, y):
return -D * (
grad(grad(grad(w, dy), dy), dy)(x, y)
+ (2 - nu) * grad(grad(grad(w, dx), dx), dy)(x, y)
)
return fn