-
Notifications
You must be signed in to change notification settings - Fork 1
/
nbeats-train.py
275 lines (229 loc) · 10 KB
/
nbeats-train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import os
import pickle
import numpy as np
import pandas as pd
import torch
from data import utils
from data.loader import DatasetLoader
from models.darts.model import DartsModel
from models.darts.nbeats import NBEATS
dataset_directory = 'data/datasets'
large_configs_directory = 'experiments/configs/datasets/large'
small_configs_directory = 'experiments/configs/datasets/small'
large_work_dir = 'experiments/checkpoints/nbeats'
large_model_name = 'large'
large_tensorboard_dir = 'experiments/tensorboard/nbeats/large'
small_finetuned_work_dir = 'experiments/checkpoints/nbeats'
small_finetuned_model_name = 'small-finetuned'
small_finetuned_tensorboard_dir = 'experiments/tensorboard/nbeats/small-finetuned'
small_work_dir = 'experiments/checkpoints/nbeats'
small_model_name = 'small'
small_tensorboard_dir = 'experiments/tensorboard/nbeats/small'
device_id = 0
seed = 0
timeframe_size = 28
noise_percentage = 0.0
quantiles = [0.02, 0.1, 0.25, 0.5, 0.75, 0.9, 0.98]
lr = 0.001
finetuning_lr = 0.0005
batch_size = 64
epochs = 200
early_stopping_patience = 50
params = {'add_relative_index': True}
def train(
train_df: pd.DataFrame,
eval_df: pd.DataFrame,
test_df: pd.DataFrame,
device_id: int,
learning_rate: float,
model_name: str,
work_dir: str,
tensorboard_dir: str,
apply_transfer_learning: bool = False
) -> (DartsModel, pd.DataFrame):
def train_model() -> DartsModel:
print('Converting timeseries to TimeSeries datasets...')
x_train, y_train, _ = utils.construct_timeseries_dataset(df=train_df, timeframe_size=timeframe_size, scale_data=True)
x_eval, y_eval, _ = utils.construct_timeseries_dataset(df=eval_df, timeframe_size=timeframe_size, scale_data=True)
print(f'Training Darts Model')
model = NBEATS(
timeframe_size=timeframe_size,
prediction_len=1,
quantiles=quantiles,
model_name=model_name,
work_dir=work_dir,
seed=seed,
device_id=device_id,
** params
)
model.build(
learning_rate=learning_rate,
batch_size=batch_size,
early_stopping_patience=early_stopping_patience,
tensorboard_dir=tensorboard_dir
)
if apply_transfer_learning:
print('\n--- Transfer Learning from Large Model ---\n')
model.load_checkpoint(model_name=large_model_name, work_dir=large_work_dir)
model.train_model(
x_train=x_train,
y_train=y_train,
x_eval=x_eval,
y_eval=y_eval,
epochs=epochs
)
return model
def evaluate_model(model: DartsModel) -> pd.DataFrame:
evaluation_dict = {'exchange': [], 'symbol': [], 'mse': [], 'mae': []}
for _, df_group in test_df.groupby(['exchange', 'symbol']):
exchange = df_group.iloc[0]['exchange']
symbol = df_group.iloc[0]['symbol']
x_test, y_test, _ = utils.construct_timeseries_dataset(df=df_group, timeframe_size=timeframe_size, scale_data=True)
mse, mae = model.eval_model(x_test=x_test, y_test=y_test)
print(f'Evaluated {exchange}-{symbol} with mse={mse}, mae={mae}')
evaluation_dict['exchange'].append(exchange)
evaluation_dict['symbol'].append(symbol)
evaluation_dict['mse'].append(mse)
evaluation_dict['mae'].append(mae)
return pd.DataFrame(evaluation_dict)
model = train_model()
evaluation_df = evaluate_model(model=model)
return model, evaluation_df
def predict(
test_df: pd.DataFrame,
device_id: int,
learning_rate: float,
model_name: str,
work_dir: str,
tensorboard_dir: str
) -> (DartsModel, pd.DataFrame):
os.makedirs(name='experiments/predictions/checkpoints/', exist_ok=True)
model = NBEATS(
timeframe_size=timeframe_size,
prediction_len=1,
quantiles=quantiles,
model_name=model_name,
work_dir='experiments/predictions/checkpoints/',
seed=seed,
device_id=device_id,
**params
)
model.build(
learning_rate=learning_rate,
batch_size=batch_size,
early_stopping_patience=early_stopping_patience,
tensorboard_dir=tensorboard_dir
)
model.load_checkpoint(model_name=model_name, work_dir=work_dir)
prediction_dict = {'exchange': [], 'symbol': [], 'pred_price': [], 'actual_price': []}
for _, df_group in test_df.groupby(['exchange', 'symbol']):
exchange = df_group.iloc[0]['exchange']
symbol = df_group.iloc[0]['symbol']
close_prices = df_group.iloc[timeframe_size - 1: -1]['close'].to_numpy()
actual_prices = df_group.iloc[timeframe_size:]['close'].to_numpy()
x_test, y_test, scaler = utils.construct_timeseries_dataset(df=df_group, timeframe_size=timeframe_size, scale_data=True)
y_pred_scaled = model.predict(x=x_test, y=y_test).values().flatten()
assert df_group.columns[-1] == 'targets'
dummy_array = np.zeros(shape=(df_group.shape[0] - timeframe_size, x_test[0].values().shape[1]), dtype=np.float64)
dummy_array[:, -1] = y_pred_scaled
dummy_array = scaler.inverse_transform(dummy_array)
y_pred = dummy_array[:, -1]
pred_prices = (close_prices*np.exp(y_pred))
prediction_dict['exchange'].extend([exchange]*y_pred.shape[0])
prediction_dict['symbol'].extend([symbol]*y_pred.shape[0])
prediction_dict['pred_price'].extend(pred_prices.tolist())
prediction_dict['actual_price'].extend(actual_prices.tolist())
return pd.DataFrame(prediction_dict)
def main():
device_id = 1 if torch.cuda.is_available() else -1
dataset_loader = DatasetLoader(dataset_directory=dataset_directory)
# Loading large dataset (train-eval-test)
with open(f'{large_configs_directory}/train.pkl', 'rb') as dictfile:
train_df = dataset_loader.load_datasets(dataset_configs=pickle.load(dictfile), noise_percentage=noise_percentage)
with open(f'{large_configs_directory}/eval.pkl', 'rb') as dictfile:
eval_df = dataset_loader.load_datasets(dataset_configs=pickle.load(dictfile))
with open(f'{large_configs_directory}/test.pkl', 'rb') as dictfile:
test_df = dataset_loader.load_datasets(dataset_configs=pickle.load(dictfile))
print(
f'Loaded {train_df.shape[0]} train samples, {eval_df.shape[0]} eval samples and {test_df.shape[0]} test samples from large dataset.')
# Train NBEATS-Large model
print('\n#--- Training NBEATS-Large ---\n')
_, evaluation_df = train(
train_df=train_df,
eval_df=eval_df,
test_df=test_df,
device_id=device_id,
learning_rate=lr,
model_name=large_model_name,
work_dir=large_work_dir,
tensorboard_dir=large_tensorboard_dir,
apply_transfer_learning=False
)
evaluation_df.to_csv('experiments/results/nbeats/large_evaluation.csv', index=False)
print('\n#--- Predicting Time Series using NBEATS-Large ---\n')
predictions_df = predict(
test_df=test_df,
device_id=device_id,
learning_rate=lr,
model_name=large_model_name,
work_dir=large_work_dir,
tensorboard_dir=large_tensorboard_dir
)
predictions_df.to_csv('experiments/results/nbeats/large_predictions.csv', index=False)
# Load Small Dataset
with open(f'{small_configs_directory}/train.pkl', 'rb') as dictfile:
train_df = dataset_loader.load_datasets(dataset_configs=pickle.load(dictfile), noise_percentage=noise_percentage)
with open(f'{small_configs_directory}/eval.pkl', 'rb') as dictfile:
eval_df = dataset_loader.load_datasets(dataset_configs=pickle.load(dictfile))
# Train NBEATS-Small-Finetuned
print('\n#--- Training NBEATS-Small-Finetuned ---\n')
_, evaluation_df = train(
train_df=train_df,
eval_df=eval_df,
test_df=test_df,
device_id=device_id,
learning_rate=finetuning_lr,
model_name=small_finetuned_model_name,
work_dir=small_finetuned_work_dir,
tensorboard_dir=small_finetuned_tensorboard_dir,
apply_transfer_learning=True
)
evaluation_df.to_csv('experiments/results/nbeats/small_finetuned_evaluation.csv', index=False)
print('\n#--- Predicting Time Series using NBEATS-Small-Finetuned ---\n')
predictions_df = predict(
test_df=test_df,
device_id=device_id,
learning_rate=finetuning_lr,
model_name=small_finetuned_model_name,
work_dir=small_finetuned_work_dir,
tensorboard_dir=small_finetuned_tensorboard_dir
)
predictions_df.to_csv('experiments/results/nbeats/small_finetuned_predictions.csv', index=False)
print('\n#--- Training NBEATS-Small-No-Finetuned ---\n')
_, evaluation_df = train(
train_df=train_df,
eval_df=eval_df,
test_df=test_df,
device_id=device_id,
learning_rate=lr,
model_name=small_model_name,
work_dir=small_work_dir,
tensorboard_dir=small_tensorboard_dir,
apply_transfer_learning=False
)
evaluation_df.to_csv('experiments/results/nbeats/nbeats_small_evaluation.csv', index=False)
print('\n#--- Predicting Time Series using NBEATS-Small-No-Finetuned ---\n')
predictions_df = predict(
test_df=test_df,
device_id=device_id,
learning_rate=lr,
model_name=small_model_name,
work_dir=small_work_dir,
tensorboard_dir=small_tensorboard_dir
)
predictions_df.to_csv('experiments/results/nbeats/small_predictions.csv', index=False)
if __name__ == "__main__":
if not 0 <= device_id <= 1:
raise RuntimeError(f'Maximum 2 GPUs are supported with ids 0 or 1, got {device_id}')
os.environ['CUDA_VISIBLE_DEVICES'] = str(device_id)
main()