-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathabc2-short.bib
258 lines (235 loc) · 7.89 KB
/
abc2-short.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
@IEEEtranBSTCTL{IEEEexample:BSTcontrol,
CTLuse_forced_etal = "yes",
CTLmax_names_forced_etal = "3",
CTLnames_show_etal = "2"
}
@INPROCEEDINGS{nmf,
author = {Daniel D. Lee and H. Sebastian Seung},
title = {Algorithms for Non-negative Matrix Factorization},
booktitle = {In NIPS},
year = {2000},
pages = {556--562},
publisher = {MIT Press}
}
@techreport{pagerank,
number = {1999-66},
month = {November},
author = {Lawrence Page and Sergey Brin and Rajeev Motwani and Terry Winograd},
title = {The PageRank Citation Ranking: Bringing Order to the Web.},
type = {Technical Report},
publisher = {Stanford InfoLab},
year = {1999},
institution = {Stanford InfoLab},
}
@inproceedings{spark-mm,
author = {Bosagh Zadeh, Reza and Meng, Xiangrui and Ulanov, Alexander and Yavuz, Burak and Pu, Li and Venkataraman, Shivaram and Sparks, Evan and Staple, Aaron and Zaharia, Matei},
title = {Matrix Computations and Optimization in Apache Spark},
series = {KDD '16},
year = {2016},
isbn = {978-1-4503-4232-2},
location = {San Francisco, California, USA},
pages = {31--38},
numpages = {8},
doi = {10.1145/2939672.2939675},
acmid = {2939675},
publisher = {ACM},
keywords = {distributed linear algebra, machine learning, matrix computations, mllib, optimization, spark},
}
@inproceedings{ernest,
title={Ernest: Efficient Performance Prediction for Large-Scale Advanced Analytics.},
author={Venkataraman, Shivaram and Yang, Zongheng and Franklin, Michael J and Recht, Benjamin and Stoica, Ion},
booktitle={NSDI},
pages={363--378},
year={2016}
}
@inproceedings{paris,
author = {Yadwadkar, Neeraja J. and Hariharan, Bharath and Gonzalez, Joseph E. and Smith, Burton and Katz, Randy H.},
title = { Best VM Across Multiple Public Clouds: A Data-driven Performance Modeling Approach},
booktitle = {Proceedings of the 2017 Symposium on Cloud Computing},
series = {SoCC '17},
year = {2017},
isbn = {978-1-4503-5028-0},
location = {Santa Clara, California},
pages = {452--465},
numpages = {14},
doi = {10.1145/3127479.3131614},
acmid = {3131614},
publisher = {ACM},
address = {New York, NY, USA},
keywords = {cloud computing, data-driven modeling, performance prediction, resource allocation},
}
@techreport{summa,
author = {van de Geijn, Robert A. and Watts, Jerrell},
title = {SUMMA: Scalable Universal Matrix Multiplication Algorithm},
year = {1995},
source = {http://www.ncstrl.org:8900/ncstrl/servlet/search?formname=detail\&id=oai%3Ancstrlh%3Autexas_cs%3AUTEXAS_CS%2F%2FCS-TR-95-13},
publisher = {University of Texas at Austin},
address = {Austin, TX, USA},
}
@inproceedings{carma,
author = {Demmel, James and Eliahu, David and Fox, Armando and Kamil, Shoaib and Lipshitz, Benjamin and Schwartz, Oded and Spillinger, Omer},
title = {Communication-Optimal Parallel Recursive Rectangular Matrix Multiplication},
series = {IPDPS '13},
year = {2013},
isbn = {978-0-7695-4971-2},
pages = {261--272},
numpages = {12},
doi = {10.1109/IPDPS.2013.80},
acmid = {2511337},
publisher = {IEEE Computer Society},
keywords = {ommunication-avoiding algorithms, linear algebra, matrix multiplication},
}
@inproceedings{bayesian-optimization,
author = {Snoek, Jasper and Larochelle, Hugo and Adams, Ryan P.},
title = {Practical Bayesian Optimization of Machine Learning Algorithms},
series = {NIPS'12},
year = {2012},
location = {Lake Tahoe, Nevada},
pages = {2951--2959},
numpages = {9},
acmid = {2999464},
publisher = {Curran Associates Inc.},
address = {USA},
}
@MISC{NVBLAS,
author = {A. Ulanov},
title = {Nvblas:gpu usage with nvblas},
year = {2016},
url = {https://github.com/fommil/netlib-java/wiki/NVBLAS.}
}
@INPROCEEDINGS{fatman-littleboy,
author={L. Xu and S. H. Lim and A. R. Butt and S. R. Sukumar and R. Kannan},
booktitle={PDSW-DISCS},
title={FatMan vs. LittleBoy: Scaling Up Linear Algebraic Operations in Scale-Out Data Platforms},
year={2016},
volume={},
number={},
pages={25-30},
doi={10.1109/PDSW-DISCS.2016.009},
ISSN={},
month={Nov}
}
@inproceedings{Yadwadkar:2017:SBV:3127479.3131614,
author = {Yadwadkar, Neeraja J. and Hariharan, Bharath and Gonzalez, Joseph E. and Smith, Burton and Katz, Randy H.},
title = {Selecting the Best VM Across Multiple Public Clouds: A Data-driven Performance Modeling Approach},
series = {SoCC '17},
year = {2017},
isbn = {978-1-4503-5028-0},
pages = {452--465},
numpages = {14},
doi = {10.1145/3127479.3131614},
acmid = {3131614},
publisher = {ACM},
}
@article{gradient-boosting,
author = "Friedman, Jerome H.",
doi = "10.1214/aos/1013203451",
fjournal = "The Annals of Statistics",
journal = "Ann. Statist.",
month = "10",
number = "5",
pages = "1189--1232",
publisher = "The Institute of Mathematical Statistics",
title = "Greedy function approximation: A gradient boosting machine.",
volume = "29",
year = "2001"
}
@article {gb-feature-importance,
author = {Elith, J. and Leathwick, J. R. and Hastie, T.},
title = {A working guide to boosted regression trees},
journal = {Journal of Animal Ecology},
volume = {77},
number = {4},
publisher = {Blackwell Publishing Ltd},
issn = {1365-2656},
doi = {10.1111/j.1365-2656.2008.01390.x},
pages = {802--813},
keywords = {data mining, machine learning, model averaging, random forests, species distributions},
year = {2008},
}
@Article{random-forest,
author="Breiman, Leo",
title="Random Forests",
journal="Machine Learning",
year="2001",
month="Oct",
day="01",
volume="45",
number="1",
pages="5--32",
issn="1573-0565",
doi="10.1023/A:1010933404324",
}
@INPROCEEDINGS{fim,
author={J. Bhimani and N. Mi and M. Leeser and Z. Yang},
booktitle={CLOUD},
title={FIM: Performance Prediction for Parallel Computation in Iterative Data Processing Applications},
year={2017},
volume={},
number={},
pages={359-366},
doi={10.1109/CLOUD.2017.53},
ISSN={},
month={June},}
@INPROCEEDINGS{matmult-overhead-profiling,
author={Y. Yu and M. Tang and W. G. Aref and Q. M. Malluhi and M. M. Abbas and M. Ouzzani},
booktitle={ICDE},
title={In-Memory Distributed Matrix Computation Processing and Optimization},
year={2017},
volume={},
number={},
pages={1047-1058},
doi={10.1109/ICDE.2017.150},
ISSN={},
month={April},}
@inproceedings {cherrypick,
author = {Omid Alipourfard and Hongqiang Harry Liu and Jianshu Chen and Shivaram Venkataraman and Minlan Yu and Ming Zhang},
title = {CherryPick: Adaptively Unearthing the Best Cloud Configurations for Big Data Analytics},
booktitle = {{NSDI} 17},
year = {2017},
isbn = {978-1-931971-37-9},
pages = {469--482},
publisher = {{USENIX} Association},
}
@inproceedings{hpc-cloud-predict,
author = {Mariani, Giovanni and Anghel, Andreea and Jongerius, Rik and Dittmann, Gero},
title = {Predicting Cloud Performance for HPC Applications: A User-oriented Approach},
series = {CCGrid '17},
year = {2017},
isbn = {978-1-5090-6610-0},
location = {Madrid, Spain},
pages = {524--533},
numpages = {10},
doi = {10.1109/CCGRID.2017.11},
acmid = {3101183},
publisher = {IEEE Press},
address = {Piscataway, NJ, USA},
}
@inproceedings{spark,
author = {Matei Zaharia and Mosharaf Chowdhury and Tathagata Das and Ankur Dave and Justin Ma and Murphy McCauly and Michael J. Franklin and Scott Shenker and Ion Stoica},
title = {Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing},
booktitle = {NSDI 12},
year = {2012},
isbn = {978-931971-92-8},
address = {San Jose, CA},
pages = {15--28},
publisher = {USENIX},
}
@INPROCEEDINGS{marlin,
author={R. Gu and Y. Tang and Z. Wang and S. Wang and X. Yin and C. Yuan and Y. Huang},
booktitle={Big Data},
title={Efficient large scale distributed matrix computation with spark},
year={2015},
volume={},
number={},
pages={2327-2336},
doi={10.1109/BigData.2015.7364023},
ISSN={},
month={Oct},}
@article{svd,
author = {Golub, G. H. and Reinsch, C.},
title = {Singular Value Decomposition and Least Squares Solutions},
journal = {Numer. Math.},
issue_date = {April 1970},
year = {1970},
}