forked from The-Fonz/xfoil-optimization-toolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample_pso_drag_nurbs_highRe.py
162 lines (143 loc) · 4.61 KB
/
example_pso_drag_nurbs_highRe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
"""
Test of PSO algorithm in combination with XFoil and NURBS Airfoil parametrization.
Trying to find high Re low drag airfoil.
"""
from __future__ import division, print_function
from os import remove
import numpy as np
from copy import copy
from string import ascii_uppercase
from random import choice
import matplotlib.pyplot as plt
from optimization_algorithms.pso import Particle
from airfoil_generators import nurbs
from xfoil import xfoil
Re = 1E6
constraints = np.array((
#ta_u #ta_l #tb_l #alpha_b
(.1,.4), (.1,.4), (.1,2), (1,10)
))
# Good parameters at:
# http://hvass-labs.org/people/magnus/publications/pedersen10good-pso.pdf
iterations, S, omega, theta_g, theta_p = 12, 12, -0.2, 2.8, 0
def construct_airfoil(*pts):
k = {}
k['ta_u'] = pts[0]
k['ta_l'] = pts[1]
k['tb_u'] = 2.1241
k['tb_l'] = pts[2]
k['alpha_b'] = pts[3]
k['alpha_c'] = 3.8270
return nurbs.NURBS(k)
def plot(argv, ax, score=None, title=None, style='r-'):
x_l = argv[0]
y_l = argv[1]
x_u = argv[2]
y_u = argv[3]
ax.set_xlim(0,1)
ax.plot(y_l, x_l, style, y_u, x_u, style, linewidth=2)
if score:
ax.annotate(str(score), (.4,0))
if title:
ax.set_title(title)
def get_coords_plain(argv):
x_l = argv[0]
y_l = argv[1]
x_u = argv[2]
y_u = argv[3]
ycoords = np.append(y_l[::-1], y_u[1:])
xcoords = np.append(x_l[::-1], x_u[1:])
coordslist = np.array((xcoords, ycoords)).T
coordstrlist = ["{:.6f} {:.6f}".format(coord[1], coord[0])
for coord in coordslist]
return '\n'.join(coordstrlist)
def score_airfoil(airfoil):
# Make unique filename
randstr = ''.join(choice(ascii_uppercase) for i in range(20))
filename = "parsec_{}.dat".format(randstr)
# Save coordinates
with open(filename, 'w') as af:
af.write(get_coords_plain(airfoil._spline()))
#Let Xfoil do its magic
polar = xfoil.oper_visc_alpha(filename,0,Re,
iterlim =80, show_seconds =0)
try:
remove(filename)
except WindowsError:
print("\n\n\n\nWindows was not capable of removing the file.\n\n\n\n")
try:
score = polar[0][0][2]
print("Score: ", score)
# If it's not NaN
if np.isfinite(score):
print("Return Score")
return score
else:
print("Return None")
return None
except IndexError:
print("Return None (IndexError)")
return None
# Show plot and make redrawing possible
fig, (cur_afplt, lastpbest_afplt, gbest_afplt, score_plt) = plt.subplots(4,1)
# Enable auto-clearing
cur_afplt.hold(False)
lastpbest_afplt.hold(False)
gbest_afplt.hold(False)
plt.tight_layout()
# Interactive mode
plt.ion()
#plt.pause(.0001)
# Initialize globals
global_bestscore = None
global_bestpos = None
global_bestairfoil = None
# Constructing a particle automatically initializes position and speed
particles = [Particle(constraints) for i in xrange(0, S)]
scores_y = []
for n in xrange(iterations+1):
print("\nIteration {}".format(n))
for i_par, particle in enumerate(particles):
# Keep scoring until converged
score = None
while not score:
if global_bestscore:
print("Update Particle")
particle.update(global_bestpos,omega,theta_p,theta_g)
airfoil = construct_airfoil(*particle.pts)
score = score_airfoil(airfoil)
plotstyle = "{}-".format(choice("rgb"))
af = airfoil._spline()
plot(af,cur_afplt, score="Cd {}".format(score), style=plotstyle,
title="Current, particle n{}p{}".format(n, i_par))
if not score and (not global_bestscore or n==0):
print("Not converged, no global best, or first round. Randomizing particle.")
particle.randomize()
elif not score:
print("Not converged, there is a global best. Randomizing.")
particle.randomize()
if not particle.bestscore or score < particle.bestscore:
particle.new_best(score)
txt = 'particle best'
plot(af,lastpbest_afplt, score="Cd {}".format(score), style=plotstyle,
title="Particle best, particle n{}p{}".format(n, i_par))
print("Found particle best, score {}".format(score))
if not global_bestscore or score < global_bestscore:
global_bestscore = score
# Copy to avoid globaL_bestpos becoming reference to array
global_bestpos = copy(particle.pts)
txt = 'global best'
plot(af, gbest_afplt, score="Cd {}".format(score), style=plotstyle,
title="Global best, particle n{}p{}".format(n, i_par))
#plt.pause(.0001)
print("Found global best, score {}".format(score))
global_bestairfoil = airfoil
scores_y.append(global_bestscore)
score_plt.plot(scores_y, 'r-')
score_plt.set_title("Global best per round")
plt.pause(.0001)
print("Best airfoil found for Re={}, ".format(Re),
"score = ", global_bestscore,
", pos = ", global_bestpos.__repr__(),
", airfoil points:\n{}".format(get_coords_plain(af)))
plt.show()