-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathex_Lists.v
665 lines (543 loc) · 18 KB
/
ex_Lists.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
(** * Lists: Working with Structured Data *)
Require Export Induction.
Module NatList.
(* ###################################################### *)
(** * Pairs of Numbers *)
Inductive natprod : Type :=
pair : nat -> nat -> natprod.
Definition fst (p : natprod) : nat :=
match p with
| pair x y => x
end.
Definition snd (p : natprod) : nat :=
match p with
| pair x y => y
end.
Notation "( x , y )" := (pair x y).
Definition swap_pair (p : natprod) : natprod :=
match p with
| (x,y) => (y,x)
end.
Theorem surjective_pairing : forall (p : natprod),
p = (fst p, snd p).
Proof.
intros p. destruct p as [n m]. simpl. reflexivity. Qed.
(** **** Exercise: 1 star (snd_fst_is_swap) *)
Theorem snd_fst_is_swap : forall (p : natprod),
(snd p, fst p) = swap_pair p.
Proof.
intros p. destruct p as [n m]. simpl. reflexivity. Qed.
(** **** Exercise: 1 star, optional (fst_swap_is_snd) *)
Theorem fst_swap_is_snd : forall (p : natprod),
fst (swap_pair p) = snd p.
Proof.
intros p. destruct p as [n m]. simpl. reflexivity. Qed.
(** * Lists of Numbers *)
Inductive natlist : Type :=
| nil : natlist
| cons : nat -> natlist -> natlist.
Notation "x :: l" := (cons x l) (at level 60, right associativity).
Notation "[ ]" := nil.
Notation "[ x ; .. ; y ]" := (cons x .. (cons y nil) ..).
(** *** Repeat *)
Fixpoint repeat (n count : nat) : natlist :=
match count with
| O => nil
| S count' => n :: (repeat n count')
end.
(** *** Length *)
Fixpoint length (l : natlist) : nat :=
match l with
| nil => O
| h :: t => S (length t)
end.
(** *** Append *)
Fixpoint app (l1 l2 : natlist) : natlist :=
match l1 with
| nil => l2
| h :: t => h :: (app t l2)
end.
Notation "x ++ y" := (app x y)
(right associativity, at level 60).
Definition hd (default:nat) (l:natlist) : nat :=
match l with
| nil => default
| h :: t => h
end.
Definition tl (l:natlist) : natlist :=
match l with
| nil => nil
| h :: t => t
end.
(** **** Exercise: 2 stars (list_funs) *)
(** Complete the definitions of [nonzeros], [oddmembers] and
[countoddmembers] below. Have a look at the tests to understand
what these functions should do. *)
Fixpoint nonzeros (l:natlist) : natlist :=
match l with
| nil => nil
| 0 :: t => nonzeros t
| h :: t => h :: nonzeros t
end.
Example test_nonzeros: nonzeros [0;1;0;2;3;0;0] = [1;2;3].
Proof. reflexivity. Qed.
Fixpoint oddmembers (l:natlist) : natlist :=
match l with
| nil => nil
| h :: t => match oddb h with
| true => h :: oddmembers t
| false => oddmembers t
end
end.
Example test_oddmembers: oddmembers [0;1;0;2;3;0;0] = [1;3].
Proof. reflexivity. Qed.
Fixpoint countoddmembers (l:natlist) : nat :=
length (oddmembers l).
Example test_countoddmembers1: countoddmembers [1;0;3;1;4;5] = 4.
Proof. reflexivity. Qed.
Example test_countoddmembers2: countoddmembers [0;2;4] = 0.
Proof. reflexivity. Qed.
Example test_countoddmembers3: countoddmembers nil = 0.
Proof. reflexivity. Qed.
(** **** Exercise: 3 stars, advanced (alternate) *)
(** Complete the definition of [alternate], which "zips up" two lists
into one, alternating between elements taken from the first list
and elements from the second. See the tests below for more
specific examples.
Note: one natural and elegant way of writing [alternate] will fail
to satisfy Coq's requirement that all [Fixpoint] definitions be
"obviously terminating." If you find yourself in this rut, look
for a slightly more verbose solution that considers elements of
both lists at the same time. (One possible solution requires
defining a new kind of pairs, but this is not the only way.) *)
Fixpoint alternate (l1 l2 : natlist) : natlist :=
match l1 with
| nil => l2
| h :: s => match l2 with
| nil => l1
| x :: xs => h :: x :: alternate s xs
end
end.
Example test_alternate1: alternate [1;2;3] [4;5;6] = [1;4;2;5;3;6].
Proof. reflexivity. Qed.
Example test_alternate2: alternate [1] [4;5;6] = [1;4;5;6].
Proof. reflexivity. Qed.
Example test_alternate3: alternate [1;2;3] [4] = [1;4;2;3].
Proof. reflexivity. Qed.
Example test_alternate4: alternate [] [20;30] = [20;30].
Proof. reflexivity. Qed.
(** ** Bags via Lists *)
Definition bag := natlist.
(** **** Exercise: 3 stars (bag_functions) *)
(** Complete the following definitions for the functions
[count], [sum], [add], and [member] for bags. *)
Fixpoint count (v:nat) (s:bag) : nat :=
match s with
| nil => 0
| x :: xs => match (beq_nat x v) with
| true => S (count v xs)
| false => count v xs
end
end.
(** All these proofs can be done just by [reflexivity]. *)
Example test_count1: count 1 [1;2;3;1;4;1] = 3.
Proof. reflexivity. Qed.
Example test_count2: count 6 [1;2;3;1;4;1] = 0.
Proof. reflexivity. Qed.
(** Multiset [sum] is similar to set [union]: [sum a b] contains
all the elements of [a] and of [b]. (Mathematicians usually
define [union] on multisets a little bit differently, which
is why we don't use that name for this operation.)
For [sum] we're giving you a header that does not give explicit
names to the arguments. Moreover, it uses the keyword
[Definition] instead of [Fixpoint], so even if you had names for
the arguments, you wouldn't be able to process them recursively.
The point of stating the question this way is to encourage you to
think about whether [sum] can be implemented in another way --
perhaps by using functions that have already been defined. *)
Definition sum : bag -> bag -> bag := app.
Example test_sum1: count 1 (sum [1;2;3] [1;4;1]) = 3.
Proof. reflexivity. Qed.
Definition add (v:nat) (s:bag) : bag :=
match s with
| nil => [v]
| x :: xs => v :: s
end.
Example test_add1: count 1 (add 1 [1;4;1]) = 3.
Proof. reflexivity. Qed.
Example test_add2: count 5 (add 1 [1;4;1]) = 0.
Proof. reflexivity. Qed.
Definition member (v:nat) (s:bag) : bool :=
ble_nat 1 (count v s).
Example test_member1: member 1 [1;4;1] = true.
Proof. reflexivity. Qed.
Example test_member2: member 2 [1;4;1] = false.
Proof. reflexivity. Qed.
(** [] *)
(** **** Exercise: 3 stars, optional (bag_more_functions) *)
(** Here are some more bag functions for you to practice with. *)
Fixpoint remove_one (v:nat) (s:bag) : bag :=
match s with
| nil => nil
| x :: xs => match beq_nat v x with
| true => xs
| false => x :: remove_one v xs
end
end.
Example test_remove_one1: count 5 (remove_one 5 [2;1;5;4;1]) = 0.
Proof. reflexivity. Qed.
Example test_remove_one2: count 5 (remove_one 5 [2;1;4;1]) = 0.
Proof. reflexivity. Qed.
Example test_remove_one3: count 4 (remove_one 5 [2;1;4;5;1;4]) = 2.
Proof. simpl. reflexivity. Qed.
Example test_remove_one4: count 5 (remove_one 5 [2;1;5;4;5;1;4]) = 1.
Proof. reflexivity. Qed.
Fixpoint remove_all (v:nat) (s:bag) : bag :=
match s with
| nil => nil
| x :: xs => match beq_nat v x with
| true => remove_all v xs
| false => x :: remove_all v xs
end
end.
Example test_remove_all1: count 5 (remove_all 5 [2;1;5;4;1]) = 0.
Proof. reflexivity. Qed.
Example test_remove_all2: count 5 (remove_all 5 [2;1;4;1]) = 0.
Proof. reflexivity. Qed.
Example test_remove_all3: count 4 (remove_all 5 [2;1;4;5;1;4]) = 2.
Proof. reflexivity. Qed.
Example test_remove_all4: count 5 (remove_all 5 [2;1;5;4;5;1;4;5;1;4]) = 0.
Proof. reflexivity. Qed.
Fixpoint subset (s1:bag) (s2:bag) : bool :=
match s1 with
| nil => true
| x :: xs => match member x s2 with
| true => subset xs (remove_one x s2)
| false => false
end
end.
Example test_subset1: subset [1;2] [2;1;4;1] = true.
Proof. reflexivity. Qed.
Example test_subset2: subset [1;2;2] [2;1;4;1] = false.
Proof. reflexivity. Qed.
(** [] *)
(** **** Exercise: 3 stars (bag_theorem) *)
(** Write down an interesting theorem about bags involving the
functions [count] and [add], and prove it. Note that, since this
problem is somewhat open-ended, it's possible that you may come up
with a theorem which is true, but whose proof requires techniques
you haven't learned yet. Feel free to ask for help if you get
stuck! *)
(* TODO *)
(* Fact a_great_theorem : forall a b : nat, forall s : bag, *)
(* beq_nat a b = true -> count b (add a s) = 1 + count b s. *)
(* Proof. Abort. *)
(** [] *)
(** * Reasoning About Lists *)
Theorem nil_app : forall l:natlist,
[] ++ l = l.
Proof. reflexivity. Qed.
Theorem tl_length_pred : forall l:natlist,
pred (length l) = length (tl l).
Proof.
intros l. destruct l as [| n l'].
Case "l = nil".
reflexivity.
Case "l = cons n l'".
reflexivity. Qed.
(** ** Micro-Sermon *)
(** ** Induction on Lists *)
Theorem app_assoc : forall l1 l2 l3 : natlist,
(l1 ++ l2) ++ l3 = l1 ++ (l2 ++ l3).
Proof.
intros l1 l2 l3. induction l1 as [| n l1'].
Case "l1 = nil".
reflexivity.
Case "l1 = cons n l1'".
simpl. rewrite -> IHl1'. reflexivity. Qed.
(** *** Informal version *)
(** *** Another example *)
Theorem app_length : forall l1 l2 : natlist,
length (l1 ++ l2) = (length l1) + (length l2).
Proof.
(* WORKED IN CLASS *)
intros l1 l2. induction l1 as [| n l1'].
Case "l1 = nil".
reflexivity.
Case "l1 = cons".
simpl. rewrite -> IHl1'. reflexivity. Qed.
(** *** Reversing a list *)
Fixpoint snoc (l:natlist) (v:nat) : natlist :=
match l with
| nil => [v]
| h :: t => h :: (snoc t v)
end.
Fixpoint rev (l:natlist) : natlist :=
match l with
| nil => nil
| h :: t => snoc (rev t) h
end.
(** *** Proofs about reverse *)
Theorem length_snoc : forall n : nat, forall l : natlist,
length (snoc l n) = S (length l).
Proof.
intros n l. induction l as [| n' l'].
Case "l = nil".
reflexivity.
Case "l = cons n' l'".
simpl. rewrite -> IHl'. reflexivity. Qed.
Theorem rev_length : forall l : natlist,
length (rev l) = length l.
Proof.
intros l. induction l as [| n l'].
Case "l = nil".
reflexivity.
Case "l = cons".
simpl. rewrite -> length_snoc.
rewrite -> IHl'. reflexivity. Qed.
(** ** List Exercises, Part 1 *)
(** **** Exercise: 3 stars (list_exercises) *)
(** More practice with lists. *)
Theorem app_nil_end : forall l : natlist,
l ++ [] = l.
Proof.
intros l. induction l as [| x xs].
Case "l = []". reflexivity.
Case "l = cons".
simpl. rewrite -> IHxs. reflexivity. Qed.
Theorem rev_snoc : forall (v : nat) (l : natlist),
rev (snoc l v) = v :: rev l.
Proof.
intros v l. induction l as [| x xs].
Case "l = []".
reflexivity.
Case "l = cons".
simpl. rewrite -> IHxs. reflexivity. Qed.
Theorem rev_involutive : forall l : natlist,
rev (rev l) = l.
Proof.
intros l. induction l as [| x xs].
Case "l = []". reflexivity.
Case "l = cons".
simpl. rewrite -> rev_snoc. rewrite -> IHxs. reflexivity. Qed.
(* ref: https://github.com/etosch/software_foundations/blob/master/lesson3_Lists.v *)
(** There is a short solution to the next exercise. If you find
yourself getting tangled up, step back and try to look for a
simpler way. *)
Theorem app_assoc4 : forall l1 l2 l3 l4 : natlist,
l1 ++ (l2 ++ (l3 ++ l4)) = ((l1 ++ l2) ++ l3) ++ l4.
Proof.
intros l1 l2 l3 l4.
replace ((l1 ++ l2) ++ l3) with (l1 ++ l2 ++ l3).
rewrite -> app_assoc.
rewrite -> app_assoc. reflexivity.
Case "replace".
rewrite -> app_assoc. reflexivity. Qed.
Theorem snoc_append : forall (l : natlist) (n : nat),
snoc l n = l ++ [n].
Proof.
intros l n. induction l as [| x xs].
Case "l = []".
reflexivity.
Case "l = cons".
simpl. rewrite -> IHxs. reflexivity. Qed.
Theorem distr_rev : forall l1 l2 : natlist,
rev (l1 ++ l2) = (rev l2) ++ (rev l1).
Proof.
intros l1 l2. induction l1 as [| x xs].
Case "l1 = []".
simpl. rewrite -> app_nil_end. reflexivity.
Case "l1 = cons".
simpl. rewrite -> IHxs.
rewrite -> snoc_append. rewrite -> snoc_append.
rewrite -> app_assoc. reflexivity. Qed.
(** An exercise about your implementation of [nonzeros]: *)
Lemma nonzeros_nil : forall l : natlist,
nonzeros [] = [].
Proof.
reflexivity. Qed.
Lemma nonzeros_app : forall l1 l2 : natlist,
nonzeros (l1 ++ l2) = (nonzeros l1) ++ (nonzeros l2).
Proof.
intros l1 l2. induction l1 as [| x xs].
Case "l1 = []".
reflexivity.
Case "l1 = cons".
destruct x as [| x'].
SCase "x = 0".
simpl. rewrite -> IHxs. reflexivity.
SCase "x > 0".
simpl. rewrite -> IHxs. reflexivity.
Qed.
(** [] *)
(** **** Exercise: 2 stars (beq_natlist) *)
(** Fill in the definition of [beq_natlist], which compares
lists of numbers for equality. Prove that [beq_natlist l l]
yields [true] for every list [l]. *)
Fixpoint beq_natlist (l1 l2 : natlist) : bool :=
match l1 with
| nil => match l2 with
| nil => true
| _ => false
end
| h :: t => match l2 with
| nil => false
| h2 :: t2 => match beq_nat h h2 with
| false => false
| true => beq_natlist t t2
end
end
end.
Example test_beq_natlist1 : (beq_natlist nil nil = true).
Proof. reflexivity. Qed.
Example test_beq_natlist2 : beq_natlist [1;2;3] [1;2;3] = true.
Proof. reflexivity. Qed.
Example test_beq_natlist3 : beq_natlist [1;2;3] [1;2;4] = false.
Proof. reflexivity. Qed.
Lemma beq_n_n : forall n : nat,
beq_nat n n = true.
Proof.
intros. induction n as [| n'].
Case "n = 0".
reflexivity.
Case "n > 0".
simpl. rewrite -> IHn'. reflexivity. Qed.
Theorem beq_natlist_refl : forall l : natlist,
true = beq_natlist l l.
Proof.
intro l. induction l as [| x xs].
Case "l = []".
reflexivity.
Case "l = cons".
simpl. rewrite -> beq_n_n.
rewrite <- IHxs. reflexivity.
Qed.
(** ** List Exercises, Part 2 *)
(** **** Exercise: 2 stars (list_design) *)
(** Design exercise:
- Write down a non-trivial theorem involving [cons]
([::]), [snoc], and [app] ([++]).
- Prove it. *)
(* TODO *)
(** [] *)
(** **** Exercise: 3 stars, advanced (bag_proofs) *)
(** Here are a couple of little theorems to prove about your
definitions about bags earlier in the file. *)
Theorem count_member_nonzero : forall (s : bag),
ble_nat 1 (count 1 (1 :: s)) = true.
Proof.
reflexivity.
Qed.
(** The following lemma about [ble_nat] might help you in the next proof. *)
Theorem ble_n_Sn : forall n,
ble_nat n (S n) = true.
Proof.
intros n. induction n as [| n'].
Case "0".
simpl. reflexivity.
Case "S n'".
simpl. rewrite IHn'. reflexivity. Qed.
Theorem remove_decreases_count: forall (s : bag),
ble_nat (count 0 (remove_one 0 s)) (count 0 s) = true.
Proof.
intros s. induction s as [| h t].
Case "s = []".
reflexivity.
Case "s = cons".
destruct h as [| h']. simpl.
SCase "h = 0".
rewrite -> ble_n_Sn. reflexivity.
SCase "h > 0".
simpl. rewrite -> IHt. reflexivity.
Qed.
(** **** Exercise: 3 stars, optional (bag_count_sum) *)
(** Write down an interesting theorem about bags involving the
functions [count] and [sum], and prove it.*)
(* TODO *)
(** [] *)
(** **** Exercise: 4 stars, advanced (rev_injective) *)
(** Prove that the [rev] function is injective, that is,
forall (l1 l2 : natlist), rev l1 = rev l2 -> l1 = l2.
There is a hard way and an easy way to solve this exercise.
*)
Theorem rev_injective: forall (l1 l2 : natlist),
rev l1 = rev l2 -> l1 = l2.
Proof.
intros l1 l2 H.
rewrite <- rev_involutive.
rewrite <- H.
rewrite -> rev_involutive.
reflexivity.
Qed.
(** * Options *)
Inductive natoption : Type :=
| Some : nat -> natoption
| None : natoption.
Fixpoint index (n:nat) (l:natlist) : natoption :=
match l with
| nil => None
| a :: l' => match beq_nat n O with
| true => Some a
| false => index (pred n) l'
end
end.
Definition option_elim (d : nat) (o : natoption) : nat :=
match o with
| Some n' => n'
| None => d
end.
(** **** Exercise: 2 stars (hd_opt) *)
(** Using the same idea, fix the [hd] function from earlier so we don't
have to pass a default element for the [nil] case. *)
Definition hd_opt (l : natlist) : natoption :=
match l with
| nil => None
| h :: t => Some h
end.
Example test_hd_opt1 : hd_opt [] = None.
Proof. reflexivity. Qed.
Example test_hd_opt2 : hd_opt [1] = Some 1.
Proof. reflexivity. Qed.
Example test_hd_opt3 : hd_opt [5;6] = Some 5.
Proof. reflexivity. Qed.
(** **** Exercise: 1 star, optional (option_elim_hd) *)
(** This exercise relates your new [hd_opt] to the old [hd]. *)
Theorem option_elim_hd : forall (l : natlist) (default : nat),
hd default l = option_elim default (hd_opt l).
Proof.
intros l d. destruct l as [| h t].
reflexivity.
reflexivity.
Qed.
(** * Dictionaries *)
Module Dictionary.
Inductive dictionary : Type :=
| empty : dictionary
| record : nat -> nat -> dictionary -> dictionary.
Definition insert (key value : nat) (d : dictionary) : dictionary :=
(record key value d).
Fixpoint find (key : nat) (d : dictionary) : natoption :=
match d with
| empty => None
| record k v d' => if (beq_nat key k)
then (Some v)
else (find key d')
end.
(** **** Exercise: 1 star (dictionary_invariant1) *)
(** Complete the following proof. *)
Theorem dictionary_invariant1' : forall (d : dictionary) (k v: nat),
(find k (insert k v d)) = Some v.
Proof.
intros d k v.
simpl. rewrite <- beq_nat_refl. reflexivity.
Qed.
(** **** Exercise: 1 star (dictionary_invariant2) *)
(** Complete the following proof. *)
Theorem dictionary_invariant2' : forall (d : dictionary) (m n o: nat),
beq_nat m n = false -> find m d = find m (insert n o d).
Proof.
intros d m n o H.
simpl. rewrite -> H. reflexivity.
Qed.
End Dictionary.
End NatList.